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A b s t r a c t . We give a complete characterization of power integral bases in quartic number 
fields of type A = Q ( \/?77, \ / n ) where m , 7 l are distinct square-free integers with opposite 
sign. We provide a list of all fields of this type up to discriminant 1Ü4 in increasing order of 
discriminants containing field indices, minimal indices and all elements of minimal index. 
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1. I n t r o d u c t i o n 

Let K be an algebraic number field of degree n. The index of a primitive 
element a E TJK is defined by 

1(a) = (Z+ : Z[a]+) . 

The existence of power integral bases {1, a,..., c r " - 1 } is a classical problem of 
algebraic number theory. The element a generates a power integral basis if and 
only if 1(a) = 1 (for related results cf. [1]). If the number field K admits power 
integral bases, it is called vionogeneous. We recall that the ininimal index of a 
number field K is the minimum of the indices of till primitive integers in the field. 
The field index is the greatest common divisor of the indices of all primitive integers 
of the field. 

Let m, n be distinct square-free integers. Biquadratic fields of type K — 
Q(^/rn, ^/n) were considered by several authors. K. S. Williams [6] described an 
integral basis of K. T. Nakahara [5] proved that infinitely many fields of this type 
have power integral bases, on the other hand for any given N there are infinitely 
many fields of this type with field index 1 but minimal index > N, consequently 
without power integral basis. 

M. N. Gras and F. Tanoe [4] gave necessary and sufficient conditions for 
biquadratic fields to have power integral basis. In fact they characterized all mixed 
biquadratic fields having power integral basis and established further necessary 
conditions for totally real biquadratic fields to have power integral basis. Using the 
integral bases I. Gaál, A. Pethö and M. Pohst [3] formulated the corresponding 
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index forms and gave an algorithm for determining all generators of power integral 
bases in the totally real case by solving systems of simultaneous Pellian equations. 

To complete the above theory of power integral bases in biquadratic fields our 
purpose is to describe all generators of power integral bases in mixed biquadratic 
number fields. The most interesting point is that it turns out, that surprisingly the 
coordinate vectors (with respect to the integral basis of [6]) of the generators of 
power integral bases in mixed biquadratic number fields are contained in a finite set 
of constant vectors for all these fields. We also provide a table of mixed biquadratic 
fields in increasing order of discriminants up to 1Ü4 displaying the field index, 
minimal index and all elements of minimal index. 

2, I n d e x fo rm e q u a t i o n in m i x e d b i q u a d r a t i c fields 

To fix our notation we shortly recall the integral bases and corresponding index 
forms of biquadratic number fields with mixed signature. 

Let m, n be distinct square-free rational integers (not equal to 1), let / = 
(m, n) > 0 and let nil. n\ be defined by m = /mi, n — ln\. By K. S. Williams' 
result [6] all mixed biquadratic number fields can be given in the form Qfy^m, \/n) 
so that the parameters belong to one of the following cases: 
Case 1: 

Case 2: 

Case 3/A 
Case 3/B 
Case 4/A 
Case 4/B 
Case 5/A 
Case 5/B 
and the integral bases are given by 

1 + \/rn 1 + x/n 1 + /m + y/n + /nnm 

m > 0 , n < o, in = 1 (mod 4), n = 1 (mod 4), 
mi = 1 (mod 4), n i = 1 (mod 4). 

m > o, n < o, in = 1 (mod 4), n = 1 (mod 4), 
mi =3 (mod 4), n j = 3 (mod 4). 

m > 0 , n < o, in = 1 (mod 4), n =2 (mod 4). 
m < 0 , n > o, m = 1 (mod 4), n =2 (mod 4). 
m > Ü, n < o, m =2 (mod 4), n = 3 (mod 4). 
rn < 0, n > o, m =2 (mod 4), n =3 (mod 4). 
m > 0, n < o, m = 3 (mod 4), n =3 (mod 4). 
m < 0, n < o, m = 3 (mod 4), n = 3 (mod 4). 

Case 1: <1 

Case 2: 1 

2 ' 2 ' 4 
1 + x/m. 1 + y/n 1 - \/rn + /n + \ / m i n i 

Cases 3/A and 3/B: 

Cases 4/A and 4/B: 

Cases 5/A and 5/B: 

2 
1 + n + /mi??; 

1, x/m, y/n, 
m -f- ^/rriirii 

~2 
f— /m. + y/ri 1 + 

l . V m , 2 ' 2 
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The integral basis enables one to construct the corresponding index forms (cf. e.g. 
[2]): 
Case 1: 

+ - J®4j + y ) ~-y£4J ("i(*3 + y ) - mx{x2 + y ) J-

Case 2: 

/ n l 2 A (u , ,2 m l 2\ ( / , ;C4 / 
- y ) - y x4J + y ) - J + y ) - - y ) J • 

Cases 3/A and 3/B: 

(/^2 - " 1^4) (^(;t;3 + y ) 2 - " y x 4 j («1(2^3 + £4)" - m i i j ) . 

Cases 4/A and 4/B: 

+ - FA! - f M - T^ + *4)í)-

Cases 5/A and 5/B: 

(/(2.1-2 + Z3)2 - iHx'l) (Ix3 - m i z j ) ( y ; c 3 - mi(®2 + y )2) • 

As it is well-known (see e.g. [1]) K = Q( \ /m, ^/n) admits power integral bases 
if and only if the index form equation 

(1) I(x2, £3, £4) = ±1 (in .r2, .T3, x4 E Z) 

is solvable, where I(x2, £3, £4) is the index form given above. Moreover, all gene-
rators of power integral bases are of the form 

a = X\ + X2W0 + .C3CJ3 + X4ŰJ4 

where {1, <^2,^3,^4} is the integral basis of K\ (x2, £3, £4) is a solution of the index 
form equation (1) and x\ E Z is arbitrary. 

Our main theorem characterizes the cases when K has power integral bases 
and describes all generators of power integral bases. M. N. Gras and F. Tanoe 
[4] has already described the monogeneous mixed biquadratic fields. Our main 
point is to show that the solutions of the index form equations in monogeneous 
mixed biquadratic fields belong to a finite set of constant vectors. Especially, the 
coordinates of the generators of power integral bases are explicitely given and do 
not depend on the parameters m,n,l. 
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T h e o r e m . Let K = Q ( \ / rn . , ^ /n ) be a mixed biquadratic number field represented 
in one of the forms listed, above. 
In cases 1, 2 and 3/A there are no power integral bases. 
In the other cases the necessary and sufficient condition of the existence of power 
integral bases in K is 
Case 3/B: m,\ — —1, I — 4ni = —1 (and by the assumption ni >0/ 
Case 4/A: mi = 2, ni = — 1, 1=1, so m — 2 and n = —1. 
Case 4/B: mi — —2, I — ri\ = ±2 (and by the assumption ni > 0). 
Case 5/A: ni = — 1, 41 — mi = 1 (and by the assumption mi >0^. 
Case 5/B: I = 1, ni — mi = ±4 (and by the assumption mi , ni < 0J. 

The solutions of the index form equation corresponding to the above integral basis 
are 
Case 3/B (x2,x3,x4) = (1,1, - 2 ) , ( 1 , - 1 , 2), 
Case 4/A (x2,x3, x4) = (0, 0,1), (1, 0, - 1 ) , 
Case 4/B (x2,x3,x4) = (0,0,1), (1 ,0 , -1 ) , 
Case 5/A m = 3, n = - 1 ( i 2 , ®3, x4) = (1, -2 ,1 ) , (1, - 2 , - 1 ) , 

(0,1,0), (1, —1,0), 
Case 5/A other fields (x2,x3,x±)= (1, — 2,1), (1, — 2, — 1), 
Ca.se 5/B (x2,x3,x4) = (0,1, 0), ( 1 , - 1 , 0). 

Note that if (x2, x3, is a solution then so also is (—x2, — x3) — £4) but we 
include only one of them. 

P roof of t h e T h e o r e m . In each case we solve equation (1) using the relevant 
index form. In each case the index form splits into three factors taking integer 
values, hence all factors must be equal to ±1. We detail some tipical cases, the 
others are similar to deal with. 

Case 1. We have mi > 0, n\ < 0, m i = l (mod 4), n i = l (mod 4). Set 
n1 = |mI > 0. 

The first factor of the index form is non-negative. Multiplying by 4 we get 

/(2x2 + ÍC4)2 + = 4. 

On the left hand side both terms are non-negative integers, hence we have to 
consider the following five cases (a. to e.): 

(a) /(2x2 + x±)2 = 0, n \x \ = 4 

By I > 0, we have 2x2 + X4 = 0, that is 2 | X4. On the other hand 
(«1,^4) = (1,4), (4,1), and X4 is even which imply rii = 1, that is n 1 = —1. Then 
we obtain n i ^ l (mod 4), a contradiction, hence in case a there are 110 solutions. 

(b) /(2x2 + Z4)2 = 1, n x x\ = 3 
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This is only possible if / = 1, 2xo + x4 = ±1, n\ — 3 (that is ?7i = —3) and 
x\ = 1. If £4 = 1, then X2 = 0 or x2 — —1; if £4 = — 1, then x2 = 0 or x2 = 1. 
Then the third factor of the index form is not positive, hence it is equal to —1: 

Í lA" m i If x2 = 0, £4 = 1 or x2 = —1, £4 = 1, then — 3 £3 + — = —1, that is 
2 J 4 

3(2X*3 -f l)2 -f- m\ — 4. The first term is 11011-negative, not greater than 4, divisible 
by 3 and odd, hence it is equal to 3. Then 3(2x'3 -f l)2 = 3 and m 1 = 1, hence 
2X3 + 1 = ±1» £ 3 = 0 or X3 = —1. 

If x2 = 0, X4 = —1 or x2 = 1, X4 ~ —1, then —3 (#3 — - ) = —1, that 
2 J 4 

is 3(2x3 — l)2 + mi = 4. Similarly as above it follows that the first term is 3 and 
mi = 1, X3 = 0 or X3 — 1. 

The remaining cases are (X3, X4) = (0,1), (—1, 1), (0, —1), (1, —1). Considering 

the second factor we get ^ — ̂  = ±1. On the other hand we have / = mi = 1, 

hence = 0. It means that there are no solutions in case b, either. 

The cases 

(c) /(2x2 + X 4 ) 2 = 2, «1X4 = 2, 

(d) /(2x2 + xa)2 — 3, n\x\ = 1, 

(e) l(2x2 + ^4)2 = 4, n x x | = 0 

are much simpler to consider. 

Hence in case 1 there are no power integral bases. 

Cases 2, 3/A, 3/B are similar to consider. 

Case J{/A. Now we have mi > 0, r?i < U. Let n 1 = |?2i| > 0. 

The third factor is non-positive, so multiplying by —2 we get 

4/i 1X3 + ?771 (2 x 2 + X 4 ) 2 = 2. 

The first term is non-negative, less than or equal to 2 and divisible by 4, hence only 
4771X3 = 0 and 777.1(2x2 + X4)2 = 2 are possible. These imply X3 = 0, mi = 2 and 
2x2 + X4 = ±1. Then the second factor is — £4 = —1, that is X4 = ±1. If X4 = 1, 
then x2 — 0 or X2 = — 1, and if £4 = — 1, then x2 = 0 or X2 = 1. The remaining 
cases are (x'2,X4) = (0,1), (— 1,1), (0, — 1), (1, — 1). Considering the first factor we 
get i - ^ = ±1. But / > 0, m < 0, so > 0, hence - 1, that Ls l-nx = 2. 
On the other hand, by l ,n 1 £ Z, we get I > 1, ?7i < —1, hence / — n\ > 2. In 
this inequality the equation holds, so we have / = 1, ?7i = — 1. Summarizing, hi 
this case / = 1, m\ — 2, ni = — 1 and the solutions of the index form equation are 
( x 2 , x 3 ) x 4 ) = ±(0 ,0 ,1) , ± ( 1 , 0 , - 1 ) . 

Case Ji/B. In this case ni > 0, nil < 0, and set mi = |?77i| > 0. 
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Now the second factor is not negative, hence it is equal to 1. If we multiply it 
by 2, we get 

41 x $ + rhix± = 2. 

On the left hand side the first term is equal to 0, because it is non-negative, not 
greater than 2 and divisible by 4, which implies ilx^ = 0, mi £4 — 2. From 
these we get X3 = 0, m\ — 2 (that is mi = —2), x± = ±1. Then the third 
factor is (2x2 + x*4)2 = 1, hence 2xo + £4 = ±1. If £4 = 1, then X2 = 0 
or X2 = —1; if £4 = —1, then £2 = 0 or X2 — 1. In the remaining cases 
( (x 2 , z 4 ) = (0,1), ( -1 ,1 ) , ( 0 , - 1 ) , (1 , -1) ) the first factor is \ - ^ = ±1, that 
is I — n\ = ±2. Summarizing, we get m\ — —2, I — ri\ — ±2 and the solutions of 
the index form equation in this case are (x*2, £4) = ±(0, 0,1), ±(1, 0, —1). 

Cases 5/A, 5/B can be discussed in a similar way. 

In each case it is simple to verify by substitution that the triples (a,*2, X3, X4) 
obtained above are indeed solutions of the index form equation. 

3. Desc r ip t ion of t he t a b l e 

We present a list of till mixed biquadratic fields up to discriminant 104. In this 
table D/i, mj{, // denote the discriminant, the field index and the minimal index, 
respectively. They are followed by the solutions of I(x2,23,24) = ±/i, that is the 
coordinates of the elements of minimal index. If (x'2,x'3,a;4) is a solution then so 
also is (—X2, —X3, —X4) but we list only one of them. To construct the table we used 
[6] (integral basis, Dk), [2] (to calculate m I n order to determine the minimal 
index ß we took the multiplies K • 'IN.A of TTIK until the index form equation with 
right hand side ±k • rriK had solutions. In [3] the authors provided a similar list of 
totally real biquadratic fields. These computations were performed in MAPLE and 
took just a few minutes. 
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Dk m 1 ni / mK X 2 , X 3 , X i ) 

144 3 - 1 1 1 1 1, -2 , 1), (1, - 1 , 0 ) , (0, 1, 0) , ( 1 , - 2 , - 1 ) 
225 -3 5 1 2 2 0, I . - I ) , (0, 0, 1), (1, 0, - 1 ) , (1, 1 , - 1 ) 
256 2 - 1 1 1 1 0, 0, 1), (1, 0, - 1 ) 
400 -1 -5 1 1 1 O, 1, 0 ) , (1, - 1 , 0 ) 
441 -1 7 3 2 2 O, 1, - 1 ) , (1, 0, 1), (1, -1, 1), (0, 0, 1) 
576 -3 2 1 1 4 O, 1, - 1 ) , (0, 0, 1) 
576 -1 2 3 1 3 1, 1, - 1 ) , (1, 0, - 1 ) , (1, 0, 1), (1, -1, 1) 
784 7 - 1 1 1 2 1, -1 , O), (0, 1, 0) 

1089 -1 11 3 2 4 3, -1 . 2) , (1, 1, -2 ) 

1225 -7 5 1 2 6 O, 1, - 1 ) , (1, 1, - 1 ) , (1, 0, - 1 ) , (0, 0, 1) 
1521 -3 13 1 2 10 2, 1, - 1 ) , (2, 0, - 1 ) , (1, 0, 1), (1, -1 , 1) 
1600 5 -2 1 1 4 0, 1, - I ) , (0, 0 , 1 ) 
1600 1 -2 5 1 4 O, 1, - I ) , (0, 0 , 1 ) 
1936 11 - 1 1 1 3 1, -1 , 0) , (0, 1, 0) 
2304 6 - 1 1 1 5 O, 1, - 1 ) , (0, 1 , 1 ) , (1, - 1 , - 1 ) , ( 1 , 1 , - 1 ) 
2304 -2 3 1 1 1 1, 0, - 1 ) , (0, 0, 1) 
2601 -3 17 1 2 20 O, 1, - 1 ) , (1, -1 , 0) , (1, 1, 0) , (1, 0, - 1 ) , 
2704 -1 - 1 3 1 1 3 O, 1, 0) , (1, -1, 0) 

3025 -11 5 1 2 12 0, 0, 1), (0, 1, - 1 ) , (1, 1, - 1 ) , (1, 0, -1 ) 
3136 -7 2 1 1 8 0, 1, - 1 ) , (0 0, 1) 
3136 -1 2 7 1 1 1, -1 , 2) , (1 1 , - 2 ) 
3249 -1 19 3 2 14 1, 0, - 1 ) , (2 -1 , 1), (1, 1, -1 ) , (2, 0, 1) 
3600 15 - 1 1 1 4 1, -1 , 0) , (0 1 , 0 ) , ( 2 , - 4 , 1), ( 2 , - 4 , - 1 ) 

3600 3 - 5 1 1 2 1, -1 , 0) , (0 1, 0) 
3600 3 - 1 5 1 12 0, 1, - 1 ) , (1 -1 , 1), (0, 1. 1), (1, -1, -1 ) 
4624 -1 - 1 7 1 1 4 O, 1, 0) , (1, - 1 , 0 ) 
4 7 6 1 -1 23 3 2 8 2, -1 , 1), (1 0, - 1 ) , (2. 0, 1), (1, 1 , - 1 ) 
5776 19 -1 1 1 5 1, -1, 0 ) , (0 1, 0) 
5929 -1 11 7 2 4 2, -1, 2) , (0 1 , - 2 ) 
6400 10 -1 1 1 21 0, 1, - 1 ) , (1 1 , - 1 ) , ( 1 , - 1 , - 1 ) , (0, 1, 1) 
6400 2 -5 1 1 3 1, 0, - 1 ) , (0 Ü, 1) 
6400 2 -1 5 3 3 1, 0, - 1 ) , (0 0, 1) 
7056 1 -7 3 1 18 1, -1, 0) . (0 1, 0) 
7056 1 -3 7 1 31 1, 0, - 1 ) , (1 0, 1) 
7056 -1 - 2 1 1 1 5 0, 1, 0) , (1, - 1 , 0 ) 
7569 -3 29 1 2 26 3, 1, - 1 ) , (2 -1 , 1), (3, 0, - 1 ) , (2, 0, 1) 
7744 - 1 1 2 1 1 12 0, 0, 1), (0, 1, - 1 ) 
7744 -1 2 11 3 3 1, -1 , 2) , (1 1, - 2 ) 
8 2 8 1 -7 13 1 2 20 1, 1, 0) , (1, -1, 0) 
8464 23 -1 1 1 6 1, -1 , 0) , (0 1, 0) 
8649 -1 31 3 2 10 2, -1, 1), (2 0, 1), (1, 0, - 1 ) , (1, 1, -1 ) 
9025 -19 5 1 2 24 1, 1, 0) , (1, - 1 , 0 ) 
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