
Decision structure based object-oriented
design principles

Szabolcs Márien

Eszterházy Károly University of Applied Sciences
Institute of Mathematics and Informatics

Eger, Hungary
szabolcs.marien@innovitech.hu

Submitted August 24, 2016 — Accepted January 3, 2017

Abstract

The major part of program complexity is based on the logic of conditions,
but the existing refactoring methods do not detail the options of decision
merging according to the cases of decision redundancies, which are the main
options of optimizing the decision structures by refactoring. To extinguish
decision redundancies in the source code, we have an option to merge deci-
sions, which can be interpreted as refactoring tools, by which the quality of
code structures can be optimized. I intend to complete the definitions of deci-
sion, decision raising, and introduce a novel concept, decision merging, based
on the concept of behavioural contract. According to the decision merging
cases, new design principles can be created. The principle “Using inheritance
to dissolve decision redundancy” identifies the cases, when the usage of inher-
itance as an object-oriented tool is more reasonable than object composition.
The other new principle is “Avoid decision redundancy”, by which decision
redundancies can be eliminated based on the decision merging rules. I initi-
ate new object-oriented metrics as well, giving the opportunity to determine
the degree of decision redundancies in the software. The properties of these
metrics are analysed empirically.

Keywords: Design principles, metrics, inheritance, decision raising, decision
merging, decision redundancy.

Annales Mathematicae et Informaticae
47 (2017) pp. 149–176
http://ami.uni-eszterhazy.hu

149



1. Introduction

1.1. Optimizing decision structures by refactoring
The refactoring of conditional statements by polymorphic methods (“Replace Con-
ditional with Polymorphism”) is an interesting, existing refactoring method [11, 16],
where the branches of conditional (“if-then-else”) statements can be realized as a
class with an abstract polymorphic method, which is overridden by the subclasses.
The interface of a decision will be an abstract polymorphic method in the parent
class [11]. The advantage of replacing a conditional statement with a polymorph
method is prevailed if the conditional statement has equal occurrences in the pro-
gram. In this case the subclasses are not necessary to be known, which reduces
dependencies significantly [11]. Consequently, the introduction of new decision
options does not result in the change of places where they are used, only the intro-
duction of a new subclass is necessary [11].

The “Replace Type Code with Subclasses” and the “Replace Type Code with
State/Strategy” – as conditional statement specific refactoring methods – are based
on the previously described “Replace Conditional with Polymorphism” refactoring
method [11]. Furthermore there are the “Move Embellishment to Decorator” and
the “Replace Conditional Dispatcher with Command” conditional statement opti-
mizing refactoring methods, which are also based on design patterns [16].

According to my concept, class hierarchies can be viewed as abstract decisions
[24, 25], based on which I define decision raising and decision merging as the ex-
tended interpretations of decision structure optimization methods. When we define
a decision, we give the functionality and/or the data structure (state description)
of decision options. Decision predicate decides which decision option will set off at
a given decision location [24, 25]. In order to simplify the problem, every decision
consists of two decision options so every decision tree is a binary tree. As every
tree can be transformed into a binary tree, we do not lose generality (see Section 4,
where behavioral contract based definitions of decisions and decision raisings are
introduced).

The following rules for avoiding decision redundancy are defined in Section 5:

• Decisions should not Recur Rule 1 (DnR Rule 1): “decisions with equivalent
decision predicates and equivalent or partly equivalent data structures and
behaviors should not recur”

• Decisions should not Recur Rule 2 (DnR Rule 2): “decisions with equivalent
decision predicates that define diverse data structures and behaviors should
not recur”.

I will introduce the decision merging cases as new refactoring tools (see Section 6),
the help of which the defined decision redundancies (see Section 5) can be elimi-
nated. The cases of decision merging are determined based on the cases of decision
redundancies. The merging of nonraised decision can be realized after raising de-
cisions. The decision raising is a transformation method, by which the decisions

150 Sz. Márien



can be defined by class hierarchies without conditional statements. The subclasses
of hierarchies define the decision options, where the interfaces of decisions are the
polymorph methods of parent class. There are the following cases of decision merg-
ing:

• The merging/partial merging of fully or partially equivalent decisions: Deci-
sion merging/partial merging is necessary if the decision predicates of deci-
sions are equivalent, and decision option declared data structures and behav-
iors are equivalent or partially equivalent.

• The merging of decisions with equivalent decision predicates and nonequiva-
lent behavioral contracts: If there are two nonraised or raised decisions, which
have equivalent decision predicates, then these decisions can be merged.

1.2. Behavioral contracts
In order to examine decision structures and optimization transformations based on
the optimization cases (when the transformations are justified) the introduction
of the behavioral contracts of decision structures is necessary. There is a contract
(“Design by contract” – DBC) between a class and its client, according to which the
client has to realize the declared conditions in the course of the calling method of
the class. In addition, the class guarantees specified conditions in the course of the
returning of the method, which specifies the required behavior of the method [18].
The behavior of a program/object can be specified by a behavioral contract [18, 27],
where the contract declares a set of possible behaviors [27] (“Concept of a behavioral
contract” – “Design by Contract”). These contracts can be specified by the pre-
and post-conditions of methods. Method behavior independent conditions, which
are always satisfied, can be specified as class invariants, which describe the general
aspects of the behavior contracts of classes [22]. Accordingly invariants specify
the general constraints of the values of class variables. General state transition
constraints can be specified by history constraints [27]. The parts of state describing
data structures which are changed by methods as state transitions are declared by
frame conditions [27].

1.3. Object-oriented design principles
Cohesion, coupling and complexity are highlighted as the main targets of quality
ensuring metrics [1]. Cohesion examines the inner-consistencies of parts [8]. Ac-
cordingly cohesion determines the collaboration levels of elements inside modules.
In case of high cohesion, the major part of components realizes the same func-
tionality [1, 5]. In conformity with this, the functional cohesion of a component is
high if it serves a properly encompassed behaviour [4]. In case of good program
design the cohesion of program structure is high and its coupling is low [8]. Ac-
cording to Wand and Weber’s coupling definition [30], there is coupling between
two “things” if there is at least one connection between their state histories. The
strongest type of coupling is inheritance. Based on loose coupling, the realization

Decision structure based object-oriented design principles 151



of independent system components can be facilitated, meaning that the changing
and the maintenance of programs become easier. The aim of object-oriented design
principles is to eliminate of dependencies and couplings, to increase cohesion and to
decrease complexity. Using object-oriented design principles as abstract concepts,
the mentioned designing failures can be avoided.

Liskov substitution principle – LSP [12, 19, 27, 28]: The LSP was extended
by Schreiner, who added that subtypes could specialize and refine the parent-
type declared contracts, which does not violate the definitions of subtype and
substitution. With respect to behavior contracts, it means the following: the
preconditions of the subtype are not stronger than in the parent type, the post
conditions of the subtype are not weaker than in the parent type, the invariants of
the parent-type-based member variables of the subtype are not weaker than in the
parent type, the subtype realizes the history constraints of the parent type [27].

Favor object composition over class inheritance [12]: In consideration of reusabi-
lity and maintainability the appropriate usage of composition vs. inheritance is a
critical issue. The aim is a harmonic class and object structure. Inheritance is the
tightest couple between classes, which can be used only in well-defined cases.

Single Responsibility Principle [20]: In the course of determining class behavior,
we have to take separated task responsibility into consideration. The determined
class behavior should be responsible for “one task”, other classes need to be intro-
duced in order to supply other tasks. If we don’t take it into consideration, and
a single class realizes more tasks, then if one of the task behaviors needs to be
changed, it may result in the change of the behavior of the other tasks as a side
effect, generating more risk and cost.

The issues of the previously mentioned object-oriented design principles are
concerned by the concept of decision merging. Accordingly decision merging (dis-
cussed in section 6) can support the issue of the separation of class behaviors into
subclasses (“Liskov substitution principle” [12, 19, 27, 28], “Single Responsibility
Principle” [20]). Furthermore, decision redundancies and decision merging cases
(which eliminate decision redundancies) support the appropriate usage of inheri-
tance and object composition (“Favor object composition over class inheritance”
[12]). According to the cases of decision redundancies and the decision merging
rules, two object-oriented design principles are created (see Section 3):

• “Using inheritance to dissolve decision redundancy”: If one case of decision re-
dundancies induces the usage of decision merging and decision raisings trans-
formations, then the usage of inheritance is confirmed.

• “Avoid decision redundancy”: If there are decision redundancies in a source
code, then based on the decision merging rules the decision redundancies need
to be eliminated.

These new design principles are useful when deciding whether the usage of inheri-
tance or object composition can be confirmed, which is one of the subjects of this
paper.

152 Sz. Márien



1.4. Object-oriented design metrics

The main aspects of the quality insurance of program developing are maintainabil-
ity, extendibility, intelligibility, reusability [10] and changeability [15].

Six object-oriented design metrics were specified by Chidamber and Kemerer
[8]. These metrics are the following: WMC – “Weighted methods per class”, DIT –
“Depth of inheritance tree”, NOC – “Number of children”, CBO – “Coupling between
objects”, RFC – “Response for a class”, LCOM – “Lack of Cohesion in Methods”.

One of the first metrics, and at the same time probably the most determinative
cohesion metric is the LCOM – “Lack of Cohesion in Methods” metric [8]. The
interpretation of this metric is based on dependencies between methods, which can
be determined by the sets of the method-used member variables of classes.

Eder et al. introduced the concepts of method cohesion, class cohesion and in-
heritance cohesion [10]. However, the specified cohesion measuring methods require
semantic analysis, which obstructs the industrial usage of them.

Badri et al. analysed the correlation between coupling and cohesion [1], which
has not been justified previously. However the correlation between them was men-
tioned several times. According to these, the high (low) cohesion is associated
with the low (high) coupling values [17]. They measured the correlation between
their new cohesion metric and coupling metric by empirical analysis. Meeting the
requirements they revealed a significant negative correlation between their new
cohesion metric and the CBO [7, 8] coupling metric [1].

Several measurements have tried to confirm the correlation between the different
metrics and the changeability aspects of programs, in many cases without success-
fully detecting the correlations between them [15]. Chae and Kwon stated that the
existing cohesion metrics will not be good measuring indicators of changeability
until such cohesion metrics that can measure the cohesion properties appropriately
are realized [6].

Complexity metrics facilitate the detection of complex objects and classes. Im-
plementation, testing and verification efforts are higher in case of classes with high
complexity [31]. Some examples of complexity metrics are listed in [31]: “Cyclo-
matic Complexity” [21], “Depth of Inheritance Tree” (DIT) [8], “Number of Chil-
dren” (NOC) [8], “Weighted Methods Complexity” (WMC) [8]. These complexity
metrics are based on the static aspects of systems (for example class diagrams,
source codes), so they are static metrics [31].

Munson and Khoshgoftaar introduced dynamic complexity metrics [23]. They
separated the concepts of “Operational complexity” and “Functional complexity”
[23]. The “Operational complexity” of objects uses the “Cyclomatic Complexity”
metric [21], which is based on the “Control Flow Graph” [31].

The Qi (“Quality Indicator”) [2] metric – similarly to the previously mentioned
metric – is based on the branches of programs, and with its help, various software
attributes such as complexity, cohesion and coupling can be examined together. It
uses controlling paths and their probabilities. One curiosity is the appearance of
the representations of polymorphic callings with graphs, where the opportunities of
dynamic couplings – or method callings – are represented by graph edges. Branches

Decision structure based object-oriented design principles 153



show polymorphic possibilities.

2. Motivation

The appropriate usage of inheritance is the key point of object-oriented program-
ming, the clarifying of this question (inheritance vs. object composition/aggregati-
on) is the aim of numerous design principles [12, 19, 27, 28] and design patterns
[12, 16]. At the same time, in spite of these clarifying attempts, it is not obvi-
ous, which tool of the object-oriented technology (inheritance, object composition,
aggregation) should be used in different cases.

Fowler et al. specified the “Replace Conditional with Polymorphism” refactor-
ing method [11], by which the interpretation of inheritance was extended. It states
that replacing is necessary if there are equal conditional statements in a program
[11]. Additional details about the necessity of using this refactoring method are
not elaborated. The merging method of the concept of “Parallel Inheritance Hi-
erarchies” [11] eliminates the redundancies of the declaration and/or the usage of
class hierarchies by defining them as raised decisions. It describes the cases where
merging is necessary as follows: The merging of class hierarchies is necessary if the
changing of one hierarchy results in the changing of another one [11]. The details of
the “Move Embellishment to Decorator” and the “Replace Conditional Dispatcher
with Command” refactoring methods [16] don’t describe the decision structures
that would help to recognize the necessity of the using of the “Decorator” and the
“Command” Design Patterns [12].

We must see that the description of the cases of decision redundancies – which
realize the necessity of decision raising and/or decision merging – is incomplete.
In order to complement this, I specified the cases of decision redundancies [24, 25]
(see Section 5), and I clarify it, where the raising and/or the merging of decisions
are justified (see Section 6).

In order to achieve better program quality and structure, many object-oriented
design principles were formulated that provide quality improvement by increasing
cohesion between program units, decreasing coupling and eliminating dependen-
cies. The LSP [12, 19, 27, 28] analyses inheritance quality. Its definition is based
on behavior contracts [18, 27], which are the bases of the definitions of decision,
decision raising and decision merging. The LSP is the most elaborated design prin-
ciple, by the help of which the cases when inheritance relation can be used between
two types can be determined. At the same time it doesn’t help the detection of
cases when the introduction of inheritances is confirmed by program structures.
The “Favor object composition over class inheritance” [12] design principle is not
accurately defined, its theoretical background is not elaborated. The principle
tries to give intuitive, practical suggestions in connection with the question of us-
ing inheritance and object composition. The “Single Responsibility Principle” [20]
is related to cohesion [9, 20]. In the course of defining this principle the use of
behavior contracts is suggested, based on which the LSP principle was extended,
and furthermore, it is used in this paper as well.

154 Sz. Márien



The known design principles are concerned with the critical issue of which
object-oriented construction’s usage is justified in different programming cases.
However, in my opinion, the clarification of this question is necessary, therefore,
based on my previously mentioned concept, I define new design principles to answer
this issue (see Section 3).

In conformity with an examination, which is based on two metrics Tight Class
Cohesion (TCC) and Loose Class Cohesion (LCC) [3], the conclusion is the fol-
lowing: Those classes have lower cohesion, which frequently use inheritances [3].
The experienced inverse dependencies between inheritance based code reusabil-
ity and cohesion [3] indicate the unclarified status of the usability of appropriate
inheritance. Accordingly, based on the Lack of Cohesion in Methods (LCOM)
[8], the cohesion specific influences of inheritances are not taken into account
[3, 5, 6, 13, 14, 15]. We must note that the aim of inheritances is not reusing,
but the extension of the functionality of the classes with specific behaviour. Ac-
cordingly the reusing specific application of inheritance can result in the decrease
of the optimal structure of the code. In order to promote the appropriate usage of
inheritance, there are numerous concepts as I described above. In order to clarify
this question I introduce a new concept (decision merging) about the use of inher-
itance in this paper. Intuitively, we must see that the class-subclass inheritance
structures with optimized decision structures – which are resulted based on the
eliminations of decision redundancies using decision merging cases – contribute to
the decrease of the divisibility of classes, by which the cohesion of classes can be
increased (see the empirical validations in Section 8).

Beside the supposed similarity between cohesion metrics and the new measuring
method introduced in this paper, I also find the comparison of these new metrics
and complexity metrics necessary. The reason for this is there are more complexity
metrics which examine the branches of the conditional statements of object-oriented
classes. Some of these metrics are the following: “Cyclomatic Complexity” – CC
[21, 31], “Weighted Methods Complexity” – WMC [8], “Operational Complexity”,
“Functional Complexity” [23, 31], “Quality Indicator” – Qi [2]. Furthermore, there
are additional C&K metrics [8] which describe the inheritance structure of pro-
grams. They are the following: “Depth of Inheritance Tree” (DIT) [8], “Number
of Children” (NOC) [8]. These metrics are interesting in the consideration of the
appropriate usage of inheritances according to the concepts specified in this paper.

Note that there is no complexity metric which would consider the structurally
critical question of whether complexity growing conditional statements and in-
heritance structures are used appropriately, or whether the structures could be
optimized. The method complexity which is measured by the CC metric shows the
complexity of tasks, which is realized by the method. The high value of method
complexity is not necessarily the sign of wrong code structures, it only shows the
complexity of tasks. There is a similar conclusion according to the WMC. The
“Operational Complexity” (OCPX) [23, 31] metric is based on dynamic complex-
ity, which takes the CC of running paths into consideration. Therefore, according
to the previously mentioned metrics, it can’t be used to measure the quality of the

Decision structure based object-oriented design principles 155



decision structures.
I initiate such new object-oriented metrics that give opportunity to determine

the rate of decision redundancies in the source code of a program (see Section 7).
In order to determine the relationship between the “Metric of decision abstraction”
(MDA), the “Ratio of inheritances coming into existence by the elimination of
decision redundancies” (RIEDR) metrics and the level of code integrity, I analysed
10-10 states of several open source projects empirically.

To summarize, the following questions have to been answered:

In which cases can we talk about decision redundancies?

This is the most important question from the point of view of my topic. We need
to clarify the cases where the use of decision merging is justified. In order to
clarify this question the following metrics are introduced: “Metric of decision ab-
straction” (MDA), “Ratio of equivalent decision cases” (REDC), “Ratio of decision
cases with equivalent decision predicates” (RDCEDP). Furthermore, the “Avoid de-
cision redundancy” design principle is defined, by which the elimination of decision
redundancies is targeted based on decision merging cases.

In which cases can we use inheritance?

Beyond the previously defined general aspect the aim of the inheritance-specific
question is to clarify whether the using cases of inheritances are justified in the
source code. We must see that there are overlaps between this and the previously
mentioned questions, but in consideration of the prominent role of inheritances it
must be specified separately. This question is answered by one of the introduced
object-oriented design principles, namely it is the “Using inheritance to dissolve
decision redundancy”. This principle clarifies the appropriate usage of inheritances
based on the decision redundancy cases. In order to determine the scale of appro-
priate inheritance usage, the “Ratio of inheritances coming into existence by the
elimination of decision redundancies” (RIEDR) metric is introduced, by which the
polymorph methods are analysed in the inheritances.

In order to clarify these questions, the cases of decision redundancies and de-
cisions merging are defined. In the course of the evaluation of the new metrics I
analyse the correlations between decision redundancies and cohesion, complexity
and coupling, by which we can notice their relations with the general code quality
aspects.

3. Extending the object-oriented design principles

In the following I suggest two new object-oriented design principles, one of which
unequivocally tries to highlight those cases, where the use of inheritance is justified
(“Using inheritance to dissolve decision redundancy”) complementing the “Favor
object composition over class inheritance” design principle [12]. Furthermore, I try

156 Sz. Márien



to determine a general program structure organizing principle, which – beyond the
subject of the appropriate usage of inheritance – helps to find optimal structures
(“Avoid decision redundancy”). The new design principles contain – as a part of
their definitions – the rules of decision merging (see Section 6), by the help of
which decision redundancies can be avoided (see Section 5). Based on the cases
of decision redundancies according to the decision merging rules, the new object-
oriented design principles are the following.

3.1. Using inheritance to dissolve decision redundancy

According to the definitions of decision, decision raising and decision merging, the
aim of inheritances is to define decisions in an abstract form, based on which the
facility of decision merging can be realized. The use of inheritance is justified if
the decision structure based dependencies confirm its usage, that is if one case of
decision redundancies which justifies the usage of decision merging is fulfilled. In
these cases, the elimination of decision redundancies can be realized by one of the
decision merging rules.

3.2. Avoid decision redundancy

If the use of decision merging is confirmed by decision redundancies, then the deci-
sion redundancies have to be eliminated based on the decision merging rules. Using
this principle, according to the rules of avoiding decision redundancies, a more op-
timal decision structure can be achieved. This principle determines generally the
optimization facilities of decision structures based on decision redundancies and
decision merging rules, accordingly it helps determine the using facilities of in-
heritance. It complement the “Using inheritance to dissolve decision redundancy”
principle, which approaches this issue from the appropriate usage of inheritance.

3.3. Comparing the new principles with other ones

The “Using inheritance to dissolve decision redundancy” and the “Avoid decision
redundancy” principles specify the cases accurately based on decision redundancies
and the decision merging rules, where the use of inheritances is necessary. It com-
plements the “Favor object composition over class inheritance” design principle [12],
where the using facility can be decided based on some intuitive concepts. The LSP
specifies the relationships between the type and the subtype, but it doesn’t men-
tion anything about the initial structures, where the introduction of inheritance
is necessary. Based on the new design principles we can detect those structural
surroundings, where the inheritances can resolve the decision redundancies. The
“Single Responsibility Principle” [20] is the principle of cohesion [9]. Furthermore
the eliminations of decision redundancies increase the cohesions (see the empirical
evaluation of new metrics in Section 8). Therefore the fulfilment of “Single Respon-
sibility Principle” can be facilitated by using the new principles to reduce decision
redundancies.

Decision structure based object-oriented design principles 157



4. The definitions of decision and decision raising
according to behavioral contracts

The decision structure of programs is defined irrespectively from the program imple-
mentation. The realization of this structure strongly determines the optimization
level of programs. Decision structures can be optimized by different transforma-
tions, by which the behavioral aspects of programs are not changed. In order to
examine decision structures, transformation methods and optimization cases (when
transformations are required) the introduction of the following concepts is neces-
sary.

4.1. Behavior of decision

The behavior of the decision options DO1
, DO2

of decision D can be declared
by behavioral contracts CDO1

, CDO2
[18, 27]. (The behavior of a decision op-

tion is declared by one behavioral contract.) The DO1
, DO2

are the implementa-
tions of decision options, which have to realize the declared decision requirements
(CDO1

, CDO2
). The changing of decision structure implementations does not always

result in the altering of behavioral contracts.
The behavioral contracts of decision options declare the pre-conditions of deci-

sion options as their decision predicates and the post-conditions of decision options
as state transitions. Behavioral contracts define the data structures, on which
the state transitions of behavioral contracts are interpreted. The invariants [19] –
which narrow the state-space of behavioral contracts – and the history constraints
[19] – which define general state-transitions – are handled as parts of the pre- and
post-conditions of decision options. The interpretations of these as invariants and
history constraints are not important in consideration of the behavioral contracts
of decision options.

A decision case is one case of a decision, in the course of which an appropriate
decision option is selected based on the evaluation of its decision predicate. Ac-
cording to a selected decision option, a decision option specified state transition
is executed, by which the modifications (the modification or/and the extension
of the state) are realized based on the data structure of the decision option (the
concerning part of the state description).

4.2. Decision raising

It is a transformation, by which decision dependencies can be eliminated. After
using this transformation, the behavior and the data structures of decision op-
tions are defined by class hierarchies without using “if-then-else” statements. The
subclasses of class hierarchies define the decision options, which are integrated by
parent classes. The “interface” of a decision is a polymorph method of a parent
class, which has to be overridden by its subclasses [24, 25]. After decision raising
decisions can be implemented – without “if-then-else” statements – with references

158 Sz. Márien



which have the same type as the parent class of decision declaration class hierar-
chies. They refer to the instances of the subclasses of class hierarchies according
to the appropriate decision options [24, 25].

Let DNR be a nonraised decision, where it’s decision options DNRO1
, DNRO2

implement the behavioral contracts CDNRO1
, CDNRO2

. The decision DR is the
raised decision of the decision DNR if the behavioral contracts CDRO1

, CDRO2
of

the decision options DRO1
, DRO2

of the decision DR are defined according to the
following: CDRO1

= CDNRO1
, CDRO2

= CDNRO2
. It means that the behavioral

contracts of the decision options of nonraised and raised decisions are equivalent.
If the decisions of decision cases have already been raised, there are two types

of decision cases: initial decision cases and reusing decision cases. In the course
of initial decision cases, a decision option is archived by using a reference. The
type of this reference is the parent class of the class hierarchy of a raised decision.
This reference points to an instance of the subclass of the selected decision option.
In the course of the following decision cases (reusing decision cases), the result of
initial decision case is reused based on the calling polymorph method of archiv-
ing polymorph reference without the need to re-evaluate the decision. In case of
nonraised decisions, the reevaluation of the decisions is necessary, but in case of
raised decisions, the archived decisions can be reused (reusing decision cases), so
the re-evaluation of the decisions is not necessary.

5. Avoiding decision redundancies

We must see that decision raisings are reasonable if existing or expected deci-
sion redundancies can be eliminated. These redundancies result in implementation
dependencies that reduce the maintainability and transparency of codes. The con-
ditions of avoiding decision redundancies are the following:

• Decisions should not Recur Rule 1 (DnR Rule 1): Decisions with equivalent
decision predicates and equivalent or partly equivalent data structures and
behaviors should not recur, so the equivalent or partly equivalent decision
should not be realized again in the course of the same running. Therefore,
the declarations of the behavioral and the data structure aspects of such
decisions should be defined at one place.

• Decisions should not Recur Rule 2 (DnR Rule 2): Decisions with equivalent
decision predicates that define diverse data structures and behaviors should
not recur. Accordingly such decisions have to be defined in merged forms at
one place.

The aim of avoiding decision redundancies is the reduction of decision dependency.
Decision dependency can be interpreted as a type of implementation dependency,
which is based on the decision structure of programs. If the change of the behavioral
contracts of decision options or the introduction of new decision options forces
changes in several decision cases, then there is a decision dependency. Using raised

Decision structure based object-oriented design principles 159



and merged decisions (see Section 6) only the initial decision case needs to be
changed if the behavior of a decision option is changed or a new decision option
is introduced, the changing of other decision cases is not necessary. Inheritance is
used rightfully if decision structure dependencies make it reasonable.

6. Decision merging

Decision merging is the tool of eliminating decision redundancies, which can be
interpreted as a new refactoring tool. The cases of decision merging are based on
the cases of decision redundancies. I use Liskov’s subtype-parent type substitution
principle [19] based on behavioral contracts [27].

The behavioral contract C ′ is the strengthening – in my interpretation, the real
refinement – of the behavioral contract C : C ′ ⊃ C (pronounced as: the behavioral
contract C is implicated from the behavioral contract C ′) if the behavioral contract
C ′ realizes the requirements of the behavioral contract C, but it specifies additional
statements as well. Real refinement means “strengthening” for post-conditions, but
it means “weakening” for pre-conditions. In case of the behavioral contracts of
decisions pre-conditions as decision predicates cannot be changed.

The behavioral contract C ′ is the refinement of the behavioral contract C : C ′ ⊇
C (pronounced as: the behavioral contract C is implicated from or is equal to the
behavioral contract C ′) if the behavioral contract C ′ realizes the requirements
of the behavioral contract C, but it specifies additional statements as well, or
their behavioral contracts are equal. Regarding the post-conditions, refinement
means equivalence (keeping conditions), or “strengthening” (realizing additional
conditions). Regarding the pre-conditions, it means equivalence or “weakening”.
Pre-conditions as decision predicates cannot be changed.

We must see that there may be partial or total equivalence in the behavioral
contracts of nonraised and raised decisions, and in such cases in order to eliminate
decision redundancies the using of partial or total decision merging is justified.
It is important to note that the merging of nonraised decisions can be realized
after raising decisions into class-subclass structures. Decision merging may also be
necessary in case of raised decisions, which means that there are decisions merging
cases where raised decisions need to be merged. In order to determine whether
two decisions can be merged, the behavioral contracts of decisions need to be
examined, based on which the fulfillment of one case of decision merging rules can
be determined.

According to the previously mentioned rules of avoiding decision redundancies,
I describe the conditions where the use of decision merging or partial decision
merging is justified below.

160 Sz. Márien



6.1. The merging/partial merging of fully or partially equiv-
alent decisions

Decision merging/partial merging is necessary if the decision predicates of decisions
are equivalent, and decision option declared data structures and behaviors are
equivalent or partially equivalent, which means that one of them extends the other
or both of them extend a common part. Evidently if there are raised decisions,
which complete the conditions of decision merging, the merging must be executed.

6.1.1. Merging of equivalent or extending decisions (“Decision merging”)

Two decisions can be merged in the following cases: If the decision options of two
decisions realize equivalent behavioral contracts. If the behavioral contract of one
decision is refined, strengthened by the behavioral contract of the other decision.

Let there be decisions D1, D2 and decision options D1O1
, D1O2

, D2O1
, D2O2

,
which realize the behavioral contracts CD1O1

, CD1O2
, CD2O1

, CD2O2
. The decisions

D1, D2 can be merged if there are such behavioral contracts CDO1
, CDO2

for which
the following are true:

CDO1
= CD1O1

, CDO1
⊆ CD2O1

, CDO2
= CD1O2

, CDO2
⊆ CD2O2

.

Accordingly if the behavioral contracts (CD2O1
, CD2O2

) of one of the decisions that
are merged match or refine/strengthen the behavioral contracts (CD1O1

, CD1O2
)

of the other decision, then the behavioral contracts (CDO1
, CDO2

) of the merged
decision are equivalent with the behavioral contracts of one of the merging deci-
sions, and the behavioral contracts of the other decision are the refinements of the
behavioral contracts of the merged decision.

Therefore, we have to examine the equivalence of the data structures and behav-
iors of decisions, paying attention to the partial equivalence if one is the refinement
of the other one. For these reasons decisions can be merged if their data structures
and behaviors perform the following:

• Concerning data structure: The sets of available states based on the variables
of decisions are equal, or the states based on the data structure of one of the
decisions are a subset of the data structure based states of the other decision.

• Concerning behavior: If the pre- and post-conditions as the behaviors of
the decision options of decisions are equal, or one of the decisions declares
additional post-conditions while pre-conditions are unchanged.

6.1.2. Merging of partially equivalent decisions (“Decision partial merg-
ing”)

The partial merging of two decisions is possible if the behavioral contracts of de-
cisions have an equal common part, which is extended with additional conditions

Decision structure based object-oriented design principles 161



by both of the merging decisions. These additional conditions are not part of the
merging.

Let there be decisions D1, D2 and decision options D1O1
, D1O2

, D2O1
, D2O2

,
which perform the behavioral contracts CD1O1

, CD1O2
, CD2O1

, CD2O2
. The deci-

sions D1, D2 can be merged partially if the behavioral contracts CDO1
, CDO2

can
be described according to the following:

CDO1
⊂ CD1O1

, CDO1
⊂ CD2O1

, CDO2
⊆ CD1O2

, CDO2
⊆ CD2O2

.

That is, take the separated common parts (CDO1
, CDO2

) of the behavioral con-
tracts of the decision options of the decisions D1 and D2, which are to be merged.
The behavioral contracts of the decision options of decisions D1, D2 are the real-
refinements or refinements of the behavioral contracts CDO1

, CDO2
of decision D

which is the common part of the decisions D1 and D2. It means that at least one
of the behavioral contracts of the decision options of every merged decision has a
real-refinement connection. (If refinement relations were allowed for every merging
behavioral contract, then those cases would be interpreted as partial merging where
the behavioral contracts of merging decision options are equivalent, or where one
of the decisions extends the other decision. However, these are the cases of the
“Merging of equivalent or extending decisions”.)

It can be stated that a common part is an intersection of the behavioral con-
tracts of merging decisions, so the following must be met:

CD1O1
= CDO1

∧ CD1O1
extend, CD1O2

= CDO2
∧ CD1O2

extend

CD2O1
= CDO1

∧ CD2O1
extend, CD2O2

= CDO2
∧ CD2O2

extend

where the behavioral contracts CD1O1
extend, CD1O2

extend, CD2O1
extend, CD2O2

extend

determine the decision specific aspects of merging decisions.
Accordingly the data structures and the behaviors of decisions must be exam-

ined in order to determine whether there is a common part. So decisions can be
merged if their data structures and behaviors perform the following:

• Concerning data structure: The state sets which are realized based on the
data variables of decisions have an intersection. It means that there is a
common part, which is extended by the state sets of the examined decisions.

• Concerning behavior: The post-conditions of decision options specify addi-
tional conditions in relation to the post-conditions of a common behavior
with equivalent pre-conditions.

6.1.3. Demonstration of merging equivalent or extending decisions

Decisions, decision options, decision predicates are indicated according to the fol-
lowing: Decisions: D1, D2. Merged decision: D. The decision predicates of the
decisions D1 and D2: D1P, D2P. The decision options of the decisions D1 and
D2: D1.D1_O1, D1.D1_O2, D2.D2_O1, D2.D2_O2. The decision options of

162 Sz. Márien



the merged decision D: D_O1.D_O, D_O2.D_O, D_O1.D1_O, D_O1.D2_O,
D_O2.D1_O, D_O2.D2_O.

I show the facilities of the merging of equivalent decisions based on Activ-
ity, Class and Sequence UML diagrams [26]. In the course of demonstrating, the
“Merging of partially equivalent decisions” case is avoided. The decision structure
of equivalent decisions can be represented with an Activity diagram [26] (Figure 1).

Figure 1: The decision structure of decisions

According to the decision structure, the equivalencies are the following: D1P =
D2P, the decision predicates are equivalent. The behavior contracts of the decision
options D1_O1 and D2_O1 are equivalent. The behavior contracts of the decision
options D1_O2 and D2_O2 are equivalent.

The case of nonmerged decisions can be modeled as follows: One of the possible
implementation cases is when separated methods implement the behavior of the
decision options of decisions (see Figure 2).

The two cases which are implied from the equivalent decision predicates can
be demonstrated with the sequence diagrams in Figure 2. According to these, the
similar decision options have to be selected and executed in the course of the same
running.

The case of merged decisions can be represented by a class and a sequence
diagrams (Figure 3). So the decision option specific operation can be specified by
one sequence diagram, on which decision specific behavior is not shown, because it
is obscured by polymorph functioning.

The classes and subclasses which represent the merged decisions fulfill the fol-
lowing: The behavior contract of the method D_O1.D_O is equivalent with the
behavior contracts of the methods D1.D1_O1, D2.D2_O1, which represent the de-
cision options. The behavior contract of the method D_O2.D_O is equivalent with
the behavior contracts of the methods D1.D1_O2, D2.D2_O2, which represent the
decision options.

Decision structure based object-oriented design principles 163



Figure 2: The class diagram of the implementation of the decisions
D1 and D2 before decision merging and the sequence diagrams of

the decision cases of the decisions D1, D2

Figure 3: The class diagram representation of the parent class –
subclass relationship of merged decisions and the decision cases of

merged decisions represented by a sequence diagram

6.2. The merging of decisions with equivalent decision predi-
cates and non-equivalent behavioral contracts

If there are two nonraised or raised decisions, which have equivalent decision pred-
icates, then these decisions can be merged. Accordingly decisions can be merged
if their data structures and post conditions are not equivalent from the behavioral
aspect, only their decision predicates as preconditions are equivalent.

164 Sz. Márien



The decision predicates of the decisions are equivalent: PD1 = PD2 if the deci-
sion predicates are equivalent based on the program behavior for every valued-states
of state rows/executions. The state of decision predicate is valued if the expression
of the decision predicate is evaluated.

Let there be decisions D1, D2 and their decision options: D1O1
, D1O2

, D2O1
,

D2O2
realize the behavioral contracts CD1O1

, CD1O2
, CD2O1

, CD2O2
. The decisions

D1, D2 can be merged by a decision D with its decision options DO1 , DO2 if there
are behavioral contracts CDO1

, CDO2
according to the decision options DO1 , DO2 ,

which are the disjunctions of the behavior contracts of merged decisions:

CDO1
= CD1O1

∨ CD2O1
, CDO2

= CD1O2
∨ CD2O2

.

The decision predicates – as the parts of behavior contracts – fulfill the following:

PD = PD1
= PD2

,

where PD is the decision predicate of the decisionD, furthermore, PD1
, PD2

indicate
the decision predicates of the decisions D1, D2.

In the following, I show the facilities of decisions with equivalent decision predi-
cates, but different behavior contracts. It is based on Activity, Class and Sequence
UML diagrams [26]. The Activity diagram of decisions with equivalent decision
predicates equals to the Activity diagram of the decision structure of equivalent
decisions. Furthermore, the Class and Sequence diagrams of nonmerged decisions
with equivalent decision predicates are equal to the Class and Sequence diagrams
of nonmerged equivalent decisions.

According to the decision structure (see Figure 1), the equivalencies are the
following: D1P = D2P, the decision predicates are equivalent. The behavior con-
tracts of the decision options D1O1 and D2O1 are NOT equivalent. The behavior
contracts of the decision options D1O2 and D2O2 are NOT equivalent.

The case of nonmerged decisions can be modeled according to the following:
One of the possible implementation cases is when separated methods implement
the behavior of the decision options of decisions. The behavior of methods which
represent the decision options is not equivalent (see Figure 2).

The two cases which are implied from the equivalent decision predicates can
be demonstrated with the sequence diagrams in Figure 2. According to these –
contrary to the previously mentioned decision merging case – the behavior of the
executed decision options is not equivalent in the course of the same running. The
case of merged decisions can be represented by the class and sequence diagrams of
Figure 4.

The class diagram shows how the behavior of two decisions can be defined par-
allelly in the same subclass, and how the abstract methods represent them in the
parent class. The sequence diagram demonstrates the cases, where the different de-
cision options of merged decisions are executed according to the equivalent decision
predicates.

The classes and subclasses which represent the merged decisions fulfill the fol-
lowing: The behavior contract of the method D_O1.D1_O / D_O1.D2_O is

Decision structure based object-oriented design principles 165



Figure 4: The class diagram representation of the parent class –
subclass relationship of merged decisions (with equivalent decision
predicates, but different behavior) and the decision cases of merged

decisions represented by a sequence diagram

equivalent with the behavior contract of the method D1.D1_O1 / D2.D2_O1.
The behavior contract of the method D_O2.D1_O / D_O2.D2_O is equivalent
with the behavior contract of the method D1.D1_O2 / D2.D2_O2.

7. The introduction of metrics

The cases of avoiding decision redundancies and the definitions of decision merging
specify designing viewpoints that need to be measured and for which measuring
methods need to be defined. Accordingly the new metrics which are specified in
the following measure the performance of the introduced, new design principles
and the decision merging cases which are the theoretical backgrounds of them.

“Metric of decision abstraction”: (MDA)

The new metric represents the ratio of polymorph decision cases and the total
number of decision cases.

NPDC

NDC

NPDC – The number of “Polymorph decision cases”.
NDC – The total number of “Decision cases”.

Under the “Polymorph decision cases” I mean the following: After a decision rais-
ing, a decision is realized in a class hierarchy with its classes and subclasses. At
the places of use, the callings of polymorph methods represent the decision cases
which are called through parent class typed references. Accordingly every poly-
morph method calling is a decision case. Under the “Decision cases” I mean the
conditional statements and polymorph method callings of programs. In conformity
with this metric, the decisions represented by conditional statements are not anal-
ysed from the point of view of whether the use of decision raising and merging is

166 Sz. Márien



confirmed or not. It could be fulfilled by analysing the behaviour contracts of deci-
sions. Its value range is 0-1, where the higher value indicates the good structure of
systems. According to my presumption the increasing rate of polymorph decision
cases decreases complexity, and it promotes the increase of maintainability.

“Ratio of inheritances coming into existence by the elimina-
tion of decision redundancies”: (RIEDR)
In order to measure the fulfilment of the new “Using inheritance to dissolve deci-
sion redundancy” design principle, we have to examine whether inheritances are
used for the elimination of decision redundancies. I suppose if a parent-subclass
inheritance structure contains polymorph methods (the interfaces of decisions are
represented by polymorph methods), then the introduction of that inheritance re-
sulted in the elimination of decision redundancies. Accordingly the fulfilment of
this principle can be measured based on the analysis of inheritances, whether they
contain polymorph methods which are the interfaces of raised decisions. The ful-
filment rate of this principle is better when several inheritances of class structure
contain polymorph methods. Determining the ratio:

NPI

NI

NPI – The number of inheritances containing polymorph methods.
NI – The number of inheritances.

Its value range is 0-1, where the higher value indicates the good structure of sys-
tems. According to my presumption, a higher metric rate value indicates better
code integrity and organizing level. In conformity with this, the increase of this
ratio decreases the complexity of codes.

The introduction of additional metrics is suggested according to the previously
specified decision redundancies and decision merging cases. These metrics can show
the rates of the decision redundancies of programs more sophisticatedly. According
to the cases of avoiding decision redundancies, the following new metrics are in-
troduced, which can express the fulfilment rate of the “Avoid decision redundancy”
design principle at the same time:

The “Ratio of equivalent decision cases” (REDC) metric specifies the ratio of
the number of equivalent decision cases (the behaviour contracts are fully or partly
equivalent according to the decision cases) and the total number of decision cases.
The archived decision cases of raised decisions are not considered as equivalent
decision cases.

NEDC

NDC

NEDC – The number of “Equivalent decision cases”.
NDC – The total number of “Decision cases”.

Its value range is 0-1, where the higher value indicates the wrong structure of
systems.

Decision structure based object-oriented design principles 167



The “Ratio of decision cases with equivalent decision predicates” (RDCEDP)
metric specifies the ratio of the number of decision cases the decisions of which
have equivalent decision predicates and define diverse behaviours and the total
number of decision cases. The archived decision cases of raised decisions are not
considered as decision cases with equivalent decision predicates.

NDCEP

NDC

NDCEP – The number of decision cases with equivalent decision predicates and
diverse behaviours.
NDC – The total number of “Decision cases”.

Its value range is 0-1, where the higher value indicates the wrong structure of
systems.

8. The empirical validations of new metrics

We must see that in order to assess the new metrics REDC and the RDCEDP,
the analysis of the behaviour contracts of decision options must be taken into
consideration. Using the JML – Java behaviour specification language [18], the
behavioural contract based examination of decision options and decision structures
is possible [24]. In the future, I intend to analyse the behavioural contract based
aspects of decision raising and decisions merging by using the JML specifications
of decision structures. According to this I intend to realize the empirical validation
of the REDC and RDCEDP metrics based on the JML specific examinations of
decision structures.

At the same time, the measurement facilities of the MDA and the RIEDR met-
rics can be automated easier, therefore the empirical validation of them is easier as
well. I analysed the sources of several open source projects from “sourceforge.net”1
empirically in order to justify the relationship between the decision structure based
metrics and code integrity. In the course of these measurements the MDA and the
RIEDR metrics were evaluated. The scopes and the sizes of the analysed systems
were different, which provide good measurement basis. In the following I described
the analysed systems shortly:

ProGuard2: It is a free class compressing, optimizing, obfuscator and pre-
analyser tool, which can search and eliminate non-used classes, member variables,
methods and attributes. The range of 10 analysed versions is 3.0–3.9. The number
of examined classes is between 317–391, the number of “useful” lines is between
30,573–39,669.

LWJGL3: It supports the development of commercial Java-based games. The
1http://sourceforge.net
2http://proguard.sourceforge.net
3http://sourceforge.net/projects/java-game-lib

168 Sz. Márien



range of 10 analysed versions is 2.4.2–2.8.5. The number of examined classes is
between 254–416, the number of “useful” lines is between 29,292–42,681.

LaTeXDraw4: It is a free, Java-based PSTricks code generator and editing tool.
The range of 10 analysed versions is 1.5.0–2.0.6. The number of examined classes
is between 69–225, the number of “useful” lines is between 28,368–58,483.

Neuroph5: It is a freeware, open source neuron network framework, by which
neuron network architectures can be developed. The range of 10 analysed versions
is 2.1.0–2.8.0. The number of examined classes is between 69–156, the number of
“useful” lines is between 2640–6769.

Finding a properly used outer property as a quality indicator is difficult, fur-
thermore, numerous realized measurements confirmed the correlation between the
previously specified metrics (complexity, cohesion and coupling metrics) and outer
properties (which are based on maintainability and error-proneness) (Subsection 1.4
and Section 2). In conformity with this, I analysed the relationship between the
previously specified complexity, cohesion and coupling metrics and the decision
structure based metrics which are specified in this paper. Correlations between
them were analysed by the Pearson correlation method, by which linear relation-
ships between independent variables can be detected.

In the course of examinations, I took into consideration the complexity, cohesion
and coupling metrics, which were introduced by Chidamber and Kemerer (C&K
metrics) [8]. Namely, these metrics are the following: “Weighted methods per class”
– WMC, “Coupling between objects” – CBO, “Response for a class” – RFC, “Lack
of cohesion in methods” – LCOM. The DIT and the NOC metrics (C&K metrics)
were not considered according to the arguments which are listed in the following
section. I used the CKJM measurement tool [29] in the course of examinations.

In order to measure the MDA and the RIEDR metrics, which were introduced
by this paper, a self-made static code analyzer was used, by which the following
parameters of programs can be collected:

• The number of inheritances: The number of inheritance relationships between
parent and child classes, including interface implementations as well.

• The number of inheritances, where there is at least one polymorph method.

• The number of branches: Branches are the following conditional statements:
“if-then-else”, “switch”, “while”, “for”.

• The number of polymorph method callings.

Parameters which can be measured by this tool allow the measuring of the MDA
and the RIEDR metrics.

4http://latexdraw.sourceforge.net
5http://neuroph.sourceforge.net

Decision structure based object-oriented design principles 169



8.1. C&K metrics descriptions

The metrics which were specified by Chidember and Kemerer in [8] are described
as follows, extended with some intuitive reflections:

“Weighted methods per class” – WMC: It measures the complexity of classes.
It has two types. According to the first of them, the weight of methods is 1, there-
fore the number of methods clearly determines the complexity of classes. According
to the second case of this metric, the methods are weighted based on their inner
complexity [8]. If the inner complexity of methods is not taken into consideration
in the course of their evaluation, then this metric may not work properly, because
the change of inner method complexity could compensate for the increasing number
of methods.

“Depth of Inheritance Tree” – DIT: It is the maximum depth (the case
of multiple inheritances) of a class hierarchy, from the examined class to the root
parent class [8]. In case of appropriate inheritance usage, a higher DIT value means
more complex decision structures, the decisions of which include each other. It also
describes problem complexity, the optimizing of which cannot be realized based on
the reduction of the levels of class hierarchies, because the complexity of programs
is not changeable. But if the introduction of inheritances is not based on the rules
of decision merging, then the elimination of non-properly used inheritances may
result in the decrease of DIT metric values, according to the appropriate code
structure realizations.

“Number of children” – NOC: It is the number of the subclasses of a class.
The high number of subclasses increases the probability of non-proper abstractions.
Accordingly if a class has lots of subclasses, then it may be the result of non-
proper inheritance usage [8]. The metric is not capable of measuring the number
of rightly used inheritances. In several cases, the decrease in the number of child
classes by introducing new inheritance levels is not confirmed. Based on decision
redundancies, it can be found out that there are decisions that can be “linearised”
to a level, namely, their merging can be used to lower the number of subclasses.

“Coupling between objects” – CBO: It determines the number of connections
between classes. The exaggerated usage of coupling is detrimental to modularity
and it decreases re-usability. So the independency of a class increases re-using ca-
pability [8]. In the course of the measure of coupling, inheritances are taken into
consideration as one type of coupling, which disfigures the measure of dependencies
between coupling and re-usage capability. The unsuitable consideration of inher-
itances as coupling leads to the incorrect conclusion that NOC metric values are
high if classes have high CBO metric values [8]. This conclusion is not good, be-
cause inheritances do not necessarily spoil the structural quality of coupling. The
aim of inheritance is not class reusing, but the extension of classes with a specific

170 Sz. Márien



behaviour. This approach was introduced by the “Liskov Substitution Principle”
(LSP) [12, 19, 27, 28] and by the inheritance cohesion [10]. Inheritance cohesion is
strong if inheritances are used to introduce specialized child classes. Respectively
it is weak if the main aim of inheritances is reusing.

“Response for a class” – RFC: The response set of a class consists of those
methods that can be executed as an effect of the messages sent by the instances of
a given class [8].

“Lack of Cohesion in Methods” – LCOM: The interpretation of this metric
is based on the dependencies between the methods, which can be determined by the
sets of the member variables of classes used by the method. The lack of cohesion
may mean that classes should be split into subclasses [8]. The MDA indicates the
increase of the number of polymorph method invocations, accordingly the number
of raised and merged decisions is growing as well. This results in the decrease
of decision separation based behaviour, which causes low cohesion within a class.
At the same time, the LCOM metric has more similarities with the REDC and
the RDCEDP metrics, which are based on the similarity and the overlapping of
behaviour contracts. The concept of these metrics is more similar to the cohesion
theoretical basis, by which the functional separation of classes can be expressed.
Based on this idea, my future plan is to investigate whether cohesion can be de-
termined by the examination of the similarities between the behaviour contracts of
methods.

From the mentioned C&K metrics DIT and NOC metrics are strongly related
to the complexity of inheritance hierarchies. At the same time, these two metrics
do not clarify the cases where inheritances can be used rightfully. So it is possible
that complex structures signed by DIT and NOC only indicate the complexity of
the realized problem, which can be optimal from the point of view of the code
structure. Therefore I do not analyse the aspects of these metrics.

8.2. The measuring results of the MDA
For the measurement of the MDA the following ratio must be determined:

NPMI

NCS +NPMI

NPMI – The number of polymorph method invocations.
NCS – The number of conditional statements.

This ratio can be determined using the results of the developed measuring tool.
According to my supposition, NPMI approximately determines NPDC , and NDC

can be determined by summing up NCS and NPMI .
I analysed the versions of the previously described ProGuard, LWJGL, LaTeX-

Draw, Neuroph projects. The correlations between the MDA and the WMC, CBO,

Decision structure based object-oriented design principles 171



WMC CBO RFC LCOM

ProGuard −0.893 −0.881 −0.905 −0.773
LWJGL −0.907 0.821 −0.678 −0.928
LaTeXDraw −0.648 0.508 −0.623 −0.684
Neuroph −0.433 0.067 −0.130 −0.685

Table 1: The Pearson product-moment correlation coefficients be-
tween the MDA and the WMC, CBO, RFC, LCOM metrics

RFC, LCOM metrics [8] were examined based on the Pearson product-moment
correlation coefficient (see Table 1). According to the measurement of the three
systems, the correlation between the MDA and the WMCmetric is significant, how-
ever, there is one system (Neuroph), where the correlation is low, but exists. The
correlation measurements between the MDA and the CBO metric are ambiguous,
therefore there is no correlation between them. Based on the measurements of three
systems, the correlation between the MDA and the RFC metric is significant, how-
ever, there is one correlation measurement which indicates no correlation between
them (Neuroph system). The measurements confirmed the significant relationship
between the MDA and the LCOM metric. In conformity with the measurements,
the correlation between these metrics is the most significant.

8.3. The measuring results of the RIEDR metric

For the measurement of the RIEDR metric the following ratio must be determined:

NPI

NI

NPI – The number of inheritances containing polymorph methods.
NI – The number of inheritances.

I analysed the versions of the previously described ProGuard, LWJGL, LaTeX-
Draw, Neuroph projects. The correlations between the RIEDR metric and the
WMC, CBO, RFC, LCOM metrics [8] were examined based on the Pearson pro-
duct-moment correlation coefficient (see Table 2).

WMC CBO RFC LCOM

ProGuard −0.830 −0.863 −0.798 −0.925
LWJGL −0.866 0.739 −0.255 −0.772
LaTeXDraw 0.737 0.446 0.745 0.681
Neuroph −0.278 0.481 0.330 −0.861

Table 2: The Pearson product-moment correlation coefficients be-
tween the RIEDR and the WMC, CBO, RFC, LCOM metrics

172 Sz. Márien



The correlation measurements between the RIEDR metric and the WMC, CBO,
RFC metrics are ambiguous. Accordingly, there is no correlation between these
metrics. In conformity with the measurements of three systems, the correlation
between the RIEDR metric and the LCOM is significant, but there is one system
(LaTeXDraw), where the measurement indicates inverse correlation. In order to
determine the reason of the inverse correlation in case of the LaTeXDraw system
further examinations are needed.

8.4. The summary of empirical validations

In case of the WMC metric [8] the optionally considered inner complexity of meth-
ods promote the correlation with the MDA, because inner complexity is related to
the quality of decision structures which can be measured by the new metrics.

The relationship between the LCOM metric [8] and the new metrics can be
perceived based on behaviour contracts [18, 27], which should be considered in the
course of the determination of cohesion. These behaviour contracts specify the basic
concepts of decision merging examinations and the introduction of new decision
structure quality specific metrics. These supposed relationships were confirmed by
empirical validations.

The empirically perceived relationship between the RFC metric [8] and the
MDA was not supposed intuitively. To find the cause of the empirical connection
between the two metrics requires further examinations.

9. Conclusions

In the course of the paper the definitions of decision, decision raising [24, 25]
and the newly introduced decision merging are extended based on the concept
of behavioural contract [18, 27].

Using the behaviour contract-based definitions, the behavioural contract spe-
cific aspects of the transformations of decision raisings and decision merging can
be showed. Using the JML – Java behaviour specification language [18], the be-
havioural contract-based examination of decision structures is possible [24]. In the
future, I intend to analyse the behavioural contract-based aspects of decision raising
and decisions merging by using the JML specifications of decision structures.

Based on the described concepts of decision redundancies and the rules of deci-
sion merging, I introduced new object-oriented design principles (“Using inheritance
to dissolve decision redundancy”, “Avoid decision redundancy”). These principles
determine the cases, where the use of inheritance as an object-oriented tool is justi-
fied. Several existing object-oriented design principles are engaged in detecting the
cases where the use of inheritance vs. object composition is confirmed. I intend to
examine the relationship between the existing design principles and the quality of
decision structures.

I will deal with the examination of the designing circumstances of design pat-
terns. In the course of the examination of the decision structures of design patterns,

Decision structure based object-oriented design principles 173



I plan to examine high-level optimizing facilities and low-level refactoring methods.
One of the new directions could be the examination of the suspected relationship
between decision structures and design patterns. According to this relationship
the decision structure circumstances of design patterns appear in Use Case models
[26]. In conformity with this, a new research direction is to find out how the de-
sign patterns appear in Use Case models, or rather, how the decision structures of
design patterns reflect on the level of Use Cases.

I initiated new object-oriented metrics that give the opportunity to examine
the quality of decision structures. The introduced MDA and RIEDR metrics are
examined empirically compared to the previously specified complexity, cohesion
and coupling metrics. The correlations between them are analysed by the Pearson
correlation method, by which the linear relationship between independent vari-
ables can be analysed. According to the measurements, the correlations between
the MDA and the WMC, RFC, LCOM [8] are significant, furthermore, there is
a significant correlation between the RIEDR metric and the LCOM [8] metric as
well. In the cases of the WMC and LCOM metrics [8], the detected relationship
can be perceived intuitively, but the empirically confirmed relationship between the
RFC metric [8] and the MDA requires additional examinations. The relationship
between the LCOM [8] and the decision structure based metrics is based on the
dependencies between the functional separation signing capability of cohesion and
decision structure anomalies.

References

[1] L. Badri, M. Badri, and B. Gueye. Revisiting class cohesion: An empirical investi-
gation on several system. Journal of Object Technology, 7(6):55–75, 2008.

[2] M. Badri, L. Badri, and F. Touré. Empirical analysis of object-oriented design met-
rics: Towards a new metric using control flow paths and probabilities. Journal of
Object Technology, 8(6):123–142, 2009.

[3] J.M. Bieman and B.K. Kang. Cohesion and reuse in an object-oriented system. In
Proceedings of the ACM Symposium on Software Reusability (SSR’95), pages 259–
262, 1995.

[4] G. Booch, R.A. Maksimchuk, M.W. Engel, B.J. Young, J. Conallen, and K.A. Hous-
ton. Object-Oriented Analysis and Design with Applications. Addison Wesley Long-
man Publishing Co., Inc., 3rd edition, 2007.

[5] L.C. Briand, J.W. Daly, and J. Wüst. A unified framework for cohesion measurement
in object-oriented systems. Empirical Software Engineering, 3(1):65–117, 1998.

[6] H.S. Chae and Y.R. Kwon. A cohesion measure for classes in object-oriented systems.
In Proceedings of the 5th. International Software Metrics Symposium. Bethesda, MD,
pages 158–166, 1998.

[7] S.R. Chidamber and C.F. Kemerer. Towards a metrics suite for object oriented de-
sign. In Proceedings of Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA ’91), pages 197–211, 1991.

174 Sz. Márien



[8] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6):476–493, 1994.

[9] T. DeMarco. Structured analysis and system specification. Yourdon Press, Prentice
Hall, Inc., 1979.

[10] J. Eder, G. Kappel, and M. Schrefl. Coupling and cohesion in object-oriented systems.
Technical Report, University of Klagenfurt, Austria, pages 1–34, 1994.

[11] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving
the design of existing code. Addison Wesley Longman Publishing Co., Inc., 1999.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional Computing Series,
1995.

[13] B. Henderson-Sellers. Object-Oriented Metrics. Measures of Complexity. Prentice
Hall, Inc., 1996.

[14] M. Hitz and B. Montazeri. Measuring coupling and cohesion in object-oriented sys-
tems. In Proceedings of the International Symposium on Applied Corporate Comput-
ing, Monterrey, Mexico, 50:75–76, 1995.

[15] H. Kabaili, R.K. Keller, and F. Lustman. Cohesion as changeability indicator in
object-oriented systems. In Proceedings of the 5th European Conference on Software
Maintenance and Reengineering (CSMR 2001), IEEE, Lisbon, Portugal, pages 39–46,
2001.

[16] J. Kerievsky. Refactoring to patterns. Addison Wesley Longman Publishing Co.,
Inc., 2004.

[17] C. Larman. Applying UML and Patterns: An Introduction to Object-Oriented Anal-
ysis and Design and the Unified Process. Prentice Hall, Inc., 3rd edition, 2005.

[18] G.T. Leavens and Y. Cheon. Design by contract with JML. Dept. of Computer
Science, Iowa State University, Dept. of Computer Science, University of Texas at
El Paso, pages 1–13, 2006.

[19] B.H. Liskov and J.M. Wing. A behavioral notion of subtyping. ACM Transactions
on Programming Languages and Systems, 16(6):1811–1841, 1994.

[20] R.C. Martin and M. Micah. Agile principles, patterns, and practices in C#. Prentice
Hall, Inc., 2006.

[21] T.J. McCabe. A complexity measure. IEEE Transactions on Software Engineering,
2(4):308–320, 1976.

[22] B. Meyer. Applying “design by contract”. IEEE Computer, 25(10):40–51, 1992.

[23] J.C. Munson and T.M. Khoshgoftaar. Handbook of Software Reliability Engineering.
Chapter 12.: Software Metrics for Reliability Assessment. IEEE Computer Society
Press, McGraw-Hill, 1996.

[24] Sz. Márien. Decision based examination of object-oriented methodology using JML.
Annales Mathematicae et Informaticae, 35:95–121, 2008.

[25] Sz. Márien. Decision based examination of object-oriented programming and design
patterns. Teaching Mathematics and Computer Science, 6(1):83–109, 2008.

[26] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language reference
manual. Addison Wesley Longman Publishing Co., Inc., 2nd edition, 2004.

Decision structure based object-oriented design principles 175



[27] W. Schreiner. From types to contracts: Supporting by light-weight specifications
the liskov substitution principle. Technical Report no. 10-22 in RISC Report Series.
Research Institute for Symbolic Computation (RISC), Johannes Kepler University
Linz, Austria, 2010.

[28] R.W. Sebesta. Concepts of Programming Languages. Addison Wesley Longman
Publishing Co., Inc., 7th edition, 2006.

[29] D. Spinellis. Tool writing: A forgotten art? IEEE Software, 22(4):9–11, 2005.

[30] Y. Wand and R. Weber. An ontological model of an information system. IEEE
Transactions on Software Engineering, 16(11):1282–1292, 1990.

[31] S. Yacoub, T. Robinson, and H.H. Ammar. Dynamic metrics for object oriented
designs. In Proceedings of the 6th International Software Metrics Symposium, pages
50–61, 1999.

176 Sz. Márien


