A combinatorial generalization of the gcd-sum function using a generalized Möbius function

Vichian Laohakosol ${ }^{a}$, Pinthira Tangsupphathawat ${ }^{b}$
${ }^{a}$ Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand fscivil@ku.ac.th
${ }^{b}$ Department of Mathematics, Faculty of Science and Technology, Phranakorn Rajabhat University, Bangkok 10220, Thailand
t.pinthira@hotmail.com

Submitted September 4, 2017 - Accepted November 30, 2017

Abstract

Using the Souriau-Hsu-Möbius function with a natural parameter, a generalized Cesáro formula which is an extension of the classical gcd-sum formula is derived. The formula connects a combinatorial aspect of the generalized Möbius function with the number of integers whose prime factors have sufficiently high powers.

Keywords: gcd-sum function, Souriau-Hsu-Möbius function
MSC: 11A25

1. Introduction

Let $\mathcal{A}:=\{F: \mathbb{N} \rightarrow \mathbb{C}\}$ be the set of complex-valued arithmetic functions. For $F, G \in \mathcal{A}$, their addition and Dirichlet product (or convolution) are defined, respectively, by

$$
(F+G)(n)=F(n)+G(n), \quad(F * G)(n)=\sum_{d \mid n} F(d) G(n / d)
$$

It is well known, [7, Chapter 7] that $(\mathcal{A},+, *)$ is commutative ring with identity I, where $I(n)=1$ if $n=1$ and $I(n)=0$ when $n>1$. The Souriau-Hsu-Möbius function ([9], [2]) is defined, for $\alpha \in \mathbb{C}$, by

$$
\mu_{\alpha}(n)=\prod_{p \mid n}\binom{\alpha}{\nu_{p}(n)}(-1)^{\nu_{p}(n)}
$$

where $n=\prod p^{\nu_{p}(n)}$ denotes the unique prime factorization of n. For some particular values of α, the corresponding Souriau-Hsu-Möbius functions represent certain well-known arithmetic functions, namely,
(i) when $\alpha=0$, this corresponds to the convolution identity $\mu_{0}=I$;
(ii) when $\alpha=1$, this is the classical Möbius function $\mu_{1}=\mu$;
(iii) when $\alpha=-1$, this is the inverse of the Möbius function $\mu_{-1}=\mu^{-1}=: u$, where $u(n)=1(n \in \mathbb{N})$ is the constant 1 function;
(iv) when $\alpha=-2$, this is the number of divisors function, $\mu_{-2}=d$, [2, p. 75]. Following [11], see also [6], for $\alpha \in \mathbb{C}, k \in \mathbb{Z}$, the (k, α)-Euler's totient is defined as an arithmetic function of the form

$$
\varphi_{k, \alpha}:=\zeta_{k} * \mu_{\alpha} \quad \zeta_{k}(n):=n^{k}
$$

When $k=\alpha=1$, this function is the classical Euler's totient

$$
\varphi_{1,1}(n):=\varphi(n)=\zeta_{1} * \mu_{1}(n)=\sum_{d \mid n} d \mu\left(\frac{n}{d}\right)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

which counts the number of integers in $\{1,2, \ldots, n\}$ that are relatively prime to n. Fixing $k=1, \alpha=r \in \mathbb{N}$, the corresponding Euler's totient, referred to as r-Euler totient, is

$$
\varphi_{r}(n):=\varphi_{1, r}(n):=\zeta_{1} * \mu_{r}(n)=\sum_{d \mid n} d \mu_{r}\left(\frac{n}{d}\right)
$$

As mentioned in [5, Example 6], the r-Euler totient has the following combinatorial meaning: an integer a is said to be $r^{t h}$-degree prime to $n(\geq 2)$, briefly written as $(a, n)_{r}=1$, if for each prime divisor p of n, there are integers $a_{0}, a_{1}, \ldots, a_{r-1}$ with $0<a_{i}<p$ such that

$$
a \equiv a_{0}+a_{1} p+\cdots+a_{r-1} p^{r-1} \quad\left(\bmod p^{r}\right)
$$

As a convention, we define

$$
(a, 1)_{r}:=1 \quad \text { for any } a \in \mathbb{N}
$$

When $r=1$, the concept of being $r^{t h}$-degree prime is merely that of being relatively prime.

In order to connect the concept of being $r^{t h}$-degree prime with the r-Euler totient, we introduce another notion. A positive integer n is said to be r-powerful
if each of its prime factor appears with multiplicity at least r, i.e., $\nu_{p}(n) \geq r$ for each prime divisor p of n; as a convention, the integer 1 is adopted to be r-powerful for any $r \in \mathbb{N}$. Note that if n is r-powerful, then it is also s-powerful for all $s \in \mathbb{N}$ with $s \leq r$. The following lemma shows that when n is r-powerful, the function $\varphi_{r}(n)$ counts the number of a 's in the set $\{1,2, \ldots, n\}$ such that $(a, n)_{r}=1$; the proof given here is extracted from [11].

Lemma 1.1. Let $n, r \in \mathbb{N}$, and let $N_{r}(n)$ denote the number of integers a \in $\{1,2, \ldots, n\}$ such that $(a, n)_{r}=1$. We have :

1) The function $F(n)=N_{r}(n)$ if n is r-powerful and zero otherwise, is multiplicative.
2) If n is r-powerful, then $N_{r}(n)=\varphi_{r}(n)=n \prod_{p \mid n}(1-1 / p)^{r}$, $N_{r}(1)=\varphi_{r}(1):=1$.

Proof. 1) Let n be an r-powerful positive integer whose prime factorization is $n=$ $p_{1}^{e_{1}} \cdots p_{s}^{e_{s}}$. By the Chinese remainder theorem, for any integers $\alpha_{1}, \ldots, \alpha_{s}$, there is a unique $a(\bmod n)$ such that

$$
a \equiv \alpha_{1} \quad\left(\bmod p_{1}^{e_{1}}\right), \ldots, a \equiv \alpha_{s} \quad\left(\bmod p_{s}^{e_{s}}\right)
$$

Conversely, for any $a(\bmod n)$, there uniquely exist $\alpha_{i}\left(\bmod p_{i}^{e_{i}}\right)(i=1, \ldots, s)$ satisfying the above system of congruences. Thus,

$$
(a, n)_{r}=1 \Longleftrightarrow\left(a, p_{i}^{e_{i}}\right)_{r}=1 \text { holds for every } i \in\{1, \ldots, s\}
$$

which shows at once that $N_{r}(n)$ is a multiplicative function of n.
2) Using part 1), it suffices to check that N_{r} and φ_{r} are equal on any prime power p^{e} with $e \geq r$. Recall that $N_{r}\left(p^{e}\right)$ is the number of $a \in\left\{1,2, \ldots, p^{e}\right\}$ such that $\left(a, p^{e}\right)_{r}=1$, i.e., such that there are integers $a_{0}, a_{1}, \ldots, a_{r-1}$ with $0<a_{i}<p$ satisfying

$$
a \equiv a_{0}+a_{1} p+\cdots+a_{r-1} p^{r-1} \quad\left(\bmod p^{r}\right)
$$

Thus, the number of such $a\left(\bmod p^{r}\right)$ is $(p-1)^{r}$, and so the total number of such $a\left(\bmod p^{e}\right)$ is $N_{r}\left(p^{e}\right)=p^{e-r}(p-1)^{r}$. On the other hand using $e \geq r$, we have

$$
\begin{aligned}
\varphi_{r}\left(p^{e}\right) & =\sum_{d \mid p^{e}} d \mu_{r}\left(p^{e} / d\right)=p^{0}\binom{r}{e}(-1)^{e}+p\binom{r}{e-1}(-1)^{e-1}+\cdots+p^{e}\binom{r}{0}(-1)^{0} \\
& =p^{e-r}\binom{r}{r}(-1)^{r}+p^{e-r+1}\binom{r}{r-1}(-1)^{r-1}+\cdots+p^{e}\binom{r}{0}(-1)^{0} \\
& =p^{e-r}(p-1)^{r}=N_{r}\left(p^{e}\right)
\end{aligned}
$$

The classical gcd-sum function is an arithmetical function defined by

$$
\begin{equation*}
g(n):=\sum_{j=1}^{n} \operatorname{gcd}(j, n) \tag{1.1}
\end{equation*}
$$

and the classical gcd-sum formula states that

$$
\begin{equation*}
g(n)=\sum_{j=1}^{n} \operatorname{gcd}(j, n)=\sum_{d \mid n} d \varphi\left(\frac{n}{d}\right) . \tag{1.2}
\end{equation*}
$$

There have recently appeared quite a number of works related to the gcd-sum function and the gcd-sum formula. In [3], the gcd-sum function (1.1) is shown to be multiplicative, has a polynomial growth, and arises in the context of a lattice point counting problem, while the paper [1] studies the function $\sum_{j=1, \operatorname{gcd}(j, n) \mid d}^{n} \operatorname{gcd}(j, n)$, which is a generalization of the gcd-sum function (1.1).

In [8], the function $\sum_{j=1}^{n} \operatorname{gcd}(j, n)^{-1}$, which counts the orders of a generator of a cyclic group, is studied. In [4], an extended Cesáro formula

$$
\begin{equation*}
\sum_{j=1}^{n} f(\operatorname{gcd}(j, n))=\sum_{d \mid n} f(d) \varphi\left(\frac{n}{d}\right) \quad(f \in \mathcal{A}) \tag{1.3}
\end{equation*}
$$

which is another extension of (1.2), is investigated. Various properties of the gcdsum function (1.1) and its analogues are surveyed in [10]. Our objective here is to establish yet another generalization of the gcd-sum formula (1.2) by relating the r-Euler totient with the counting of r-powerful integers that are $r^{t h}$-degree prime.

2. Generalized gcd-sum formula

Our generalized gcd-sum formula arises from replacing the usual Euler's totient on the right-hand side of (1.3) by the r-Euler totient, and using its combinatorial meaning to derive its corresponding generalized form. To do so, we need to extend the notion of $r^{t h}$-degree primeness to that of r-gcd.

Definition. Let $r \in \mathbb{N}$, and let $n \in \mathbb{N}$ be r-powerful. For $j \in \mathbb{N}$, the integer g is the $r-g c d$ of j and n, denoted by $g:=(j, n)_{r}$, if $g=\operatorname{gcd}(j, n)$ satisfies two additional requirements

1. $\left(\frac{j}{g}, \frac{n}{g}\right)_{r}=1$, and
2. n / g is r-powerful.

When $r=1$, the above definition of r-gcd is identical with the usual greatest common divisor. Let us look at some examples.

Example 1. Let $n=2^{3} \cdot 3^{2}=72$. The divisors of n are 1, $2,3,4,6,8,9,12,18,24,36$, 72. Consider $j \in\{1,2, \ldots, 72\}$. For $r=1$, we have
$(j, 72)_{1}=1$ when $j \in\{1,5,7,11,13,17,19,23,25,29,31,35,37,41,43,47,49,53$,

$$
55,59,61,65,67,71\}
$$

$(j, 72)_{1}=2$ when $j \in\{2,10,14,22,26,34,38,46,50,58,62,70\}$
$(j, 72)_{1}=3$ when $j \in\{3,15,21,33,39,51,57,69\}$
$(j, 72)_{1}=4$ when $j \in\{4,20,28,44,52,68\}$
$(j, 72)_{1}=6$ when $j \in\{6,30,42,66\}$
$(j, 72)_{1}=8$ when $j \in\{8,16,32,40,56,64\}$
$(j, 72)_{1}=9$ when $j \in\{9,27,45,63\}$
$(j, 72)_{1}=12$ when $j \in\{12,60\}$
$(j, 72)_{1}=18$ when $j \in\{18,54\}$
$(j, 72)_{1}=24$ when $j \in\{24,48\}$
$(j, 72)_{1}=36$ when $j \in\{36\}$
$(j, 72)_{1}=72$ when $j \in\{72\}$.
For $r=2$, we have
$(j, 72)_{2}=1$ when $j \in\{7,23,31,35,43,59,67,71\}$
$(j, 72)_{2}=2$ when $j \in\{14,46,62,70\}$
$(j, 72)_{2}=8$ when $j \in\{32,40,56,64\}$
$(j, 72)_{2}=9$ when $j \in\{27,63\}$
$(j, 72)_{2}=18$ when $j \in\{54\}$
$(j, 72)_{2}=72$ when $j \in\{72\}$,
and for the other values of j, the $2-\operatorname{gcd}(j, 72)_{2}$ are not defined.
For $r=3$, we have $(j, 72)_{3}=9$ when $j \in\{63\},(j, 72)_{3}=72$ when $j \in\{72\}$, and for the other values of j, the $3-\operatorname{gcd}(j, 72)_{3}$ are not defined.

For $r \geq 4$, we have $(j, 72)_{3}=72$ when $j \in\{72\}$, and the $r-\operatorname{gcd}(j, 72)_{r}$ are not defined for the remaining j 's.

Our next lemma connects the r-gcd with the r-Euler totient.
Lemma 2.1. Let $r, n \in \mathbb{N}$ with n being r-powerful, and let

$$
A_{r, d}(n):=\left\{a \in\{1,2, \ldots, n\} ;(a, n)_{r}=d\right\}
$$

Then

$$
\left|A_{r, d}(n)\right|=\varphi_{r}(n / d)
$$

Proof. The result follows at once from the observation that

$$
a \in\{1,2, \ldots, n\} \quad \text { and } \quad(a, n)_{r}=d
$$

if and only if $\frac{a}{d} \in\left\{1,2, \ldots, \frac{n}{d}\right\},\left(\frac{a}{d}, \frac{n}{d}\right)_{r}=1, \frac{n}{d}$ is r-powerful, and the set of elements on the right-hand side has cardinality $\varphi_{r}(n / d)$.

We now state and prove our generalized Cesáro formula.
Theorem 2.2. Let $r, n \in \mathbb{N}$ with n being r-powerful. For an arithmetic function f, we have the following generalized Cesáro formula

$$
\begin{equation*}
\sum_{j=1}^{n} f\left((j, n)_{r}\right)=\sum_{\left.d\right|_{r} n} f(d) \varphi_{r}\left(\frac{n}{d}\right) \tag{2.1}
\end{equation*}
$$

where the symbol $\left.d\right|_{r} n$ in the summation on the right-hand side indicates that the sum extends over all the divisors d for which n / d is r-powerful.

In particular, taking $f(n)=n$, the generalized Cesáro formula becomes the generalized gcd-sum formula

$$
\begin{equation*}
\sum_{j=1}^{n}(j, n)_{r}=\sum_{\left.d\right|_{r} n} d \varphi_{r}\left(\frac{n}{d}\right) \tag{2.2}
\end{equation*}
$$

Proof. Writing $(j, n)_{r}=d$, using the above notation and Lemma 2.1, we get

$$
\sum_{j=1}^{n} f\left((j, n)_{r}\right)=\sum_{j=1}^{n} \sum_{(j, n)_{r}=d} f(d)=\sum_{\left.d\right|_{r} n} f(d)\left|A_{r, d}(n)\right|=\sum_{\left.d\right|_{r} n} f(d) \varphi_{r}\left(\frac{n}{d}\right)
$$

When $r=1$, the generalized Cesáro formula is simply the classical Cesáro formula, and its representation via generalized Möbius function becomes a Dirichlet product of two arithmetic functions, viz.,

$$
\sum_{j=1}^{n} f\left((j, n)_{1}\right)=\sum_{\left.d\right|_{1} n} f(d) \varphi_{1}\left(\frac{n}{d}\right)=(f * \varphi)(n)
$$

Example 2. Continuing from Example 1, let $n=2^{3} \cdot 3^{2}=72$.
For $r=1$, we have

$$
\left\{d \in\{1,2, \ldots, 72\} ;\left.d\right|_{1} 72\right\}=\{1,2,3,4,6,8,9,12,18,24,36,72\}
$$

and the values of $\varphi_{1}(72 / d)$ with $\left.d\right|_{1} 72$ are

$$
\begin{aligned}
& \varphi_{1}(72)=24, \varphi_{1}(36)=12, \varphi_{1}(24)=8, \varphi_{1}(18)=6, \varphi_{1}(12)=4, \varphi_{1}(9)=6 \\
& \varphi_{1}(8)=4, \varphi_{1}(6)=2, \varphi_{1}(4)=2, \varphi_{1}(3)=2, \varphi_{1}(2)=1, \varphi_{1}(1)=1
\end{aligned}
$$

Using Example 1, the left-hand side of (2.1) is

$$
\begin{align*}
\sum_{j=1}^{n} f\left((j, n)_{1}\right)= & f(1) \times 24+f(2) \times 12+f(3) \times 8+f(4) \times 6+f(6) \times 4 \\
& +f(8) \times 6+f(9) \times 4+f(12) \times 2+f(18) \times 2+f(24) \times 2 \\
& +f(36) \times 1+f(72) \times 1 \\
= & \sum_{\left.d\right|_{1} n} f(d) \varphi_{1}\left(\frac{n}{d}\right) \tag{2.3}
\end{align*}
$$

which agrees with the theorem.
For $r=2$, we have $\left\{d \in\{1,2 \ldots, 72\} ;\left.d\right|_{2} 72\right\}=\{1,2,8,9,18,72\}$, and the values of $\varphi_{2}(72 / d)$ with $\left.d\right|_{2} 72$ are

$$
\varphi_{2}(72)=8, \varphi_{2}(36)=4, \varphi_{2}(9)=4, \varphi_{2}(8)=2, \varphi_{2}(4)=1, \varphi_{2}(1)=1
$$

Using Example 1, the left-hand side of (2.1) is

$$
\begin{align*}
\sum_{j=1}^{n} f\left((j, n)_{2}\right) & =f(1) \times 8+f(2) \times 4+f(8) \times 4+f(9) \times 2+f(18) \times 1+f(72) \times 1 \\
& =\sum_{\left.d\right|_{2} n} f(d) \varphi_{2}\left(\frac{n}{d}\right) \tag{2.4}
\end{align*}
$$

For $r=3$, we have $\left\{d \in\{1,2 \ldots, 72\} ;\left.d\right|_{3} 72\right\}=\{9,72\}$, and the values of $\varphi_{3}(72 / d)$ with $\left.d\right|_{3} 72$ are $\varphi_{3}(8)=1, \varphi_{3}(1)=1$. Using Example 1, the left-hand side of (2.1) is

$$
\begin{equation*}
\sum_{j=1}^{n} f\left((j, n)_{3}\right)=f(9) \times 1+f(72) \times 1=\sum_{\left.d\right|_{3} n} f(d) \varphi_{3}\left(\frac{n}{d}\right) . \tag{2.5}
\end{equation*}
$$

For $r \geq 4$, we have $\left\{d \in\{1,2 \ldots, 72\} ;\left.d\right|_{r} 72\right\}=\{72\}$, and the values of $\varphi_{3}(72 / d)$ with $\left.d\right|_{r} 72$ is $\varphi_{r}(1)=1$. The left-hand side of (2.1) is

$$
\begin{equation*}
\sum_{j=1}^{n} f\left((j, n)_{r}\right)=f(72) \times 1=\sum_{\left.d\right|_{r} n} f(d) \varphi_{r}\left(\frac{n}{d}\right) \tag{2.6}
\end{equation*}
$$

The formulae such as (2.1)-(2.6) deal with a single r. We end this paper by remarking that such formulae can be absorbed into one single formula. For a positive integer n whose prime representation is $n=p_{1}^{\nu_{1}(n)} p_{2}^{\nu_{2}(n)} \cdots p_{t}^{\nu_{t}(n)}$, let

$$
\nu(n):=\max \left\{\nu_{i}(n) ; 1 \leq i \leq t\right\}
$$

Corollary 2.3. For an arithmetic function f, we have the following generalized Cesáro formula

$$
\sum_{r=1}^{\nu(n)} \sum_{j=1}^{n} f\left((j, n)_{r}\right)=\sum_{r=1}^{\nu(n)} \sum_{\left.d\right|_{r} n} f(d) \varphi_{r}\left(\frac{n}{d}\right)
$$

Acknowledgements. The first author is supported by Center for Advanced Studies in Industrial Technology and Faculty of Science, Kasetsart University. The second author is supported by Phranakhon Rajabhat University.

References

[1] Abel, U., Awan W., Kushnirevych, V., A generalization of the gcd-sum function, J. Integer Sequences Vol. 16 (2013), Article 13.6.7.
[2] Brown, T. C., Hsu, L. C., Wang, J., Shiue, P. J. S., On a certain kind of generalized number-theoretical Möbius function, Math. Sci. Vol. 25 (2000), 72-77.
[3] Broughan, K. A., The gcd-sum function, J. Integer Sequences Vol. 4 (2001), Article 01.2.2.
[4] Haukkanen, P., On a gcd-sum function, Aequationes Math. Vol. 76 (2008), 168-178.
[5] Hsu, L. C., Wang, J., Some Möbius-type functions and inversions constructed via difference operators, Tamkang J. Math. Vol. 29 (1998), 89-99.
[6] Pabhapote, N., Laohakosol V., Combinatorial aspects of the generalized Euler's totient, Intern. J. Math. Math. Sci. (2010), Article ID 648165, 15 pages.
[7] Redmond, D., Number Theory, An Introduction, Marcel Dekker, New York, 1996.
[8] Sándor, J., Kramer, A. V., Über eine zahlentheoretische Funktion, Math. Moravica Vol. 3 (1999), 53-62.
[9] Souriau, Jean-Marie, Généralisation de certaines formules arithmétiques d' inversion. Applications, Revue Scientific (Rev. Rose Illus.) Vol. 82 (1944), 204-211.
[10] Tóth, L., A survey of gcd-sum functions, J. Integer Sequences Vol. 13 (2010), Article 10.8.1.
[11] Wang, J., Hsu, L. C., On certain generalized Euler-type totients and Möbius-type functions, Dalian University of Technology, China, preprint.

