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M U L T I P L I C A T I V E F U N C T I O N S S A T I S F Y I N G 

A C O N G R U E N C E P R O P E R T Y IV . 

Bu i M i n h P h o n g ( B u d a p e s t , H u n g a r y ) 

A b s t r a c t . It is proved that if an integer-valued completely multiplicative function / with 

f(n) 0 (Vn E N) and a polynomial P(x) = Clo + CL^X -f • • • + ükXk £ Q[x'] satisfy the 

relation 

ApP(E)f(n + m) = APP{E)f(n) (mod m) 

for a suitable non-zero integer Ap and for all 71, 171 G N, where 

P(E)f(n) = a0f(n) + a i f ( n + 1) + • • • + akf(n + k), 

then there is a non-negative integer Oi such that f{Tl) — 1la for all n G N . A similar result is 

true for P(x) = (x — l)'1 and a multiplicative function f. 
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1. I n t r o d u c t i o n 

An arithmetical function f ( f ( n ) ^ 0) is said to be multiplicative if (n,m) 
= 1 implies 

f(nm) = / ( n ) / ( m ) , 

and it is called completely multiplicative if this equation holds for all positive 
integers n and m. Let M and M* be the set of all integer-valued multiplicative 
and completely multiplicative functions, respectively. Throughout this paper we 
apply the usual notations, i.e. V denotes the set of primes, N the set of positive 
intgers and Q the set of rational numbers, respectively. 

The problem concerning the characterization of some arithmetical functions 
by congruence properties was studied by several authors. The first result of this 
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type was found by M. V. Subbarao [9], namely lie proved in 1966 that if / E M 
satisfies the relation 

(1) f(n + m) = f(n) (mod m) 

for all n, m E N, then f(n) is a power of n with non-negative integer exponent. In 
[4] among others we extended this result by proving that if / E A4 and (1) holds 
for all n E N and for all m E V, then f(n) also is of the same form. For further 
results and generalizations of the above problem we refer the papers [1] and [4]-[8]. 

Let 
P(x) = a0 + aix + h akxk (ak / 0) 

be an arbitrary polynomial with integer coefficients. In the space of the sequences 
{xi,x2, • • •} let E, I, A denote the operators defined by the following relations 

E x n — Ein —- Xn, — • 

For the polynomial P(x) and the function f(n) we have 

P{E)f(n) = a 0 / ( n ) + aJin + 1) + • • • + akf{n + k). 

For any fixed subsets A, B of N we shall denote by K.p(A,B) the set of all 
f E M for which 

(2) P(E)f(n + m) = P(E)f(n) (mod m) 

holds for all n E A and m E B. It is obvious that 

(3) <pa(n) = na 

is a solution of (2) for every non-negative integer a and for every triplet (P, A, B). 
In the case P(x) = 1, for example, from the result of [4], we have 

K.p{N,'P) = {y?0, Vi , - . -, Vo, - • •} 

fCp(V, N) - {<p0,(plt...,tpa,...}, 

where <pa(n) is defined in (3). 

We ai'e interested for a characterization of those triplets (P,A , B) for which 

(4) ICP{A,B) = {<po,<p1,...,<pa,...} 

is satisfied. In [5]-[6] we proved that (4) holds for the following two cases: 

(a) P(x) = (x - 1)A: (k E N), A = N, B = V, 
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(6) P(x) = xM - 1 (M e N), A = N, B = V. 

Hence we apply the method of I. Kátai [2]-[3] to prove the following. 

T h e o r e m 1. Let f 6 .A4* with condition 

(5) f(n) ^ 0 for all n £ N. 

Let P{x) be a non-zero -polynomial with rational coefficients for which there exists 
a suitable non-zero integer Ap such that 

(6) ApP(E)f{n + 777.) = APP(E)f(n) (mod m) 

for all Ii E N and m £ N . Then there is a non-negative integer a such that 

(7) f(n) = na for all n £ N. 

We mention that in the special case P(x) = The orem 1 is true under 
the assumption / £ M.. 

T h e o r e m 2. Let f G M and let A ^ 0, k > 0 be integers. If Ah f(n) satisfies the 
relation 

(8) AAkf(n + m) = AAk f(n) (mod m) 

/or all n 6 N and m G N. i/ieri (7) holds. 

2. P roof of T h e o r e m 2 

In the proof of Theorem 2 we shall use the following results. 

L e m m a 1. Let f(n) be an integer-valued arithmetic function and let 
k G N, Q e N. If Akf(n) satisfies the relation 

(9) Akf(n + Q) = Akf(n) (mod Q) 

for all 77. £ N, then for s = 1,2,... ,k 

(10) A k ~ s f ( n + t Q ) - Ak~'f(n) = £ (" ~ ^ Ak~s+j (Q, t) (mod Q) 
j=o ^ J ' 
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holds for all n £ N; t £ N, where 

A>(Q,<) := A l / ( 1 + (Q) - A 7 ( l ) («" = 0 , 1 , . . •)• 

Furthermore, if Q is a •prime, then (9) implies that 

/ \ 
(11) A } - ' ( Q , i ) = J 2 O + J ^ " ^ ' 1 ) ( m o d ^ ) 

/lo/ds for all t £ N, where [a;] denotes the largest integer not exceeding x. 

This lemma and its proof can be found in [5] (see Lemma 1-2 ). 

L e m m a 2. Let a £ N and f £ M. If 

(12 ) / ' ( n + p a ) = / ( n ) ( m o d p) 

for all n £ N and p £ V, then f £ A4* and for each q £ V 

f(q)=qaiq\ 

where a(q) > 0 is an integer. 

This lemma is indentical to Lemma 3 in [5]. 

Now we prove Theorem 2. 

Assume that / £ M and (8) is true for all n, m £ N. First we shall prove that 
there exists an a £ N such that (12) holds for all n £ N and for all p £ V- If k = 0, 
then (12) is obviously true. 

Assume that k > 1 be an integer. Let a be a fixed positive integer such that 

(13) po ~ max(|A|, jfe - 1) < 2"" 1 

Since 
AAkf{n) = A k{Af(n)), 

by (8) it follows that 

A k ( A f ( n + pa'1)) = A k { A f ( n ) ) (mod pa_1) 

holds for all n £ N and for all p £ V. Thus, by using Lemma 1 and (13), for 
s — 1, 2 , . . . , k we have 

(14) A k ~ s f ( n + tp"-1) - A * " ' / ( « ) - £ ("' ~ 0 AkrS+j(Pa-\i) (mod p) 
j—0 ^ J J 
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holds for all n,t £ N, p £ V. Applying (14) in the case n = 1 + ipa 1 and t = 1, 
one can deduce from (13) that 

Ak-'f(l + (i + IK-1) - Ak~sf(l + ip01-1) EE £ 
j= o - ; 

(15) = A ) - s ( p « - \ l ) (mod p), 

since it is obvious that for a prime p 

ip 

Prom (15) we infer that 

= 0 (mod p) if 1 < j < p a- 1 

and so 

Akrs{pa~\t) = tAk
f-s(pa-\ 1) (mod p), 

(16) A ; ( p ° - \ p ) = A j ( p a _ 1 , p ) = - - • = A*" V \ p ) = 0 (mod p) 

holds for all p £ 'P. By using (14) with k = s and t = p, (16) implies (12). Thus, 
(12) is proved. 

Now, from Lemma 2 we have / £ .M* and 

(17) / (g) = 

for each q £ P , where a(g) > 0 is an integer. 
It is clear from (8) that 

A*/(n+p) = A*/(n) (mod p) 

for all n £ N and p £ P satisfying the condition p > |yi|. By using (11) in the case 
Ar = s, we have 

(18) / ( 1 + tp) - / (1) - t ( / (1 + p) - / (1)) (mod p) 

for all t £ N and for every prime p > po := max(|A|, A' — 1), because 

p > k. Considering t = p + 2 and taking account (18) we get 

Jfc-i = 0 for 

( / (1 + P) - I)3 = 0 (mod p), 
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and so by (18) we have 

(19) / ( 1 + tp) - / (1) = 0 (mod p) 

for all t 6 N and for every prime p > po-

Let q,r be distinct primes and let a(q) > a(r). Then there is a prime p such 
that 

p > max(p 0 , 9 a ( 3 ) " a ( r ) ) and qrs - 1 = 0 (mod p) 

for some positive integer s. Using (19), we have f(qrs) = /(1) = 1 (mod p) and 

f(qrs) = q
aWrsa^ = q<i)-<r) (mod p), 

which implies a(p) = ci(q) = a . Hence, f(n) = na for all n £ N. This completes 
the proof of Theorem 2. 

3. P r o o f of T h e o r e m 1 

Let f £ M* and f(n) f 0 for all n £ N. We denote by If the set of all 
polinomials P with rational coefficients for which there exists a suitable non-zero 
integer Ap such that 

ApP(E)f{n + rn) = APP(E)f(n) (mod m) 

holds for all n, m £ N . By our assumption (6), we have If ^ 0. It is clear to check 
that 

(i) cP(x) £ I j for every P £ I f , c £ Q 

(ii) P(x) + P'{x) £ If for every P, P' £ If 

(iii) xP(x) £ If for every P £ I f . Thus, (i)-(iii) show that If is an ideal in Q[x]. 

Let 
5(«) = c0 + c1x + h ckx

k (ck = 1) 

be a polynomial of minimum degree in I f . If k — 0, then Theorem 1 follows from 
Theorem 2. In the following we assume that k > 1. Let 

From the fundamental theorem of symmetric polynomials it follows that for a fixed 
integer s > 1 the polynomial 

R R F L Z L 
Ü j: - o. 
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has rational coefficients, consequently 

Qi(x*) = (xs -6{)...(xs - 9 l ) e l f . 

Then, by the definition of I j there is a non-zero integer As such that 

(20) AsQs(Es)f(n + m) = AsQs(Es)f(n) (mod m) 

for all n,m £ N. On the other hand, by using the fact / £ A4*, we have 

(21) Qs(Es)f(sn) = f(s)Qs(E)f(n). 

Therefore, (20) and (21) imply that 

AsQs(Es)f [s(n + m)] = AsQs{Es)f(sn) (mod sm) 

(22) AJ{s)Qs(E)f(n + m) = Asf(s)Qs{E)f{n) (mod sm) 

for all n, m E N. Since f(s) ^ 0 and / ( s ) is an integer, (22) shows that Qs(x) £ I j . 
Thus 

<$(*) = (S(x), Qs(x)) £ If 

and so degő(x') = k, S(x) = Q s (x) . This implies that 

for all s £ N, consequently 

= • • • = 6k = 1 and S(z) = (x - 1)A:. 

Thus, Theorem 1 follows directly from Theorem 2. 
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