KRYSTYNA BIALEK AND ALEKSANDER GRYTCZUK

THE EQUATION OF FERMAT IN $G_{2}(k)$ AND $Q[\sqrt{k})$

1. INTRODUCTION

Let $G_{2}(k)$ be the set of matrices of the form
(1) $\quad\left[\begin{array}{ll}\mathbf{r} & \mathbf{s} \\ \mathbf{k s} & \mathbf{r}\end{array}\right]$
where k is f ixed integer such that k wa and r, gmo are arbitrary integers.

The purpose of this paper is to give a connection between the solution of Fermat equation in $G_{2}(k)$ and the solution of this equation in $Q(\sqrt{k})$.

Some partial results concerning above problem are given in [1], [2], [4] (comp. [5]).

We prove the following theorems:

THEOREM 1.

The necessary and sufficiont condition for tino oquation
(2)

$$
A^{n}+B^{n}=C^{n},
$$

$(n 22)$ to have a solution in elements $A, B, C \in G_{2}(k)$ is the existence of the numbers $\alpha, \beta, \gamma \in Q(\sqrt{k})$ such that
(3) $\quad \alpha^{n}+\beta^{n}=\gamma^{n}$.

THEOREM 2.

Let K be a number field. If $a, b, c \in K$ and

$$
\mathbf{a}^{2 m}+b^{2 m}=c^{2 m}
$$

with m positive integer thon

$$
A^{4 m}+B^{4 m}=C^{4 m}
$$

where A, B, C are matrices of the form

$$
A=\left[\begin{array}{ll}
0 & 1 \\
a & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
0 & 1 \\
b & 0
\end{array}\right], \quad C=\left[\begin{array}{ll}
0 & 1 \\
c & 0
\end{array}\right]
$$

2. LEMMAS

In the proofs of the theorems we can use the following lemmas:

LEMMA 1

If

$$
\left[\begin{array}{ll}
\mathbf{r} & \mathbf{S} \\
\mathbf{k s} & \mathbf{r}
\end{array}\right]^{\mathbf{r}_{1}}=\left[\begin{array}{ll}
R & S \\
\mathbf{k S} & \mathbf{R}
\end{array}\right]
$$

for some $n \geq 2$ then
(4)

$$
R=\frac{1}{2}\left[(r+s \sqrt{k}]^{n}+(r-s \sqrt{k}]^{n}\right]
$$

and
(5)

$$
S=\frac{1}{2 \sqrt{k}}\left[(r+s \sqrt{k}]^{n}-(r-s \sqrt{k})^{n}\right]
$$

PROOF

In case $n=2$ the Lemma can be geen directily and ono can complete the proof by mathematical induction on n.

LEMMA 2

If

$$
A=\left[\begin{array}{ll}
a & b \\
\mathbf{c} & \mathbf{d}
\end{array}\right]
$$

with integers a, b, c, d, then for every integer $n \geq 2$

$$
A^{n}=\left[\begin{array}{ll}
f(a) & b \psi \\
c \psi & f(d)
\end{array}\right],
$$

where ψ is an integer,

$$
f(a)-f(d)=(a-d) \psi
$$

and $f(a), f(d)$ are polynomials of degree n.

PROOF

For $n=2$ we have

$$
A^{2}=\left[\begin{array}{cc}
a^{2}+b c & b(a+d) \\
c(a+d) & d^{2}+b c
\end{array}\right]=\left[\begin{array}{cc}
f(a) & b \psi \\
c \psi & f(d)
\end{array}\right]
$$

where $\psi=a+d$. It is easy to verify that

$$
f(a)-f(d)=(a-d)(a+d)=(a-d) \psi
$$

Assume that the Lemma is true for $n=k$, (kZ2) that is

$$
A^{k}=\left[\begin{array}{ll}
f_{1}(a) & b \psi_{1} \\
c \psi_{1} & f_{1}(d)
\end{array}\right] \quad \text { and } \quad f_{1}(a)-f_{1}(d)=(a-d) \psi_{1} .
$$

First we have
$A^{k+1}=A^{k} A=\left[\begin{array}{ll}f_{1}(a) & b \psi_{1} \\ c \psi_{1} & f_{1}(d)\end{array}\right] \cdot\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}f_{2}(a) & b \psi_{2} \\ c \psi_{2}^{*} & f_{2}(d)\end{array}\right]$,
where

$$
f_{2}(a)=a f_{1}(a)+b c \psi_{1}, \quad f_{2}(d)=d f_{1}(d)+b c \psi_{1},
$$ (7)

$$
\psi_{2}=f_{1}(a)+d \psi_{1}, \quad \psi_{2}^{*}=a \psi_{1}+f_{1}(d)
$$

On the other hand
(8) $A^{k+1}=A A^{k}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \cdot\left[\begin{array}{ll}f_{1}(a) & b \psi_{1} \\ c \psi_{1} & f_{1}(d)\end{array}\right]=$

$$
=\left[\begin{array}{cc}
a f_{1}(a)+b c \psi_{1} & b\left[a \psi_{1}+f_{1}(d)\right] \\
c\left[d \psi_{1}+f_{1}(a)\right] & d f_{1}(d)+b c \psi_{1}
\end{array}\right]
$$

Comparing tho ontrios of $A^{k} A$ and $A A^{k}$ we obtain $f_{1}(a)+d \psi_{1}=a \psi_{1}+f_{1}(d)$,
hence by (7) we get

$$
\psi_{2}=\psi_{2}^{*}
$$

From (7) it follows that

$$
f_{2}(a)-f_{2}(d)=a f_{1}(a)-d f_{1}(d)
$$

but

$$
f_{1}(a)=f_{1}(d)+(a-d) \mu_{1} .
$$

Thus

$$
f_{2}(a)-f_{2}(d)=a\left[f_{1}(d)+(a-d) w_{1}\right]-d f_{1}(d)=(a-d)\left[f_{1}(d)+a \psi_{1}\right] .
$$

From (7) we have

$$
f_{1}(d)+a \psi_{1}=\psi_{2}^{*}=\psi_{2},
$$

t.hus

$$
f_{2}(a)-f_{2}(d)=(a-d) \psi_{2}
$$

what ends the proof.

LEMMA 3.

If a matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

with $n \geq 2$ and integers a, b, c, d satisfiass

$$
A^{n}=\left[\begin{array}{rr}
R & S \\
k S & R
\end{array}\right]
$$

where k is fixed integer such that. kwll and R, Sus ano integers, then

$$
A \in \theta_{2}(\cos .
$$

PROOF

From the assumption we have
(9) $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{n}=\left[\begin{array}{rr}R & S \\ k S & R\end{array}\right]$,
for some $n \geq 2$ and Smo .
By Lemma 2 we have

$$
\text { (10) } \quad\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{n}=\left[\begin{array}{ll}
f_{1}(a) & b \psi_{1} \\
c \psi_{1} & f_{1}(d)
\end{array}\right]
$$

where

From (9) and (10) we obtain

$$
\left[\begin{array}{ll}
f_{1}(a) & b \psi_{1} \\
c \psi_{1} & f_{1}(d)
\end{array}\right]=\left[\begin{array}{rl}
R & S \\
k S & R
\end{array}\right] .
$$

Thus

$$
f_{1}(a)=f_{1}(d)=R, \quad c \psi_{1}=k S, \quad b \psi_{1}=S
$$

From this we have

$$
f_{1}(a)-f_{1}(d)=0
$$

Since S O, then we obtain

$$
\psi_{1} m 0 \quad \text { and } \quad \mathrm{c} \psi_{1}=\mathrm{kb} \psi_{1}
$$

hence

$$
\mathrm{c}=\mathrm{kb}
$$

On the other hand

$$
(a-d) \psi_{1}=f_{1}(a)-f_{1}(d)=0
$$

By the fact that $\psi_{1} m$ we get $a=d$ and the proof is complete.

3. PROOFS OF THE THEOREMS.

PROOF OF THEOREM 1.

Assume that $A, B, C \in G_{2}(k)$ and let.

$$
A=\left[\begin{array}{rr}
r_{1} & s_{1} \\
k s_{1} & r_{1}
\end{array}\right], \quad B=\left[\begin{array}{rr}
r_{2} & s_{2} \\
k s_{2} & r_{2}
\end{array}\right], \quad C=\left[\begin{array}{rr}
r_{3} & s_{3} \\
k s_{3} & r_{3}
\end{array}\right]
$$

such that

$$
\text { (11) } \quad A^{n}+B^{n}=C^{n}
$$

By Lemma 1 we obtain

$$
A^{n}=\left[\begin{array}{rr}
M_{1} & N_{1} \\
k N_{1} & M_{1}
\end{array}\right], \quad B^{n}=\left[\begin{array}{rr}
M_{2} & N_{2} \\
k N_{2} & M_{2}
\end{array}\right], \quad C^{n}=\left[\begin{array}{cc}
M_{3} & N_{3} \\
k N_{3} & M_{3}
\end{array}\right],
$$

where

$$
M_{m}=\frac{1}{2}\left[\left(r_{m}+s_{m} \sqrt{k}\right)^{n}+\left(r_{m}-s_{m} \sqrt{k}\right)^{n}\right]
$$

(12)

$$
N_{m}=\frac{1}{2 \sqrt{k}}\left[\left(r_{m}+s_{m} \sqrt{k}\right)^{n}-\left(r_{m}-s_{m} \sqrt{k}\right)^{n}\right], \quad m=1,2,3 .
$$

Hence by (11) we have

$$
M_{3}=M_{1}+M_{2}
$$

(13)

$$
N_{3}=N_{1}+N_{2} .
$$

From (12) and (13) we get.

$$
\left(r_{1}+s_{1} \sqrt{k}\right)^{n}+\left(r_{2}+s_{2} \sqrt{k}\right)^{n}=\left(r_{3}+s_{3} \sqrt{k}\right)^{n}
$$

Putting in the last equality

$$
\alpha=r_{1}+s_{1} \sqrt{k}, \quad \beta=r_{2}+s_{2} \sqrt{k}, \quad \gamma=r_{3}+s_{3} \sqrt{k},
$$

we obtain

$$
\alpha^{n}+\beta^{n}=\gamma^{n},
$$

where $\alpha, \beta, \gamma \in Q[\sqrt{k}]$. Now, let $\alpha, \beta, \gamma \in Q[\sqrt{k}]$. Then we can wite

$$
\alpha=r_{1}+s_{1} \sqrt{k}, \quad \beta=r_{2}+s_{2} \sqrt{k}, \quad \gamma=r_{3}+s_{3} \sqrt{k}
$$

and

$$
\bar{\alpha}=r_{1}-s_{1} \sqrt{k}, \quad \bar{\beta}=r_{2}-s_{2} \sqrt{k}, \quad \bar{\gamma}=r_{3}-s_{3} \sqrt{k},
$$

with integers $r_{m}, s_{m}, \quad m=1,2,3$.
From the assumption we have

$$
\alpha^{r}+\beta^{n}=\gamma^{n} .
$$

It is easy to see that

$$
(\bar{\alpha})^{n}+(\bar{\beta})^{n}=(\bar{\gamma})^{n} .
$$

Thus we obtain
(14)

$$
\frac{1}{2}\left[\alpha^{n}+\bar{\alpha}^{n}\right]+\frac{1}{2}\left[\beta^{n}+\bar{\beta}^{n}\right]=\frac{1}{2}\left[\gamma^{n}+\bar{\gamma}^{n}\right]
$$

and
(15) $\quad \frac{1}{2 \sqrt{k}}\left[\alpha^{n}-\bar{\alpha}^{n}\right]+\frac{1}{2 \sqrt{k}}\left[\beta^{n}-\bar{\beta}^{n}\right]=\frac{1}{2 \sqrt{k}}\left(\gamma^{n}-\bar{\gamma}^{n}\right]$.

Donote
(16) $\quad M_{1}=\frac{1}{2}\left[\alpha^{n}+\bar{\alpha}^{n}\right], M_{2}=\frac{1}{2}\left[\beta^{n}+\bar{\beta}^{n}\right], M_{3}=\frac{1}{2}\left[\gamma^{n}+\bar{\gamma}^{n}\right]$.
(17) $\quad N_{1}=\frac{1}{2 \sqrt{k}}\left[\alpha^{n}-\bar{\alpha}^{n}\right], N_{2}=\frac{1}{2 \sqrt{k}}\left(\beta^{n}-\bar{\beta}^{n}\right), N_{3}=\frac{1}{2 \sqrt{k}}\left(\gamma^{n}-\bar{\gamma}^{n}\right]$.

From this and from (14), (15) we have

$$
\text { (18) } \quad M_{3}=M_{1}+M_{2}, \quad N_{3}=N_{1}+N_{2} .
$$

Consider the matrices A_{1}, B_{1}, C_{1} of the form

$$
A_{1}=\left[\begin{array}{rr}
M_{1} & N_{1} \\
k N_{1} & M_{1}
\end{array}\right], \quad B_{1}=\left[\begin{array}{rr}
M_{2} & N_{2} \\
k N_{2} & M_{2}
\end{array}\right], \quad C_{1}=\left[\begin{array}{rr}
M_{3} & N_{3} \\
k N_{3} & M_{3}
\end{array}\right],
$$

where $N_{m}=0, m=1,2,3$.

By (18) we have

$$
A_{1}+B_{1}=C_{1}
$$

From the above equality and from Lemma 1 and Lemma 3 we obtain that there exist the matrices A, B, C such that

$$
A_{1}=A^{n}, \quad B_{1}=B^{n}, \quad C_{1}=C^{n}
$$

and therefore we have

$$
A^{n}+B^{n}=C^{n} .
$$

Thus A, B, C are matrices of the form

$$
A=\left[\begin{array}{rr}
r_{1} & s_{1} \\
k s_{1} & r_{1}
\end{array}\right], \quad B=\left[\begin{array}{rr}
r_{2} & s_{2} \\
k s_{2} & r_{2}
\end{array}\right], \quad C=\left[\begin{array}{rr}
r_{3} & s_{3} \\
k s_{3} & r_{3}
\end{array}\right]
$$

hence $A, B, C \in G_{2}(k)$, what gives the proof of the Theorem.

PROOF OF THEOREM 2.

Let

$$
\text { (19) } \quad A=\left[\begin{array}{rr}
r & s \\
a s & r
\end{array}\right]
$$

then by Lemma 1 we have
(20) $\left[\begin{array}{rr}r & s \\ \text { as } & r\end{array}\right]^{n}=\left[\begin{array}{rr}R & S \\ a S & R\end{array}\right]$,
whore

$$
R=\frac{1}{2}\left[(r+s \sqrt{a})^{n}+(r-s \sqrt{a})^{n}\right]
$$

(21)

$$
S=\frac{1}{2 \sqrt{a}}\left[(r+s \sqrt{a})^{n}-(r-s \sqrt{a})^{n}\right]
$$

Putting in (21) $r=0, s=1$ we get

$$
R=\frac{1}{2}\left[(\sqrt{a})^{n}+(-\sqrt{a})^{n}\right],
$$

$$
S=\frac{1}{2 \sqrt{a}}\left[(\sqrt{a})^{n}-(-\sqrt{a})^{n}\right]
$$

For $n=2 k$

$$
\text { (22) } \quad R=a^{\frac{n}{2}} \text { and } S=0
$$

follows. By (20) and (22) we get

$$
A^{n}=\left[\begin{array}{ll}
0 & 1 \\
a & 0
\end{array}\right]^{n}=\left[\begin{array}{ll}
a^{\frac{n}{2}} & 0 \\
0 & a^{\frac{n}{2}}
\end{array}\right]=a^{\frac{n}{2}} \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Similarly we obtain

$$
B^{n}=b^{\frac{n}{2}} \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad C^{n}=c^{\frac{n}{2}} \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

For $n=4 m$ we have

$$
\begin{aligned}
A^{4 m}+B^{4 m} & =a^{2 m} \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+b^{2 m} \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]= \\
& =\left[a^{2 m+b^{2 m}}\right] \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=c^{2 m}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=C^{4 m}
\end{aligned}
$$

and the proof is complete.
From Theorem 2 we get the following Corollary:

COROLLARY (R.Z. Domiaty [3])
If $K=Q$ and $a, b, c \in Z$ then the equation

$$
A_{a}^{4}+B_{b}^{4}=C_{c}^{4}
$$

have infinitely solutions of the form

$$
A_{a}=\left[\begin{array}{ll}
0 & 1 \\
a & 0
\end{array}\right], \quad B_{b}=\left[\begin{array}{ll}
0 & 1 \\
b & 0
\end{array}\right], \quad C_{c}=\left[\begin{array}{ll}
0 & 1 \\
c & 0
\end{array}\right]
$$

where
$a=\left(m^{2}-n^{2}\right) .1, \quad b=2 m n 1, \quad c=\left(m^{2}+n^{2}\right] .1, \quad m>n, \quad(m, n)=1, \quad 1 \geq 1$.

REEFERENCES
[1] E.D.Balker - "Solutions of $\Delta^{k}+B^{k}=C^{k}$ in $n \times n$ integral matrices' - Amer. Math. Monthly, 75, 1968, 759-760.
[2] J.I.Brenner and J.de Pillis - "Fermat's equation $A^{p} B^{P}=C^{P}$ for matrices of integers" Math. Mag.,45,1972,12-15.
[3] R. Z. Domiaty - 'Solutions of $x^{4}+y^{4}=z^{4}$ in 2×2 integral matrices" - Amer. Math. Monthly, $73,1966,631$.
[4] R.Z. Domiaty - "Lösungen der Gleichung $x^{n}+y^{n}=z^{n}$ mit $n=2^{m}$ im Ring gewisser ganzzahliger Matrizen" - Elem. Math. 21, 1966, 5-7.
[5] F.Ribenboim - "13 lectures on Fermat's last theorem' Springer-Verlag; New York-Heidelberg-Berlin, 1980.

