Generic lightlike submanifolds of an indefinite trans-Sasakian manifold with a non-metric ϕ-symmetric connection

Dae Ho Jin ${ }^{a}$, Jae Won Lee ${ }^{b *}$
${ }^{a}$ Department of Mathematics Education
Dongguk University, Gyeongju 38066, Republic of Korea
jindh@dongguk.ac.kr
${ }^{b}$ Department of Mathematics Education and RINS Gyeongsang National University, Jinju 52828, Republic of Korea

leejaew@gnu.ac.kr
Submitted September 20, 2016 - Accepted August 7, 2017

Abstract

Jin [13] introduced the notion of non-metric ϕ-symmetric connection on semi-Riemannian manifolds and studied lightlike hypersurfaces of an indefinite trans-Sasakian manifold with a non-metric ϕ-symmetric connection [12]. We study further the geometry of this subject. In this paper, we study generic lightlike submanifolds of an indefinite trans-Sasakian manifold with a non-metric ϕ-symmetric connection.

Keywords: non-metric ϕ-symmetric connection, generic lightlike submanifold, indefinite trans-Sasakian structure
MSC: 53C25, 53C40, 53C50

1. Introduction

The notion of non-metric ϕ-symmetric connection on indefinite almost contact manifolds or indefinite almost complex manifolds was introduced by Jin [12, 13]. Here we quote Jin's definition in itself as follows:

[^0]A linear connection $\bar{\nabla}$ on a semi-Riemannian manifold (\bar{M}, \bar{g}) is called a nonmetric ϕ-symmetric connection if it and its torsion tensor \bar{T} satisfy

$$
\begin{align*}
\left(\bar{\nabla}_{\bar{X}} \bar{g}\right)(\bar{Y}, \bar{Z}) & =-\theta(\bar{Y}) \phi(\bar{X}, \bar{Z})-\theta(\bar{Z}) \phi(\bar{X}, \bar{Y}) \tag{1.1}\\
\bar{T}(\bar{X}, \bar{Y}) & =\theta(\bar{Y}) J \bar{X}-\theta(\bar{X}) J \bar{Y} \tag{1.2}
\end{align*}
$$

where ϕ and J are tensor fields of types $(0,2)$ and $(1,1)$ respectively, and θ is an 1 -form associated with a smooth vector field ζ by $\theta(\bar{X})=\bar{g}(\bar{X}, \zeta)$. Throughout this paper, we denote by \bar{X}, \bar{Y} and \bar{Z} the smooth vector fields on \bar{M}.

In case $\phi=\bar{g}$ in (1.1), the above non-metric ϕ-symmetric connection reduces to so-called the quarter-symmetric non-metric connection. Quarter-symmetric nonmetric connection was intorduced by S. Golad [7], and then, studied by many authors $[2,4,19,20]$. In case $\phi=\bar{g}$ in (1.1) and $J=I$ in (1.2), the above nonmetric ϕ-symmetric connection reduces to so-called the semi-symmetric non-metric connection. Semi-symmetric non-metric connection was intorduced by Ageshe and Chafle [1] and later studied by many geometers.

The notion of generic lightlike submanifolds on indefinite almost contact manifolds or indefinite almost complext manifolds was introduced by Jin-Lee [14] and later, studied by Duggal-Jin [6], Jin [9, 10] and Jin-Lee [16] and several geometers. We cite Jin-Lee's definition in itself as follows:

A lightlike submanifold M of an indefinite almost contact manifold \bar{M} is said to be generic if there exists a screen distribution $S(T M)$ on M such that

$$
\begin{equation*}
J\left(S(T M)^{\perp}\right) \subset S(T M) \tag{1.3}
\end{equation*}
$$

where $S(T M)^{\perp}$ is the orthogonal complement of $S(T M)$ in the tangent bundle $T \bar{M}$ on \bar{M}, i.e., $T \bar{M}=S(T M) \oplus_{\text {orth }} S(T M)^{\perp}$. The geometry of generic lightlike submanifolds is an extension of that of lightlike hypersurfaces and half lightlike submanifolds of codimension 2 . Much of its theory will be immediately generalized in a formal way to general lightlike submanifolds.

The notion of trans-Sasakian manifold, of type (α, β), was introduced by Oubina [18]. If \bar{M} is a semi-Riemannian manifold with a trans-Sasakian structure of type (α, β), then \bar{M} is called an indefinite trans-Sasakian manifold of type (α, β). Indefinite Sasakian, Kenmotsu and cosymplectic manifolds are important kinds of indefinite trans-Sasakian manifolds such that

$$
\alpha=1, \quad \beta=0 ; \quad \alpha=0, \quad \beta=1 ; \quad \alpha=\beta=0, \quad \text { respectively. }
$$

In this paper, we study generic lightlike submanifolds M of an indefinite transSasakian manifold $\bar{M}=(\bar{M}, J, \zeta, \theta, \bar{g})$ with a non-metric ϕ-symmetric connection, in which the tensor field J in (1.2) is identical with the indefinite almost contact structure tensor field J of \bar{M}, the tensor field ϕ in (1.1) is identical with the fundamental 2-form associated with J, that is,

$$
\begin{equation*}
\phi(\bar{X}, \bar{Y})=\bar{g}(J \bar{X}, \bar{Y}) \tag{1.4}
\end{equation*}
$$

and the 1 -form θ, defined by (1.1) and (1.2), is identical with the structure 1-form θ of the indefinite almost contact metric structure $(J, \zeta, \theta, \bar{g})$ of \bar{M}.
Remark 1.1. Denote $\widetilde{\nabla}$ by the unique Levi-Civita connection of (\bar{M}, \bar{g}) with respect to the metric \bar{g}. It is known [13] that a linear connection $\bar{\nabla}$ on \bar{M} is non-metric ϕ-symmetric connection if and only if it satisfies

$$
\begin{equation*}
\bar{\nabla}_{\bar{X}} \bar{Y}=\widetilde{\nabla}_{\bar{X}} \bar{Y}+\theta(\bar{Y}) J \bar{X} \tag{1.5}
\end{equation*}
$$

For the rest of this paper, by the non-metric ϕ-symmetric connection we shall mean the non-metric ϕ-symmetric connection defined by (1.5).

2. Non-metric ϕ-symmetric connections

An odd-dimensional semi-Riemannian manifold (\bar{M}, \bar{g}) is called an indefinite transSasakian manifold if there exist (1) a structure set $\{J, \zeta, \theta, \bar{g}\}$, where J is a $(1,1)$ type tensor field, ζ is a vector field and θ is a 1 -form such that

$$
\begin{gather*}
J^{2} \bar{X}=-\bar{X}+\theta(\bar{X}) \zeta, \quad \theta(\zeta)=1, \quad \theta(\bar{X})=\epsilon \bar{g}(\bar{X}, \zeta), \tag{2.1}\\
\theta \circ J=0, \quad \bar{g}(J \bar{X}, \quad J \bar{Y})=\bar{g}(\bar{X}, \bar{Y})-\epsilon \theta(\bar{X}) \theta(\bar{Y}),
\end{gather*}
$$

(2) two smooth functions α and β, and a Levi-Civita connection $\widetilde{\nabla}$ such that

$$
\left(\widetilde{\nabla}_{\bar{X}} J\right) \bar{Y}=\alpha\{\bar{g}(\bar{X}, \bar{Y}) \zeta-\epsilon \theta(\bar{Y}) \bar{X}\}+\beta\{\bar{g}(J \bar{X}, \bar{Y}) \zeta-\epsilon \theta(\bar{Y}) J \bar{X}\}
$$

where ϵ denotes $\epsilon=1$ or -1 according as ζ is spacelike or timelike respectively. $\{J, \zeta, \theta, \bar{g}\}$ is called an indefinite trans-Sasakian structure of type (α, β).

In the entire discussion of this article, we shall assume that the vector field ζ is a spacelike one, i.e., $\epsilon=1$, without loss of generality.

Let $\bar{\nabla}$ be a non-metric ϕ-symmetric connection on (\bar{M}, \bar{g}). Using (1.5) and the fact that $\theta \circ J=0$, the equation in the item (2) is reduced to

$$
\begin{align*}
\left(\bar{\nabla}_{\bar{X}} J\right) \bar{Y} & =\alpha\{\bar{g}(\bar{X}, \bar{Y}) \zeta-\theta(\bar{Y}) \bar{X}\} \tag{2.2}\\
& +\beta\{\bar{g}(J \bar{X}, \bar{Y}) \zeta-\theta(\bar{Y}) J \bar{X}\}+\theta(\bar{Y})\{\bar{X}-\theta(\bar{X}) \zeta\}
\end{align*}
$$

Replacing \bar{Y} by ζ to (2.2) and using $J \zeta=0$ and $\theta\left(\bar{\nabla}_{\bar{X}} \zeta\right)=0$, we obtain

$$
\begin{equation*}
\bar{\nabla}_{\bar{X}} \zeta=-(\alpha-1) J \bar{X}+\beta\{\bar{X}-\theta(\bar{X}) \zeta\} \tag{2.3}
\end{equation*}
$$

Let (M, g) be an m-dimensional lightlike submanifold of an indefinite transSasakian manifold (\bar{M}, \bar{g}) of dimension $(m+n)$. Then the radical distribution $\operatorname{Rad}(T M)=T M \cap T M^{\perp}$ on M is a subbundle of the tangent bundle $T M$ and the normal bundle $T M^{\perp}$, of rank $r(1 \leq r \leq \min \{m, n\})$. In general, there exist two complementary non-degenerate distributions $S(T M)$ and $S\left(T M^{\perp}\right)$ of $\operatorname{Rad}(T M)$
in $T M$ and $T M^{\perp}$ respectively, which are called the screen distribution and the co-screen distribution of M, such that

$$
T M=\operatorname{Rad}(T M) \oplus_{o r t h} S(T M), \quad T M^{\perp}=\operatorname{Rad}(T M) \oplus_{\text {orth }} S\left(T M^{\perp}\right)
$$

where $\oplus_{\text {orth }}$ denotes the orthogonal direct sum. Denote by $F(M)$ the algebra of smooth functions on M and by $\Gamma(E)$ the $F(M)$ module of smooth sections of a vector bundle E over M. Also denote by $(2.1)_{i}$ the i-th equation of (2.1). We use the same notations for any others. Let X, Y, Z and W be the vector fields on M, unless otherwise specified. We use the following range of indices:

$$
i, j, k, \ldots \in\{1, \ldots, r\}, \quad a, b, c, \ldots \in\{r+1, \ldots, n\}
$$

Let $\operatorname{tr}(T M)$ and $\operatorname{ltr}(T M)$ be complementary vector bundles to $T M$ in $T \bar{M}_{\mid M}$ and $T M^{\perp}$ in $S(T M)^{\perp}$ respectively and let $\left\{N_{1}, \cdots, N_{r}\right\}$ be a lightlike basis of $l \operatorname{tr}(T M)_{\mid \mathcal{U}}$, where \mathcal{U} is a coordinate neighborhood of M, such that

$$
\bar{g}\left(N_{i}, \xi_{j}\right)=\delta_{i j}, \quad \bar{g}\left(N_{i}, N_{j}\right)=0
$$

where $\left\{\xi_{1}, \cdots, \xi_{r}\right\}$ is a lightlike basis of $\operatorname{Rad}(T M)_{\mid \mathcal{u}}$. Then we have

$$
\begin{aligned}
T \bar{M} & =T M \oplus \operatorname{tr}(T M)=\{\operatorname{Rad}(T M) \oplus \operatorname{tr}(T M)\} \oplus_{\text {orth }} S(T M) \\
& =\{\operatorname{Rad}(T M) \oplus \operatorname{ltr}(T M)\} \oplus_{\text {orth }} S(T M) \oplus_{\text {orth }} S\left(T M^{\perp}\right)
\end{aligned}
$$

We say that a lightlike submanifold $M=\left(M, g, S(T M), S\left(T M^{\perp}\right)\right)$ of \bar{M} is
(1) r-lightlike submanifold if $1 \leq r<\min \{m, n\}$;
(2) co-isotropic submanifold if $1 \leq r=n<m$;
(3) isotropic submanifold if $1 \leq r=m<n$;
(4) totally lightlike submanifold if $1 \leq r=m=n$.

The above three classes $(2) \sim(4)$ are particular cases of the class (1) as follows:

$$
S\left(T M^{\perp}\right)=\{0\}, \quad S(T M)=\{0\}, \quad S(T M)=S\left(T M^{\perp}\right)=\{0\}
$$

respectively. The geometry of r-lightlike submanifolds is more general than that of the other three types. For this reason, we consider only r-lightlike submanifolds M, with following local quasi-orthonormal field of frames of \bar{M} :

$$
\left\{\xi_{1}, \cdots, \xi_{r}, N_{1}, \cdots, N_{r}, F_{r+1}, \cdots, F_{m}, E_{r+1}, \cdots, E_{n}\right\}
$$

where $\left\{F_{r+1}, \cdots, F_{m}\right\}$ and $\left\{E_{r+1}, \cdots, E_{n}\right\}$ are orthonormal bases of $S(T M)$ and $S\left(T M^{\perp}\right)$, respectively. Denote $\epsilon_{a}=\bar{g}\left(E_{a}, E_{a}\right)$. Then $\epsilon_{a} \delta_{a b}=\bar{g}\left(E_{a}, E_{b}\right)$.

In the sequel, we shall assume that ζ is tangent to M. Cǎlin [5] proved that if ζ is tangent to M, then it belongs to $S(T M)$ which we assumed in this paper. Let P
be the projection morphism of $T M$ on $S(T M)$. Then the local Gauss-Weingarten formulae of M and $S(T M)$ are given respectively by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+\sum_{i=1}^{r} h_{i}^{\ell}(X, Y) N_{i}+\sum_{a=r+1}^{n} h_{a}^{s}(X, Y) E_{a} \tag{2.4}\\
& \bar{\nabla}_{X} N_{i}=-A_{N_{i}} X+\sum_{j=1}^{r} \tau_{i j}(X) N_{j}+\sum_{a=r+1}^{n} \rho_{i a}(X) E_{a} \tag{2.5}\\
& \bar{\nabla}_{X} E_{a}=-A_{E_{a}} X+\sum_{i=1}^{r} \lambda_{a i}(X) N_{i}+\sum_{b=r+1}^{n} \sigma_{a b}(X) E_{b} \tag{2.6}\\
& \nabla_{X} P Y=\nabla_{X}^{*} P Y+\sum_{i=1}^{r} h_{i}^{*}(X, P Y) \xi_{i} \tag{2.7}\\
& \nabla_{X} \xi_{i}=-A_{\xi_{i}}^{*} X-\sum_{j=1}^{r} \tau_{j i}(X) \xi_{j} \tag{2.8}
\end{align*}
$$

where ∇ and ∇^{*} are induced linear connections on M and $S(T M)$ respectively, h_{i}^{ℓ} and h_{a}^{s} are called the local second fundamental forms on M, h_{i}^{*} are called the local second fundamental forms on $S(T M) . A_{N_{i}}, A_{E_{a}}$ and $A_{\xi_{i}}^{*}$ are called the shape operators, and $\tau_{i j}, \rho_{i a}, \lambda_{a i}$ and $\sigma_{a b}$ are 1-forms.

Let M be a generic lightlike submanifold of \bar{M}. From (1.3) we show that $J(\operatorname{Rad}(T M)), J(\operatorname{ltr}(T M))$ and $J\left(S\left(T M^{\perp}\right)\right)$ are subbundles of $S(T M)$. Thus there exist two non-degenerate almost complex distributions H_{o} and H with respect to J, i.e., $J\left(H_{o}\right)=H_{o}$ and $J(H)=H$, such that

$$
\begin{aligned}
& S(T M)=\{J(\operatorname{Rad}(T M)) \oplus J(l \operatorname{tr}(T M))\} \\
& \quad \oplus_{\text {orth }} J\left(S\left(T M^{\perp}\right)\right) \oplus_{\text {orth }} H_{o} \\
& H=\operatorname{Rad}(T M) \oplus_{\text {orth }} J(\operatorname{Rad}(T M)) \oplus_{\text {orth }} H_{o} .
\end{aligned}
$$

In this case, the tangent bundle $T M$ on M is decomposed as follows:

$$
\begin{equation*}
T M=H \oplus J(l \operatorname{tr}(T M)) \oplus_{o r t h} J\left(S\left(T M^{\perp}\right)\right) \tag{2.9}
\end{equation*}
$$

Consider local null vector fields U_{i} and V_{i} for each i, local non-null unit vector fields W_{a} for each a, and their 1-forms u_{i}, v_{i} and w_{a} defined by

$$
\begin{array}{ccc}
U_{i}=-J N_{i}, & V_{i}=-J \xi_{i}, & W_{a}=-J E_{a}, \\
u_{i}(X)=g\left(X, V_{i}\right), & v_{i}(X)=g\left(X, U_{i}\right), & w_{a}(X)=\epsilon_{a} g\left(X, W_{a}\right) . \tag{2.11}
\end{array}
$$

Denote by S the projection morphism of $T M$ on H and by F the tensor field of type $(1,1)$ globally defined on M by $F=J \circ S$. Then $J X$ is expressed as

$$
\begin{equation*}
J X=F X+\sum_{i=1}^{r} u_{i}(X) N_{i}+\sum_{a=r+1}^{n} w_{a}(X) E_{a} \tag{2.12}
\end{equation*}
$$

Applying J to (2.12) and using (2.1) $)_{1}$ and (2.10), we have

$$
\begin{equation*}
F^{2} X=-X+\theta(X) \zeta+\sum_{i=1}^{r} u_{i}(X) U_{i}+\sum_{a=r+1}^{n} w_{a}(X) W_{a} \tag{2.13}
\end{equation*}
$$

In the following, we say that F is the structure tensor field on M.

3. Structure equations

Let \bar{M} be an indefinite trans-Sasakian manifold with a non-metric ϕ-symmetric connection $\bar{\nabla}$. In the following, we shall assume that ζ is tangent to M. Cǎlin [5] proved that if ζ is tangent to M, then it belongs to $S(T M)$ which we assumed in this paper. Using (1.1), (1.2), (1.4), (2.4) and (2.12), we see that

$$
\begin{align*}
& \left(\nabla_{X} g\right)(Y, Z)=\sum_{i=1}^{r}\left\{h_{i}^{\ell}(X, Y) \eta_{i}(Z)+h_{i}^{\ell}(X, Z) \eta_{i}(Y)\right\} \tag{3.1}\\
& \quad-\theta(Y) \phi(X, Z)-\theta(Z) \phi(X, Y) \\
& T(X, Y)=\theta(Y) F X-\theta(X) F Y, \tag{3.2}\\
& h_{i}^{\ell}(X, Y)-h_{i}^{\ell}(Y, X)=\theta(Y) u_{i}(X)-\theta(X) u_{i}(Y), \tag{3.3}\\
& h_{a}^{s}(X, Y)-h_{a}^{s}(Y, X)=\theta(Y) w_{a}(X)-\theta(X) w_{a}(Y), \tag{3.4}\\
& \phi\left(X, \xi_{i}\right)=u_{i}(X), \quad \phi\left(X, N_{i}\right)=v_{i}(X), \quad \phi\left(X, E_{a}\right)=w_{a}(X), \tag{3.5}\\
& \phi\left(X, V_{i}\right)=0, \quad \phi\left(X, U_{i}\right)=-\eta_{i}(X), \quad \phi\left(X, W_{a}\right)=0,
\end{align*}
$$

for all i and a, where η_{i} 's are 1-forms such that $\eta_{i}(X)=\bar{g}\left(X, N_{i}\right)$.
From the facts that $h_{i}^{\ell}(X, Y)=\bar{g}\left(\bar{\nabla}_{X} Y, \xi_{i}\right)$ and $\epsilon_{a} h_{a}^{s}(X, Y)=\bar{g}\left(\bar{\nabla}_{X} Y, E_{a}\right)$, we know that h_{i}^{ℓ} and h_{a}^{s} are independent of the choice of $S(T M)$. Applying $\bar{\nabla}_{X}$ to $g\left(\xi_{i}, \xi_{j}\right)=0, \bar{g}\left(\xi_{i}, E_{a}\right)=0, \bar{g}\left(N_{i}, N_{j}\right)=0, \bar{g}\left(N_{i}, E_{a}\right)=0$ and $\bar{g}\left(E_{a}, E_{b}\right)=\epsilon \delta_{a b}$ by turns and using (1.1) and (2.4) $\sim(2.6)$, we obtain

$$
\begin{align*}
& h_{i}^{\ell}\left(X, \xi_{j}\right)+h_{j}^{\ell}\left(X, \xi_{i}\right)=0, \quad h_{a}^{s}\left(X, \xi_{i}\right)=-\epsilon_{a} \lambda_{a i}(X) \\
& \eta_{j}\left(A_{N_{i}} X\right)+\eta_{i}\left(A_{N_{j}} X\right)=0, \quad \eta_{i}\left(A_{E_{a}} X\right)=\epsilon_{a} \rho_{i a}(X) \tag{3.6}\\
& \epsilon_{b} \sigma_{a b}+\epsilon_{a} \sigma_{b a}=0 ; \quad h_{i}^{\ell}\left(X, \xi_{i}\right)=0, \quad h_{i}^{\ell}\left(\xi_{j}, \xi_{k}\right)=0, \quad A_{\xi_{i}}^{*} \xi_{i}=0 .
\end{align*}
$$

Definition 3.1. We say that a lightlike submanifold M of \bar{M} is
(1) irrotational $[17]$ if $\bar{\nabla}_{X} \xi_{i} \in \Gamma(T M)$ for all $i \in\{1, \cdots, r\}$,
(2) solenoidal [15] if $A_{W_{a}}$ and $A_{N_{i}}$ are $S(T M)$-valued for all α and i.

From (2.4) and $(3.1)_{2}$, the item (1) is equivalent to

$$
h_{j}^{\ell}\left(X, \xi_{i}\right)=0, \quad h_{a}^{s}\left(X, \xi_{i}\right)=\lambda_{a i}(X)=0
$$

By using (3.1) 4 , the item (2) is equivalent to

$$
\eta_{j}\left(A_{N_{i}} X\right)=0, \quad \rho_{i a}(X)=\eta_{i}\left(A_{E_{a}} X\right)=0
$$

The local second fundamental forms are related to their shape operators by

$$
\begin{align*}
& h_{i}^{\ell}(X, Y)=g\left(A_{\xi_{i}}^{*} X, Y\right)+\theta(Y) u_{i}(X)-\sum_{k=1}^{r} h_{k}^{\ell}\left(X, \xi_{i}\right) \eta_{k}(Y), \tag{3.7}\\
& \epsilon_{a} h_{a}^{s}(X, Y)=g\left(A_{E_{a}} X, Y\right)+\theta(Y) w_{a}(X)-\sum_{k=1}^{r} \lambda_{a k}(X) \eta_{k}(Y), \tag{3.8}\\
& h_{i}^{*}(X, P Y)=g\left(A_{N_{i}} X, P Y\right)+\theta(P Y) v_{i}(X) \tag{3.9}
\end{align*}
$$

Replacing Y by ζ to (2.4) and using (2.3), (2.12), (3.7) and (3.8), we have

$$
\begin{align*}
& \nabla_{X} \zeta=-(\alpha-1) F X+\beta(X-\theta(X) \zeta) \tag{3.10}\\
& \theta\left(A_{\xi_{i}}^{*} X\right)=-\alpha u_{i}(X), \quad h_{i}^{\ell}(X, \zeta)=-(\alpha-1) u_{i}(X), \tag{3.11}\\
& \theta\left(A_{E_{a}} X\right)=-\left\{\epsilon_{a}(\alpha-1)+1\right\} w_{a}(X) \tag{3.12}\\
& h_{a}^{s}(X, \zeta)=-(\alpha-1) w_{a}(X)
\end{align*}
$$

Applying $\bar{\nabla}_{X}$ to $\bar{g}\left(\zeta, N_{i}\right)$ and using (2.3), (2.5) and (3.9), we have

$$
\begin{align*}
& \theta\left(A_{N_{i}} X\right)=-\alpha v_{i}(X)+\beta \eta_{i}(X) \tag{3.13}\\
& h_{i}^{*}(X, \zeta)=-(\alpha-1) v_{i}(X)+\beta \eta_{i}(X)
\end{align*}
$$

Applying $\bar{\nabla}_{X}$ to (2.10) $)_{1,2,3}$ and (2.12) by turns and using (2.2), (2.4) $\sim(2.8)$, (2.10) $\sim(2.12)$ and (3.7) $\sim(3.9)$, we have

$$
\begin{gather*}
h_{j}^{\ell}\left(X, U_{i}\right)=h_{i}^{*}\left(X, V_{j}\right), \quad \epsilon_{a} h_{i}^{*}\left(X, W_{a}\right)=h_{a}^{s}\left(X, U_{i}\right), \\
h_{j}^{\ell}\left(X, V_{i}\right)=h_{i}^{\ell}\left(X, V_{j}\right), \quad \epsilon_{a} h_{i}^{\ell}\left(X, W_{a}\right)=h_{a}^{s}\left(X, V_{i}\right), \tag{3.14}\\
\epsilon_{b} h_{b}^{s}\left(X, W_{a}\right)=\epsilon_{a} h_{a}^{s}\left(X, W_{b}\right), \\
\nabla_{X} U_{i}=F\left(A_{N_{i}} X\right)+\sum_{j=1}^{r} \tau_{i j}(X) U_{j}+\sum_{a=r+1}^{n} \rho_{i a}(X) W_{a} \tag{3.15}\\
\quad-\left\{\alpha \eta_{i}(X)+\beta v_{i}(X)\right\} \zeta, \\
\nabla_{X} V_{i}=F\left(A_{\xi_{i}}^{*} X\right)-\sum_{j=1}^{r} \tau_{j i}(X) V_{j}+\sum_{j=1}^{r} h_{j}^{\ell}\left(X, \xi_{i}\right) U_{j} \tag{3.16}\\
\quad-\sum_{a=r+1}^{n} \epsilon_{a} \lambda_{a i}(X) W_{a}-\beta u_{i}(X) \zeta, \\
\nabla_{X} W_{a}= \tag{3.17}\\
F\left(A_{E_{a}} X\right)+\sum_{i=1}^{r} \lambda_{a i}(X) U_{i}+\sum_{b=r+1}^{n} \sigma_{a b}(X) W_{b}
\end{gather*}
$$

$$
\begin{align*}
& -\beta w_{a}(X) \zeta \\
\left(\nabla_{X} F\right)(Y)= & \sum_{i=1}^{r} u_{i}(Y) A_{N_{i}} X+\sum_{a=r+1}^{n} w_{a}(Y) A_{E_{a}} X \tag{3.18}\\
& -\sum_{i=1}^{r} h_{i}^{\ell}(X, Y) U_{i}-\sum_{a=r+1}^{n} h_{a}^{s}(X, Y) W_{a} \\
& +\{\alpha g(X, Y)+\beta \bar{g}(J X, Y)-\theta(X) \theta(Y)\} \zeta \\
& -(\alpha-1) \theta(Y) X-\beta \theta(Y) F X \\
\left(\nabla_{X} u_{i}\right)(Y)= & -\sum_{j=1}^{r} u_{j}(Y) \tau_{j i}(X)-\sum_{a=r+1}^{n} w_{a}(Y) \lambda_{a i}(X) \tag{3.19}\\
& -h_{i}^{\ell}(X, F Y)-\beta \theta(Y) u_{i}(X), \\
\left(\nabla_{X} v_{i}\right)(Y)= & \sum_{j=1}^{r} v_{j}(Y) \tau_{i j}(X)+\sum_{a=r+1}^{n} \epsilon_{a} w_{a}(Y) \rho_{i a}(X) \tag{3.20}\\
& +\sum_{j=r+1}^{r} u_{j}(Y) \eta_{i}\left(A_{N_{j}} X\right)-g\left(A_{N_{i}} X, F Y\right) \\
& -(\alpha-1) \theta(Y) \eta_{i}(X)-\beta \theta(Y) v_{i}(X) .
\end{align*}
$$

Theorem 3.2. There exist no generic lightlike submanifolds of an indefinite transSasakian manifold with a non-metric ϕ-symmetric connection such that ζ is tangent to M and F satisfies the following equation:

$$
\left(\nabla_{X} F\right) Y=\left(\nabla_{Y} F\right) X, \quad \forall X, Y \in \Gamma(T M)
$$

Proof. Assume that $\left(\nabla_{X} F\right) Y-\left(\nabla_{Y} F\right) X=0$. From (3.18) we obtain

$$
\begin{align*}
& \sum_{i=1}^{r}\left\{u_{i}(Y) A_{N_{i}} X-u_{i}(X) A_{N_{i}} Y\right\} \tag{3.21}\\
& +\sum_{a=r+1}^{n}\left\{w_{a}(Y) A_{E_{a}} X-w_{a}(X) A_{E_{a}} Y\right\}-2 \beta \bar{g}(X, J Y) \zeta \\
& +\left\{\theta(X) u_{i}(Y)-\theta(Y) u_{i}(X)\right\} U_{i}+\left\{\theta(X) w_{a}(Y)-\theta(Y) w_{a}(X)\right\} W_{a} \\
& +(\alpha-1)\{\theta(X) Y-\theta(Y) X\}+\beta\{\theta(X) F Y-\theta(Y) F X\}=0
\end{align*}
$$

Taking the scalar product with ζ and using $(3.12)_{1}$ and $(3.13)_{1}$, we have

$$
\begin{aligned}
& \alpha \sum_{i=1}^{r}\left\{u_{i}(Y) v_{i}(X)-u_{i}(X) v_{i}(Y)\right\} \\
& =\beta \sum_{i=1}^{r}\left\{u_{i}(Y) \eta_{i}(X)-u_{i}(X) \eta_{i}(Y)\right\}-2 \beta \bar{g}(X, J Y)
\end{aligned}
$$

Taking $X=V_{j}, Y=U_{j}$ and $X=\xi_{j}, Y=U_{j}$ to this equation by turns, we obtain $\alpha=0$ and $\beta=0$, respectively. Taking $X=\xi_{i}$ to (3.21), we have

$$
\theta(X) \xi_{i}+\sum_{j=1}^{r} u_{j}(X) A_{N_{j}} \xi_{i}+\sum_{a=r+1}^{n} w_{a}(X) A_{E_{a}} \xi_{i}=0
$$

Taking $X=U_{k}$ and $X=W_{b}$ to this equation, we have

$$
A_{N_{k}} \xi_{i}=0, \quad A_{E_{b}} \xi_{i}=0
$$

Therefore, we get $\theta(X) \xi_{i}=0$. It follows that $\theta(X)=0$ for all $X \in \Gamma(T M)$. It is a contradiction to $\theta(\zeta)=1$. Thus we have our theorem.

Corollary 3.3. There exist no generic lightlike submanifolds of an indefinite transSasakian manifold with a non-metric ϕ-symmetric connection such that ζ is tangent to M and F is parallel with respect to the connection ∇.

Theorem 3.4. Let M be a generic lightlike submanifold of an indefinite transSasakian manifold \bar{M} with a non-metric ϕ-symmetric connection such that ζ is tangent to M. If $U_{i} s$ or $V_{i} s$ are parallel with respect to ∇, then $\alpha=\beta=0$, i.e., \bar{M} is an indefinite cosymplectic manifold. Furthermore, if U_{i} is parellel, M is solenoidal and $\tau_{i j}=0$, if V_{i} is parallel, M is irrotational and $\tau_{i j}=0$.

Proof. (1) If U_{i} is parallel with respect to ∇, then, taking the scalar product with $\zeta, V_{j}, W_{a}, U_{j}$ and N_{j} to (3.15) such that $\nabla_{X} U_{i}=0$ respectively, we get

$$
\begin{equation*}
\alpha=\beta=0, \quad \tau_{i j}=0, \quad \rho_{i a}=0, \quad \eta_{j}\left(A_{N_{i}} X\right)=0, \quad h_{i}^{*}\left(X, U_{j}\right)=0 \tag{3.22}
\end{equation*}
$$

As $\alpha=\beta=0, \bar{M}$ is an indefinite cosymplectic manifold. As $\rho_{i a}=0$ and $\eta_{j}\left(A_{N_{i}} X\right)=0, M$ is solenoidal.
(2) If V_{i} is parallel with respect to ∇, then, taking the scalar product with ζ, U_{j}, V_{j}, W_{a} and N_{j} to (3.16) with $\nabla_{X} V_{i}=0$ respectively, we get

$$
\begin{equation*}
\beta=0, \quad \tau_{j i}=0, \quad h_{j}^{\ell}\left(X, \xi_{i}\right)=0, \quad \lambda_{a i}=0, \quad h_{i}^{\ell}\left(X, U_{j}\right)=0 . \tag{3.23}
\end{equation*}
$$

As $h_{j}^{\ell}\left(X, \xi_{i}\right)=0$ and $\lambda_{a i}=0, M$ is irrotational.
As $h_{i}^{\ell}\left(X, U_{j}\right)=0$, we get $h_{i}^{\ell}\left(\zeta, U_{j}\right)=0$. Taking $X=U_{j}$ and $Y=\zeta$ to (3.3), we get $h_{i}^{\ell}\left(U_{j}, \zeta\right)=\delta_{i j}$. On the other hand, replacing X by U to (3.12) ${ }_{1}$, we have $h_{i}^{\ell}\left(U_{j}, \zeta\right)=-(\alpha-1) \delta_{i j}$. It follows that $\alpha=0$. Since $\alpha=\beta=0, \bar{M}$ is an indefinite cosymplectic manifold.

4. Recurrent and Lie recurrent structure tensors

Definition 4.1. The structure tensor field F of M is said to be
(1) recurrent [11] if there exists a 1-form ϖ on M such that

$$
\left(\nabla_{X} F\right) Y=\varpi(X) F Y
$$

(2) Lie recurrent [11] if there exists a 1-form ϑ on M such that

$$
\left(\mathcal{L}_{X} F\right) Y=\vartheta(X) F Y
$$

where \mathcal{L}_{X} denotes the Lie derivative on M with respect to X, that is,

$$
\begin{equation*}
\left(\mathcal{L}_{X} F\right) Y=[X, F Y]-F[X, Y] . \tag{4.1}
\end{equation*}
$$

In case $\vartheta=0$, i.e., $\mathcal{L}_{X} F=0$, we say that F is Lie parallel.
Theorem 4.2. There exist no generic lightlike submanifolds of an indefinite transSasakian manifold with a non-metric ϕ-symmetric connection such that ζ is tangent to M and the structure tensor field F is recurrent.

Proof. Assume that F is recurrent. From (3.18), we obtain

$$
\begin{aligned}
\varpi(X) F Y= & \sum_{i=1}^{r} u_{i}(Y) A_{N_{i}} X+\sum_{a=r+1}^{n} w_{a}(Y) A_{E_{a}} X \\
- & \sum_{i=1}^{r} h_{i}^{\ell}(X, Y) U_{i}-\sum_{a=r+1}^{n} h_{a}^{s}(X, Y) W_{a} \\
& +\{\alpha g(X, Y)+\beta \bar{g}(J X, Y)-\theta(X) \theta(Y)\} \zeta \\
& -(\alpha-1) \theta(Y) X-\beta \theta(Y) F X .
\end{aligned}
$$

Replacing Y by ξ_{j} to this and using the fact that $F \xi_{j}=-V_{j}$, we get

$$
\varpi(X) V_{j}=\sum_{k=1}^{r} h_{k}^{\ell}\left(X, \xi_{j}\right) U_{k}+\sum_{b=r+1}^{n} h_{b}^{s}\left(X, \xi_{j}\right) W_{b}-\beta u_{j}(X) \zeta .
$$

Taking the scalar product with U_{j}, we get $\varpi=0$. It follows that F is parallel with respect to ∇. By Corollary 3.2, we have our theorem.

Theorem 4.3. Let M be a generic lightlike submanifold of an indefinite transSasakian manifold \bar{M} with a non-metric ϕ-symmetric connection such that ζ is tangent to M and F is Lie recurrent. Then we have the following results:
(1) F is Lie parallel,
(2) the function α satisfies $\alpha=0$,
(3) $\tau_{i j}$ and $\rho_{i a}$ satisfy $\tau_{i j} \circ F=0$ and $\rho_{i a} \circ F=0$. Moreover,

$$
\tau_{i j}(X)=\sum_{k=1}^{r} u_{k}(X) g\left(A_{N_{k}} V_{j}, N_{i}\right)-\beta \theta(X) \delta_{i j}
$$

Proof. (1) Using (2.13), (3.2), (3.18), (4.1) and the fact that $\theta \circ F=0$, we get

$$
\begin{align*}
\vartheta(X) F Y & =-\nabla_{F Y} X+F \nabla_{Y} X \tag{4.2}\\
& +\sum_{i=1}^{r} u_{i}(Y) A_{N_{i}} X+\sum_{a=r+1}^{n} w_{a}(Y) A_{E_{a}} X \\
& -\sum_{i=1}^{r}\left\{h_{i}^{\ell}(X, Y)-\theta(Y) u_{i}(X)\right\} U_{i} \\
& -\sum_{a=r+1}^{n}\left\{h_{a}^{s}(X, Y)-\theta(Y) w_{a}(X)\right\} W_{a} \\
& +\alpha\{g(X, Y) \zeta-\theta(Y) X\}-\beta \theta(Y) F X
\end{align*}
$$

Replacing Y by ξ_{j} and then, Y by V_{j} to (4.2), respectively, we have

$$
\begin{align*}
-\vartheta(X) V_{j} & =\nabla_{V_{j}} X+F \nabla_{\xi_{j}} X \tag{4.3}\\
& -\sum_{i=1}^{r} h_{i}^{\ell}\left(X, \xi_{j}\right) U_{i}-\sum_{a=r+1}^{n} h_{a}^{s}\left(X, \xi_{j}\right) W_{a}, \\
\vartheta(X) \xi_{j} & =-\nabla_{\xi_{j}} X+F \nabla_{V_{j}} X+\alpha u_{j}(X) \zeta \tag{4.4}\\
& -\sum_{i=1}^{r} h_{i}^{\ell}\left(X, V_{j}\right) U_{i}-\sum_{a=r+1}^{n} h_{a}^{s}\left(X, V_{j}\right) W_{a} .
\end{align*}
$$

Taking the scalar product with U_{i} to (4.3) and N_{i} to (4.4) respectively, we get

$$
\begin{aligned}
-\delta_{i j} \vartheta(X) & =g\left(\nabla_{V_{j}} X, U_{i}\right)-\bar{g}\left(\nabla_{\xi_{j}} X, N_{i}\right) \\
\delta_{i j} \vartheta(X) & =g\left(\nabla_{V_{j}} X, U_{i}\right)-\bar{g}\left(\nabla_{\xi_{j}} X, N_{i}\right) .
\end{aligned}
$$

Comparing these two equations, we get $\vartheta=0$. Thus F is Lie parallel.
(2) Taking the scalar product with ζ to (4.4), we get $g\left(\nabla_{\xi_{j}} X, \zeta\right)=\alpha u_{j}(X)$. Taking $X=U_{i}$ to this result and using (3.15), we obtain $\alpha=0$.
(3) Taking the scalar product with N_{i} to (4.3) such that $X=W_{a}$ and using (3.4), (3.6) $)_{4}$, (3.8) and (3.17), we get $h_{a}^{s}\left(U_{i}, V_{j}\right)=\rho_{i a}\left(\xi_{j}\right)$. On the other hand, taking the scalar product with W_{a} to (4.4) such that $X=U_{i}$ and using (3.15), we have $h_{a}^{s}\left(U_{i}, V_{j}\right)=-\rho_{i a}\left(\xi_{j}\right)$. Thus $\rho_{i a}\left(\xi_{j}\right)=0$ and $h_{a}^{s}\left(U_{i}, V_{j}\right)=0$.

Taking the scalar product with U_{i} to (4.3) such that $X=W_{a}$ and using (3.4), $(3.6)_{2,4},(3.8)$ and (3.17), we get $\epsilon_{a} \rho_{i a}\left(V_{j}\right)=\lambda_{a j}\left(U_{i}\right)$. On the other hand, taking the scalar product with W_{a} to (4.3) such that $X=U_{i}$ and using (3.1) $)_{2}$ and (3.15), we get $\epsilon_{a} \rho_{i a}\left(V_{j}\right)=-\lambda_{a j}\left(U_{i}\right)$. Thus $\rho_{i a}\left(V_{j}\right)=\lambda_{a j}\left(U_{i}\right)=0$.

Taking the scalar product with V_{i} to (4.3) such that $X=W_{a}$ and using (3.4), $(3.6)_{2},(3.14)_{4}$ and (3.17), we obtain $\lambda_{a i}\left(V_{j}\right)=-\lambda_{a j}\left(V_{i}\right)$. On the other hand, taking the scalar product with W_{a} to (4.3) such that $X=V_{i}$ and using (3.6) $)_{2}$ and (3.16), we have $\lambda_{a i}\left(V_{j}\right)=\lambda_{a j}\left(V_{i}\right)$. Thus we obtain $\lambda_{a i}\left(V_{j}\right)=0$.

Taking the scalar product with W_{a} to (4.3) such that $X=\xi_{i}$ and using (2.8), (3.3), $(3.6)_{2}$ and (3.7), we get $h_{i}^{\ell}\left(V_{j}, W_{a}\right)=\lambda_{a i}\left(\xi_{j}\right)$. On the other hand, taking the scalar product with V_{i} to (4.4) such that $X=W_{a}$ and using (3.3) and (3.17), we get $h_{i}^{\ell}\left(V_{j}, W_{a}\right)=-\lambda_{a i}\left(\xi_{j}\right)$. Thus $\lambda_{a i}\left(\xi_{j}\right)=0$ and $h_{i}^{\ell}\left(V_{j}, W_{a}\right)=0$.

Summarizing the above results, we obtain

$$
\begin{align*}
& \rho_{i a}\left(\xi_{j}\right)=0, \quad \rho_{i a}\left(V_{j}\right)=0, \quad \lambda_{a i}\left(U_{j}\right)=0, \quad \lambda_{a i}\left(V_{j}\right)=0, \quad \lambda_{a i}\left(\xi_{j}\right)=0, \tag{4.5}\\
& h_{a}^{s}\left(U_{i}, V_{j}\right)=h_{j}^{\ell}\left(U_{i}, W_{a}\right)=0, \quad h_{i}^{\ell}\left(V_{j}, W_{a}\right)=h_{a}^{s}\left(V_{j}, V_{i}\right)=0 .
\end{align*}
$$

Taking the scalar product with N_{i} to (4.2) and using (3.1) $)_{4}$, we have

$$
\begin{align*}
& -\bar{g}\left(\nabla_{F Y} X, N_{i}\right)+g\left(\nabla_{Y} X, U_{i}\right)-\beta \theta(Y) v_{i}(X) \tag{4.6}\\
& +\sum_{k=1}^{r} u_{k}(Y) \bar{g}\left(A_{N_{k}} X, N_{i}\right)+\sum_{a=r+1}^{n} \epsilon_{a} w_{a}(Y) \rho_{i a}(X)=0 .
\end{align*}
$$

Replacing X by V_{j} to (4.6) and using (3.7), (3.16) and (4.5) 2 , we have

$$
\begin{equation*}
h_{j}^{\ell}\left(F X, U_{i}\right)+\tau_{i j}(X)+\beta \theta(X) \delta_{i j}=\sum_{k=1}^{r} u_{k}(X) \bar{g}\left(A_{N_{k}} V_{j}, N_{i}\right) \tag{4.7}
\end{equation*}
$$

Replacing X by ξ_{j} to (4.6) and using (2.8), (3.7) and (4.5) ${ }_{1}$, we have

$$
\begin{equation*}
h_{j}^{\ell}\left(X, U_{i}\right)=\sum_{k=1}^{r} u_{k}(X) \bar{g}\left(A_{N_{k}} \xi_{j}, N_{i}\right)+\tau_{i j}(F X) \tag{4.8}
\end{equation*}
$$

Taking $X=U_{k}$ to this equation and using $(3.14)_{1}$, we have

$$
\begin{equation*}
h_{i}^{*}\left(U_{k}, V_{j}\right)=\bar{g}\left(A_{N_{k}} \xi_{j}, N_{i}\right) \tag{4.9}
\end{equation*}
$$

Taking $X=U_{i}$ to (4.2) and using (2.13), (3.3), (3.4) and (3.15), we get

$$
\begin{align*}
& \sum_{k=1}^{r} u_{k}(Y) A_{N_{k}} U_{i}+\sum_{a=r+1}^{n} w_{a}(Y) A_{E_{a}} U_{i}-A_{N_{i}} Y \tag{4.10}\\
& -F\left(A_{N_{i}} F Y\right)-\sum_{j=1}^{r} \tau_{i j}(F Y) U_{j}-\sum_{a=r+1}^{n} \rho_{i a}(F Y) W_{a}=0
\end{align*}
$$

Taking the scalar product with V_{j} to (4.10) and using (3.8), (3.9), (3.14) $)_{1},(4.5)_{6}$ and (4.9), we get

$$
h_{j}^{\ell}\left(X, U_{i}\right)=-\sum_{k=1}^{r} u_{k}(X) \bar{g}\left(A_{N_{k}} \xi_{j}, N_{i}\right)-\tau_{i j}(F X)
$$

Comparing this equation with (4.8), we obtain

$$
\tau_{i j}(F X)+\sum_{k=1}^{r} u_{k}(X) \bar{g}\left(A_{N_{k}} \xi_{j}, N_{i}\right)=0
$$

Replacing X by U_{h} to this equation, we have $\bar{g}\left(A_{N_{k}} \xi_{j}, N_{i}\right)=0$. Therefore,

$$
\begin{equation*}
\tau_{i j}(F X)=0, \quad h_{j}^{\ell}\left(X, U_{i}\right)=0 \tag{4.11}
\end{equation*}
$$

Taking $X=F Y$ to $(4.11)_{2}$, we get $h_{j}^{\ell}\left(F X, U_{i}\right)=0$. Thus (4.7) is reduced to

$$
\tau_{i j}(X)=\sum_{k=1}^{r} u_{k}(X) \bar{g}\left(A_{N_{k}} V_{j}, N_{i}\right)-\beta \theta(X) \delta_{i j}
$$

Taking the scalar product with U_{j} to (4.10) such that $Y=W_{a}$ and using (3.4), (3.8), (3.9) and (3.14) ${ }_{2}$, we have

$$
\begin{equation*}
h_{i}^{*}\left(W_{a}, U_{j}\right)=\epsilon_{a} h_{a}^{s}\left(U_{i}, U_{j}\right)=\epsilon_{a} h_{a}^{s}\left(U_{j}, U_{i}\right)=h_{i}^{*}\left(U_{j}, W_{a}\right) \tag{4.12}
\end{equation*}
$$

Taking the scalar product with W_{a} to (4.10), we have

$$
\begin{aligned}
\epsilon_{a} \rho_{i a}(F Y) & =-h_{i}^{*}\left(Y, W_{a}\right) \\
& +\sum_{k=1}^{r} u_{k}(Y) h_{k}^{*}\left(U_{i}, W_{a}\right)+\sum_{b=r+1}^{n} \epsilon_{b} w_{b}(Y) h_{b}^{s}\left(U_{i}, W_{a}\right) .
\end{aligned}
$$

Taking the scalar product with U_{i} to (4.2) and then, taking $X=W_{a}$ and using $(3.4),(3.6)_{4},(3.8),(3.9),(3.14)_{2},(3.17)$ and (4.12), we obtain

$$
\begin{aligned}
\epsilon_{a} \rho_{i a}(F Y) & =h_{i}^{*}\left(Y, W_{a}\right) \\
& -\sum_{k=1}^{r} u_{k}(Y) h_{k}^{*}\left(U_{i}, W_{a}\right)-\sum_{b=r+1}^{n} \epsilon_{b} w_{b}(Y) h_{b}^{s}\left(U_{i}, W_{a}\right) .
\end{aligned}
$$

Comparing the last two equations, we obtain $\rho_{i a}(F Y)=0$.

5. Indefinite generalized Sasakian space forms

Definition 5.1. An indefinite trans-Sasakian manifold \bar{M} is said to be a indefinite generalized Sasakian space form and denote it by $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ if there exist three smooth functions f_{1}, f_{2} and f_{3} on \bar{M} such that

$$
\begin{align*}
\widetilde{R}(\bar{X}, \bar{Y}) \bar{Z} & =f_{1}\{\bar{g}(\bar{Y}, \bar{Z}) \bar{X}-\bar{g}(\bar{X}, \bar{Z}) \bar{Y}\} \tag{5.1}\\
& +f_{2}\{\bar{g}(\bar{X}, J \bar{Z}) J \bar{Y}-\bar{g}(\bar{Y}, J \bar{Z}) J \bar{X}+2 \bar{g}(\bar{X}, J \bar{Y}) J \bar{Z}\} \\
& +f_{3}\{\theta(\bar{X}) \theta(\bar{Z}) \bar{Y}-\theta(\bar{Y}) \theta(\bar{Z}) \bar{X} \\
& \quad+\bar{g}(\bar{X}, \bar{Z}) \theta(\bar{Y}) \zeta-\bar{g}(\bar{Y}, \bar{Z}) \theta(\bar{X}) \zeta\}
\end{align*}
$$

where \widetilde{R} is the curvature tensor of the Levi-Civita connection $\bar{\nabla}$.
The notion of generalized Sasakian space form was introduced by Alegre et.al. [3], while the indefinite generalized Sasakian space forms were introduced by Jin [8]. Sasakian space form, Kenmotsu space form and cosymplectic space form are important kinds of generalized Sasakian space forms such that

$$
f_{1}=\frac{c+3}{4}, f_{2}=f_{3}=\frac{c-1}{4} ; \quad f_{1}=\frac{c-3}{4}, f_{2}=f_{3}=\frac{c+1}{4} ; \quad f_{1}=f_{2}=f_{3}=\frac{c}{4}
$$

respectively, where c is a constant J-sectional curvature of each space forms.
Denote by \bar{R} the curvature tensors of the non-metric ϕ-symmetric connection $\bar{\nabla}$ on \bar{M}. By directed calculations from (1.2), (1.5) and (2.1), we see that

$$
\begin{align*}
\bar{R}(\bar{X}, \bar{Y}) \bar{Z}= & \widetilde{R}(\bar{X}, \bar{Y}) \bar{Z}+\left(\bar{\nabla}_{\bar{X}} \theta\right)(\bar{Z}) J \bar{Y}-\left(\bar{\nabla}_{\bar{Y}} \theta\right)(\bar{Z}) J \bar{X} \tag{5.2}\\
& -\theta(\bar{Z})\{\alpha[\theta(\bar{Y}) \bar{X}-\theta(\bar{X}) \bar{Y}]+\beta[\theta(\bar{Y}) J \bar{X}-\theta(\bar{X}) J \bar{Y}] \\
& \quad+2 \beta \bar{g}(X, J Y) \zeta\} .
\end{align*}
$$

Denote by R and R^{*} the curvature tensors of the induced linear connections ∇ and ∇^{*} on M and $S(T M)$ respectively. Using the Gauss-Weingarten formulae, we obtain Gauss-Codazzi equations for M and $S(T M)$ respectively:

$$
\begin{align*}
& \bar{R}(X, Y) Z= R(X, Y) Z \tag{5.3}\\
&+\sum_{i=1}^{r}\left\{h_{i}^{\ell}(X, Z) A_{N_{i}} Y-h_{i}^{\ell}(Y, Z) A_{N_{i}} X\right\} \\
&+\sum_{a=r+1}^{n}\left\{h_{a}^{s}(X, Z) A_{E_{a}} Y-h_{a}^{s}(Y, Z) A_{E_{a}} X\right\} \\
&+\sum_{i=1}^{r}\left\{\left(\nabla_{X} h_{i}^{\ell}\right)(Y, Z)-\left(\nabla_{Y} h_{i}^{\ell}\right)(X, Z)\right. \\
&+\sum_{j=1}^{r}\left[\tau_{j i}(X) h_{j}^{\ell}(Y, Z)-\tau_{j i}(Y) h_{j}^{\ell}(X, Z)\right] \\
&+\sum_{a=r+1}^{n}\left[\lambda_{a i}(X) h_{a}^{s}(Y, Z)-\lambda_{a i}(Y) h_{a}^{s}(X, Z)\right] \\
&\left.-\theta(X) h_{i}^{\ell}(F Y, Z)+\theta(Y) h_{i}^{\ell}(F X, Z)\right\} N_{i} \\
&+\sum_{a=r}^{n}\left\{\left(\nabla_{X} h_{a}^{s}\right)(Y, Z)-\left(\nabla_{Y} h_{a}^{s}\right)(X, Z)\right. \\
&+\sum_{i=1}^{r}\left[\rho_{i a}(X) h_{i}^{\ell}(Y, Z)-\rho_{i a}(Y) h_{i}^{\ell}(X, Z)\right] \\
&+\sum_{b=r+1}^{n}\left[\sigma_{b a}(X) h_{b}^{s}(Y, Z)-\sigma_{b a}(Y) h_{b}^{s}(X, Z)\right] \\
&\left.-\theta(X) h_{a}^{s}(F Y, Z)+\theta(Y) h_{a}^{s}(F X, Z)\right\} E_{a}
\end{align*}
$$

$$
\begin{align*}
R(X, Y) P Z= & R^{*}(X, Y) P Z \tag{5.4}\\
& +\sum_{i=1}^{r}\left\{h_{i}^{*}(X, P Z) A_{\xi_{i}}^{*} Y-h_{i}^{*}(Y, P Z) A_{\xi_{i}} X\right\}
\end{align*}
$$

$$
\begin{aligned}
& +\sum_{i=1}^{r}\left\{\left(\nabla_{X} h_{i}^{*}\right)(Y, P Z)-\left(\nabla_{Y} h_{i}^{*}\right)(X, P Z)\right. \\
& \quad+\sum_{k=1}^{r}\left[\tau_{i k}(Y) h_{k}^{*}(X, P Z)-\tau_{i k}(X) h_{k}^{*}(Y, P Z)\right] \\
& \left.\quad-\theta(X) h_{i}^{*}(F Y, P Z)+\theta(Y) h_{i}^{*}(F X, P Z)\right\} \xi_{i}
\end{aligned}
$$

Taking the scalar product with ξ_{i} and N_{i} to (5.2) by turns and then, substituting (5.3) and (5.1) and using (3.6) 4_{4} and (5.4), we get

$$
\begin{align*}
&\left(\nabla_{X} h_{i}^{\ell}\right)(Y, Z)-\left(\nabla_{Y} h_{i}^{\ell}\right)(X, Z) \tag{5.5}\\
&+\sum_{j=1}^{r}\left\{\tau_{j i}(X) h_{j}^{\ell}(Y, Z)-\tau_{j i}(Y) h_{j}^{\ell}(X, Z)\right\} \\
&+\sum_{a=r+1}^{n}\left\{\lambda_{a i}(X) h_{a}^{s}(Y, Z)-\lambda_{a i}(Y) h_{a}^{s}(X, Z)\right\} \\
&-\theta(X) h_{i}^{\ell}(F Y, Z)+\theta(Y) h_{i}^{\ell}(F X, Z) \\
&-\left(\bar{\nabla}_{X} \theta\right)(Z) u_{i}(Y)+\left(\bar{\nabla}_{Y} \theta\right)(Z) u_{i}(X) \\
&+\beta \theta(Z)\left\{\theta(Y) u_{i}(X)-\theta(X) u_{i}(Y)\right\} \\
&=f_{2}\left\{u_{i}(Y) \bar{g}(X, J Z)-u_{i}(X) \bar{g}(Y, J Z)+2 u_{i}(Z) \bar{g}(X, J Y)\right\} \\
&\left(\nabla_{X} h_{i}^{*}\right)(Y, P Z)-\left(\nabla_{Y} h_{i}^{*}\right)(X, P Z) \tag{5.6}\\
&- \sum_{j=1}^{r}\left\{\tau_{i j}(X) h_{j}^{*}(Y, P Z)-\tau_{i j}(Y) h_{j}^{*}(X, P Z)\right\} \\
&- \sum_{a=r+1}^{n} \epsilon_{a}\left\{\rho_{i a}(X) h_{a}^{s}(Y, P Z)-\rho_{i a}(Y) h_{a}^{s}(X, P Z)\right\} \\
&+ \sum_{j=1}^{r}\left\{h_{j}^{\ell}(X, P Z) \eta_{i}\left(A_{N_{j}} Y\right)-h_{j}^{\ell}(Y, P Z) \eta_{i}\left(A_{N_{j}} X\right)\right\} \\
&- \theta(X) h_{i}^{*}(F Y, P Z)+\theta(Y) h_{i}^{*}(F X, P Z) \\
&-\left(\bar{\nabla}_{X} \theta\right)(P Z) v_{i}(Y)+\left(\bar{\nabla}_{Y} \theta\right)(P Z) v_{i}(X) \\
&+ \alpha \theta(P Z)\left\{\theta(Y) \eta_{i}(X)-\theta(X) \eta_{i}(Y)\right\} \\
&+ \beta \theta(P Z)\left\{\theta(Y) v_{i}(X)-\theta(X) v_{i}(Y)\right\} \\
&= f_{1}\left\{g(Y, P Z) \eta_{i}(X)-g(X, P Z) \eta_{i}(Y)\right\} \\
&+ f_{2}\left\{v_{i}(Y) \bar{g}(X, J P Z)-v_{i}(X) \bar{g}(Y, J P Z)+2 v_{i}(P Z) \bar{g}(X, J Y)\right\} \\
&+f_{3}\left\{\theta(X) \eta_{i}(Y)-\theta(Y) \eta_{i}(X)\right\} \theta(P Z)
\end{align*}
$$

Theorem 5.2. Let M be a generic lightlike submanifold of an indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ with a non-metric ϕ-symmetric connection such that ζ is tangent to M. Then $\alpha, \beta, f_{1}, f_{2}$ and f_{3} satisfy
(1) α is a constant on M,
(2) $\alpha \beta=0$, and
(3) $f_{1}-f_{2}=\alpha^{2}-\beta^{2}$ and $f_{1}-f_{3}=\alpha^{2}-\beta^{2}-\zeta \beta$.

Proof. Applying $\bar{\nabla}_{X}$ to $\theta\left(U_{i}\right)=0$ and $\theta\left(V_{i}\right)=0$ by turns and using (2.4), (3.15), (3.16) and the facts that $F \zeta=0$ and ζ belongs to $S(T M)$, we get

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \theta\right)\left(U_{i}\right)=\alpha \eta_{i}(X)+\beta v_{i}(X), \quad\left(\bar{\nabla}_{X} \theta\right)\left(V_{i}\right)=\beta u_{i}(X) \tag{5.7}
\end{equation*}
$$

Applying ∇_{X} to (3.14) $)_{1}: h_{j}^{\ell}\left(Y, U_{i}\right)=h_{i}^{*}\left(Y, V_{j}\right)$ and using (2.1), (2.12), (3.7), (3.9), (3.11), (3.12), (3.14) $)_{1,2,4},(3.15)$ and (3.16), we obtain

$$
\begin{aligned}
\left(\nabla_{X} h_{j}^{\ell}\right)\left(Y, U_{i}\right) & =\left(\nabla_{X} h_{i}^{*}\right)\left(Y, V_{j}\right) \\
& -\sum_{k=1}^{r}\left\{\tau_{k j}(X) h_{k}^{\ell}\left(Y, U_{i}\right)+\tau_{i k}(X) h_{k}^{*}\left(Y, V_{j}\right)\right\} \\
& -\sum_{a=r+1}^{n}\left\{\lambda_{a j}(X) h_{a}^{s}\left(Y, U_{i}\right)+\epsilon_{a} \rho_{i a}(X) h_{a}^{s}\left(Y, V_{j}\right)\right\} \\
& +\sum_{k=1}^{r}\left\{h_{i}^{*}\left(Y, U_{k}\right) h_{k}^{\ell}\left(X, \xi_{j}\right)+h_{i}^{*}\left(X, U_{k}\right) h_{k}^{\ell}\left(Y, \xi_{j}\right)\right\} \\
& -g\left(A_{\xi_{j}}^{*} X, F\left(A_{N_{i}} Y\right)\right)-g\left(A_{\xi_{j}}^{*} Y, F\left(A_{N_{i}} X\right)\right) \\
& -\sum_{k=1}^{r} h_{j}^{\ell}\left(X, V_{k}\right) \eta_{k}\left(A_{N_{i}} Y\right) \\
& -\beta(\alpha-1)\left\{u_{j}(Y) v_{i}(X)-u_{j}(X) v_{i}(Y)\right\} \\
& -\alpha(\alpha-1) u_{j}(Y) \eta_{i}(X)-\beta^{2} u_{j}(X) \eta_{i}(Y)
\end{aligned}
$$

Substituting this equation into the modification equation, which is change i into j and Z into U_{i} from (5.5), and using (3.6) $)_{3}$ and (3.14) $)_{3}$, we have

$$
\begin{aligned}
& \left(\nabla_{X} h_{i}^{*}\right)\left(Y, V_{j}\right)-\left(\nabla_{Y} h_{i}^{*}\right)\left(X, V_{j}\right) \\
& -\sum_{k=1}^{r}\left\{\tau_{i k}(X) h_{k}^{*}\left(Y, V_{j}\right)-\tau_{i k}(Y) h_{k}^{*}\left(X, V_{j}\right)\right\} \\
& -\sum_{a=r+1}^{n} \epsilon_{a}\left\{\rho_{i a}(X) h_{a}^{s}\left(Y, V_{j}\right)-\rho_{i a}(Y) h_{a}^{s}\left(X, V_{j}\right)\right\} \\
& +\sum_{k=1}^{r}\left\{h_{k}^{\ell}\left(X, V_{j}\right) \eta_{i}\left(A_{N_{k}} Y\right)-h_{k}^{\ell}\left(Y, V_{j}\right) \eta_{i}\left(A_{N_{k}} X\right)\right\} \\
& -\theta(X) h_{i}^{*}\left(F Y, V_{j}\right)+\theta(Y) h_{i}^{*}\left(F X, V_{j}\right) \\
& -\beta(2 \alpha-1)\left\{u_{j}(Y) v_{i}(X)-u_{j}(X) v_{i}(Y)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& -\left(\alpha^{2}-\beta^{2}\right)\left\{u_{j}(Y) \eta_{i}(X)-u_{j}(X) \eta_{i}(Y)\right\} \\
& =f_{2}\left\{u_{j}(Y) \eta_{i}(X)-u_{j}(X) \eta_{i}(Y)+2 \delta_{i j} \bar{g}(X, J Y)\right\}
\end{aligned}
$$

Comparing this equation with (5.6) such that $P Z=V_{j}$, we obtain

$$
\begin{aligned}
& \left\{f_{1}-f_{2}-\alpha^{2}+\beta^{2}\right\}\left\{u_{j}(Y) \eta_{i}(X)-u_{j}(X) \eta_{i}(Y)\right\} \\
& =2 \alpha \beta\left\{u_{j}(Y) v_{i}(X)-u\left({ }_{j} X\right) v_{i}(Y)\right\}
\end{aligned}
$$

Taking $Y=U_{j}, X=\xi_{i}$ and $Y=U_{j}, X=V_{i}$ to this by turns, we have

$$
f_{1}-f_{2}=\alpha^{2}-\beta^{2}, \quad \alpha \beta=0
$$

Applying $\bar{\nabla}_{X}$ to $\theta(\zeta)=1$ and using (2.3) and the fact: $\theta \circ J=0$, we get

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \theta\right)(\zeta)=0 \tag{5.8}
\end{equation*}
$$

Applying $\bar{\nabla}_{X}$ to $\eta_{i}(Y)=\bar{g}\left(Y, N_{i}\right)$ and using (1.1) and (2.5), we have

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)=-g\left(A_{N_{i}} X, Y\right)+\sum_{j=1}^{r} \tau_{i j}(X) \eta_{j}(Y)-\theta(Y) v_{i}(X) \tag{5.9}
\end{equation*}
$$

Applying ∇_{X} to $h_{i}^{*}(Y, \zeta)=-(\alpha-1) v_{i}(Y)+\beta \eta_{i}(Y)$ and using (3.9), (3.10), (3.20), (5.9) and the fact that $\alpha \beta=0$, we get

$$
\begin{aligned}
& \left(\nabla_{X} h_{i}^{*}\right)(Y, \zeta)= \\
& +(\alpha-1)\left\{g\left(A_{N_{i}} X, F Y\right)+g\left(A_{N_{i}} Y, F X\right)\right. \\
& \quad-\sum_{j=1}^{r} v_{j}(Y) \tau_{i j}(X)-\sum_{a=r+1}^{n} \epsilon_{a} w_{a}(Y) \rho_{i a}(X) \\
& \left.\quad-\sum_{j=1}^{r} u_{j}(Y) \eta_{i}\left(A_{N_{j}} X\right)-(\alpha-1) \theta(Y) \eta_{i}(X)\right\} \\
& \quad-\beta\left\{g\left(A_{N_{i}} X, Y\right)+g\left(A_{N_{i}} Y, X\right)-\sum_{j=1}^{r} \tau_{i j}(X) \eta_{j}(Y)\right. \\
& \left.\quad-\beta \theta(X) \eta_{i}(Y)\right\} .
\end{aligned}
$$

Substituting this and (3.13) $)_{2}$ into (5.6) with $P Z=\zeta$ and using (5.8), we get

$$
\begin{aligned}
& \left\{X \beta+\left(f_{1}-f_{3}-\alpha^{2}+\beta^{2}\right) \theta(X)\right\} \eta_{i}(Y) \\
& -\left\{Y \beta+\left(f_{1}-f_{3}-\alpha^{2}+\beta^{2}\right) \theta(Y)\right\} \eta_{i}(X) \\
& =(X \alpha) v_{i}(Y)-(Y \alpha) v_{i}(X)
\end{aligned}
$$

Taking $X=\zeta, Y=\xi_{i}$ and $X=U_{j}, Y=V_{i}$ to this by turns, we have

$$
f_{1}-f_{3}=\alpha^{2}-\beta^{2}-\zeta \beta, \quad U_{j} \alpha=0
$$

Applying ∇_{Y} to $(3.11)_{2}$ and using (3.10) and (3.19), we get

$$
\begin{aligned}
\left(\nabla_{X} h_{i}^{\ell}\right)(Y, \zeta) & =-(X \alpha) u_{i}(Y) \\
& +(\alpha-1)\left\{\sum_{j=1}^{r} u_{j}(Y) \tau_{i j}(X)+\sum_{a=r+1}^{n} \epsilon_{a} w_{a}(Y) \lambda_{a i}(X)\right. \\
& \left.\quad+h_{i}^{\ell}(X, F Y)+h_{i}^{\ell}(Y, F X)\right\} \\
& -\beta\left\{h_{i}^{\ell}(Y, X)+\theta(Y) u_{i}(X)-\theta(X) u_{i}(Y)\right\}
\end{aligned}
$$

Substituting this into (5.5) such that $Z=\zeta$ and using (3.3) and (5.8), we have

$$
(X \alpha) u_{i}(Y)=(Y \alpha) u_{i}(X)
$$

Taking $Y=U_{i}$ to this result and using the fact that $U_{i} \alpha=0$, we have $X \alpha=0$. Therefore α is a constant. This completes the proof of the theorem.

Theorem 5.3. Let M be a generic lightlike submanifold of an indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ with a non-metric ϕ-symmetric connection such that ζ is tangent to M. If F is Lie recurrent, then

$$
\alpha=0, \quad f_{1}=-\beta^{2}, \quad f_{2}=0, \quad f_{3}=-\zeta \beta
$$

Proof. By Theorem 4.2, we shown that $\alpha=0$ and we have (4.11) $)_{2}$. Applying ∇_{X} to $(4.11)_{2}: h_{i}^{\ell}\left(Y, U_{j}\right)=0$ and using $(3.11)_{2},(3.15)$ and $(4.11)_{2}$, we have

$$
\begin{gathered}
\left(\nabla_{X} h_{i}^{\ell}\right)\left(Y, U_{j}\right)=-h_{i}^{\ell}\left(Y, F\left(A_{N_{j}} X\right)\right)-\sum_{a=r+1}^{n} \rho_{j a}(X) h_{i}^{\ell}\left(Y, W_{a}\right) \\
+\beta u_{i}(Y) v_{j}(X)
\end{gathered}
$$

Substituting this into (5.5) with $Z=U_{j}$ and using (5.7) ${ }_{1}$, we obtain

$$
\begin{aligned}
& h_{i}^{\ell}\left(X, F\left(A_{N_{j}} Y\right)\right)-h_{i}^{\ell}\left(Y, F\left(A_{N_{j}} X\right)\right) \\
& +\sum_{a=r+1}^{n}\left\{\rho_{j a}(Y) h_{i}^{\ell}\left(X, W_{a}\right)-\rho_{j a}(X) h_{i}^{\ell}\left(Y, W_{a}\right)\right\} \\
& +\sum_{a=r+1}^{n}\left\{\lambda_{a i}(X) h_{a}^{s}\left(Y, U_{j}\right)-\lambda_{a i}(Y) h_{a}^{s}\left(X, U_{j}\right)\right\} \\
& =f_{2}\left\{u_{i}(Y) \eta_{j}(X)-u_{i}(X) \eta_{j}(Y)+2 \delta_{i j} \bar{g}(X, J Y)\right\}
\end{aligned}
$$

Taking $Y=U_{i}$ and $X=\xi_{j}$ to this and using (3.3) and (4.5) ${ }_{1,3,5}$, we have

$$
\begin{equation*}
3 f_{2}=h_{i}^{\ell}\left(\xi_{j}, F\left(A_{N_{j}} U_{i}\right)\right)+\sum_{a=r+1}^{n} \rho_{j a}\left(U_{i}\right) h_{i}^{\ell}\left(\xi_{j}, W_{a}\right) \tag{5.10}
\end{equation*}
$$

In general, replacing X by ξ_{j} to (3.7) and using (3.3) and (3.6) $)_{7}$, we get $h_{i}^{\ell}\left(X, \xi_{j}\right)=g\left(A_{\xi_{i}}^{*} \xi_{j}, X\right)$. From this and (3.6) $)_{1}$, we obtain $A_{\xi_{i}}^{*} \xi_{j}=-A_{\xi_{j}}^{*} \xi_{i}$. Thus
$A_{\xi_{i}}^{*} \xi_{j}$ are skew-symmetric with respect to i and j. On the other hand, in case M is Lie recurrent, taking $Y=U_{j}$ to (4.10), we have $A_{N_{i}} U_{j}=A_{N_{j}} U_{i}$. Thus $A_{N_{i}} U_{j}$ are symmetric with respect to i and j. Therefore, we get

$$
h_{i}^{\ell}\left(\xi_{j}, F\left(A_{N_{j}} U_{i}\right)\right)=g\left(A_{\xi_{i}}^{*} \xi_{j}, F\left(A_{N_{j}} U_{i}\right)\right)=0
$$

Also, by using (3.4), $(3.6)_{2},(3.14)_{4}$ and $(4.5)_{4}$, we have

$$
h_{i}^{\ell}\left(\xi_{j}, W_{a}\right)=\epsilon_{a} h_{a}^{s}\left(\xi_{j}, V_{i}\right)=\epsilon_{a} h_{a}^{s}\left(V_{i}, \xi_{j}\right)=-\lambda_{j a}\left(V_{i}\right)=0 .
$$

Thus we get $f_{2}=0$ by (5.10). Therefore, $f_{1}=-\beta^{2}$ and $f_{3}=-\zeta \beta$.
Theorem 5.4. Let M be a generic lightlike submanifold of an indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ with a non-metric ϕ-symmetric connection such that ζ is tangent to M. If $U_{i} s$ or $V_{i} s$ are parallel with respect to ∇, then $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is a flat manifold with an indefinite cosymplectic structure;

$$
\alpha=\beta=0, \quad f_{1}=f_{2}=f_{3}=0
$$

Proof. (1) If U_{i} s are parallel with respect to ∇, then we have (3.22). As $\alpha=0$, we get $f_{1}=f_{2}=f_{3}$ by Theorem 5.2. Applying ∇_{Y} to $(3.22)_{5}$, we obtain

$$
\left(\nabla_{X} h_{i}^{*}\right)\left(Y, U_{j}\right)=0 .
$$

Substituting this equation and (3.22) into (5.6) with $P Z=U_{j}$, we have

$$
f_{1}\left\{v_{j}(Y) \eta_{i}(X)-v_{j}(X) \eta_{i}(Y)\right\}+f_{2}\left\{v_{i}(Y) \eta_{j}(X)-v_{i}(X) \eta_{j}(Y)\right\}=0
$$

Taking $X=\xi_{i}$ and $Y=V_{j}$ to this equation, we get $f_{1}+f_{2}=0$. Thus we see that $f_{1}=f_{2}=f_{3}=0$ and \bar{M} is flat.
(2) If V_{i} s are parallel with respect to ∇, then we have (3.23) and $\alpha=0$. As $\alpha=0$, we get $f_{1}=f_{2}=f_{3}$ by Theorem 5.2. From (3.14) $)_{1}$ and (3.23) $)_{5}$, we have

$$
h_{i}^{*}\left(Y, V_{j}\right)=0
$$

Applying ∇_{X} to this equation and using the fact that $\nabla_{X} V_{j}=0$, we have

$$
\left(\nabla_{X} h_{i}^{*}\right)\left(Y, V_{j}\right)=0
$$

Substituting these two equations into (5.6) such that $P Z=V_{j}$, we obtain

$$
\begin{aligned}
& \sum_{a=r+1}^{n} \epsilon_{a}\left\{\rho_{i a}(Y) h_{a}^{s}\left(X, V_{j}\right)-\rho_{i a}(X) h_{a}^{s}\left(Y, V_{j}\right)\right\} \\
+ & \sum_{k=1}^{r}\left\{h_{k}^{\ell}\left(X, V_{j}\right) \eta_{i}\left(A_{N_{k}} Y\right)-h_{k}^{\ell}\left(Y, V_{j}\right) \eta_{i}\left(A_{N_{k}} X\right)\right\} \\
= & f_{1}\left\{u_{j}(Y) \eta_{i}(X)-u_{j}(X) \eta_{i}(Y)\right\}+2 f_{2} \delta_{i j} \bar{g}(X, J Y)
\end{aligned}
$$

Taking $X=\xi_{i}$ and $Y=U_{j}$ to this equation and using (3.3), (3.23) $)_{3,4,5}$ and the fact that $h_{a}^{s}\left(U_{j}, V_{j}\right)=\epsilon_{a} h_{i}^{\ell}\left(U_{j}, W_{a}\right)=0$ due to (3.3), (3.14) ${ }_{4}$ and (3.23) $)_{5}$, we obtain $f_{1}+2 f_{2}=0$. It follows that $f_{1}=f_{2}=f_{3}=0$ and \bar{M} is flat.

Definition 5.5. An r-lightlike submanifold M is called totally umbilical [6] if there exist smooth functions \mathcal{A}_{i} and \mathcal{B}_{a} on a neighborhood \mathcal{U} such that

$$
\begin{equation*}
h_{i}^{\ell}(X, Y)=\mathcal{A}_{i} g(X, Y), \quad h_{a}^{s}(X, Y)=\mathcal{B}_{a} g(X, Y) \tag{5.11}
\end{equation*}
$$

In case $\mathcal{A}_{i}=\mathcal{B}_{a}=0$, we say that M is totally geodesic.
Theorem 5.6. Let M be a generic lightlike submanifold of an indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ with a non-metric ϕ-symmetric connection such that ζ is tangent to M. If M is totally umbilical, then $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is an indefinite Sasakian space form such that

$$
\alpha=1, \quad \beta=0 ; \quad f_{1}=\frac{2}{3}, \quad f_{2}=f_{3}=-\frac{1}{3} .
$$

Proof. Taking $Y=\zeta$ to (5.11) ${ }_{1,2}$ by turns and using (3.12) $)_{1,2}$, we have

$$
\mathcal{A}_{i} \theta(X)=-(\alpha-1) u_{i}(X), \quad \mathcal{B}_{a} \theta(X)=-(\alpha-1) w_{a}(X)
$$

respectively. Taking $X=\zeta$ and $X=U_{i}$ to the first equation by turns, we have $\mathcal{A}_{i}=0$ and $\alpha=1$ respectively. Taking $X=\zeta$ to the second equation, we have $\mathcal{B}_{a}=0$. As $\mathcal{A}_{i}=\mathcal{B}_{a}=0, M$ is totally geodesic. As $\alpha=1$ and $\beta=0, \bar{M}$ is an indefinite Sasakian manifold and $f_{1}-1=f_{2}=f_{3}$ by Theorem 5.2.

Taking $Z=U_{j}$ to (5.5) and using (5.7) $)_{1}$ and $h_{i}^{\ell}=h_{a}^{s}=0$, we get

$$
\left(f_{2}+1\right)\left\{u_{i}(Y) \eta_{j}(X)-u_{i}(X) \eta_{j}(Y)\right\}+2 \delta_{i j} f_{2} \bar{g}(X, J Y)=0
$$

Taking $X=\xi_{j}$ and $Y=U_{i}$, we have $f_{2}=-\frac{1}{3}$. Thus $f_{1}=\frac{2}{3}$ and $f_{3}=-\frac{1}{3}$.
Definition 5.7. (1) A screen distribution $S(T M)$ is said to be totally umbilical [6] in M if there exist smooth functions γ_{i} on a neighborhood \mathcal{U} such that

$$
h_{i}^{*}(X, P Y)=\gamma_{i} g(X, P Y)
$$

In case $\gamma_{i}=0$, we say that $S(T M)$ is totally geodesic in M.
(2) An r-lightlike submanifold M is said to be screen conformal [8] if there exist non-vanishing smooth functions φ_{i} on \mathcal{U} such that

$$
\begin{equation*}
h_{i}^{*}(X, P Y)=\varphi_{i} h_{i}^{\ell}(X, P Y) \tag{5.12}
\end{equation*}
$$

Theorem 5.8. Let M be a generic lightlike submanifold of an indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ with a non-metric ϕ-symmetric connection such that ζ is tangent to M. If $S(T M)$ is totally umbilical or M is screen conformal, then $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is an indefinite Sasakian space form ;

$$
\alpha=1, \quad \beta=0 ; \quad f_{1}=0, \quad f_{2}=f_{3}=-1
$$

Proof. (1) If $S(T M)$ is totally umbilical, then $(3.13)_{2}$ is reduced to

$$
\gamma_{i} \theta(X)=-(\alpha-1) v_{i}(X)+\beta \eta_{i}(X)
$$

Replacing X by V_{i}, ξ_{i} and ζ respectively, we have $\alpha=1, \beta=0$ and $\gamma_{i}=0$. As $\gamma_{i}=0, S(T M)$ is totally geodesic, and $h_{a}^{s}\left(X, U_{k}\right)=0$ and $h_{j}^{\ell}\left(X, U_{k}\right)=0$. As $\alpha=1$ and $\beta=0, \bar{M}$ is an indefinite Sasakian manifold and $f_{1}-1=f_{2}=f_{3}$ by Theorem 5.1. Taking $P Z=U_{k}$ to (5.6) with $h_{i}^{*}=0$, we get

$$
f_{1}\left[\left\{v_{k}(Y) \eta_{i}(X)-v_{k}(X) \eta_{i}(Y)\right\}+\left\{v_{i}(Y) \eta_{k}(X)-v_{i}(X) \eta_{k}(Y)\right\}\right]=0
$$

Taking $X=\xi_{i}$ and $Y=V_{k}$, we have $f_{1}=0$. Thus $f_{2}=f_{3}=-1$.
(2) If M is screen conformal, then, from $(3.12)_{2},(3.13)_{2}$ and (5.12), we have

$$
(\alpha-1)\left\{v_{i}(X)-\beta \eta_{i}(X)=\varphi_{i}(\alpha-1) u_{i}(X)\right\}
$$

Taking $X=V_{i}$ and $X=\xi_{i}$ to this equation by turns, we have $\alpha=1$ and beta $=0$. As $\alpha=1$ and $\beta=0, \bar{M}$ is an indefinite Sasakian manifold and $f_{1}-1=f_{2}=f_{3}$ by Theorem 5.1.

Denote by μ_{i} the r-th vector fields on $S(T M)$ such that $\mu_{i}=U_{i}-\varphi_{i} V_{i}$. Then $J \mu_{i}=N_{i}-\varphi_{i} \xi_{i}$. Using (3.14) ${ }_{1,2,3,4}$ and (5.12), we get

$$
\begin{equation*}
h_{j}^{\ell}\left(X, \mu_{i}\right)=0, \quad h_{a}^{s}\left(X, \mu_{i}\right)=0 \tag{5.13}
\end{equation*}
$$

Applying ∇_{Y} to (5.12), we have

$$
\left(\nabla_{X} h_{i}^{*}\right)(Y, P Z)=\left(X \varphi_{i}\right) h_{i}^{\ell}(Y, P Z)+\varphi_{i}\left(\nabla_{X} h_{i}^{\ell}\right)(Y, P Z)
$$

Substituting this equation and (5.12) into (5.6) and using (5.5), we have

$$
\begin{aligned}
& \sum_{j=1}^{r}\left\{\left(X \varphi_{i}\right) \delta_{i j}-\varphi_{i} \tau_{j i}(X)-\varphi_{j} \tau_{i j}(X)-\eta_{i}\left(A_{N_{j}} X\right)\right\} h_{j}^{\ell}(Y, P Z) \\
& -\sum_{j=1}^{r}\left\{\left(Y \varphi_{i}\right) \delta_{i j}-\varphi_{i} \tau_{j i}(Y)-\varphi_{j} \tau_{i j}(Y)-\eta_{i}\left(A_{N_{j}} Y\right)\right\} h_{j}^{\ell}(X, P Z) \\
& -\sum_{a=r+1}^{n}\left\{\epsilon_{a} \rho_{i a}(X)+\varphi_{i} \lambda_{a i}(X)\right\} h_{a}^{s}(Y, P Z) \\
& +\sum_{a=r+1}^{n}\left\{\epsilon_{a} \rho_{i a}(Y)+\varphi_{i} \lambda_{a i}(Y)\right\} h_{a}^{s}(X, P Z) \\
& -\left(\bar{\nabla}_{X} \theta\right)(P Z)\left\{v_{i}(Y)-\varphi u_{i}(Y)\right\}+\left(\bar{\nabla}_{Y} \theta\right)(P Z)\left\{v_{i}(X)-\varphi u_{i}(X)\right\} \\
& -\alpha\left\{\theta(X) \eta_{i}(Y)-\theta(Y) \eta_{i}(X)\right\} \theta(P Z) \\
& =f_{1}\left\{g(Y, P Z) \eta_{i}(X)-g(X, P Z) \eta_{i}(Y)\right\} \\
& +f_{2}\left\{\left[v_{i}(Y)-\varphi_{i} u_{i}(Y)\right] \bar{g}(X, J P Z)-\left[v_{i}(X)-\varphi_{i} u_{i}(X)\right] \bar{g}(Y, J P Z)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\quad+2\left[v_{i}(P Z)-\varphi_{i} u_{i}(P Z)\right] \bar{g}(X, J Y)\right\} \\
& +f_{3}\left\{\theta(X) \eta_{i}(Y)-\theta(Y) \eta_{i}(X)\right\} \theta(P Z) .
\end{aligned}
$$

Replacing $P Z$ by μ_{j} to this and using (5.7) and (5.13), we obtain

$$
\begin{aligned}
& f_{1}\left\{\left[v_{j}(Y) \eta_{i}(X)-v_{j}(X) \eta_{i}(Y)\right]-\varphi_{j}\left[u_{j}(Y) \eta_{i}(X)-u_{j}(X) \eta_{i}(Y)\right]\right\} \\
& +f_{1}\left\{\left[v_{i}(Y) \eta_{j}(X)-v_{i}(X) \eta_{j}(Y)\right]-\varphi_{i}\left[u_{i}(Y) \eta_{j}(X)-u_{i}(X) \eta_{j}(Y)\right]\right\} \\
& -2 f_{2}\left(\varphi_{j}+\varphi_{i}\right) \delta_{i j} \bar{g}(X, J Y)=0
\end{aligned}
$$

Taking $X=\xi_{i}$ and $Y=V_{j}$, we get $f_{1}=0$. Thus $f_{2}=f_{3}=-1$.

Acknowledgements. We would like to express our gratitude to the referees for valuable comments and suggestions.

References

[1] Ageshe,N. S., Chafle, M. R., A semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math., Vol. 23 (1992), No. 6, 399-409.
[2] Ahmad, M., Haseeb, A., Hypersurfaces of an almost r-paracontact Riemannian manifold endowed with a quarter-symmetric non-metric connection, Kyungpook Math. J., Vol 49 (2009), 533-543.
[3] Alegre, P, Blair, D. E., Carriazo, A., Generalized Sasakian space form, Israel J. Math., Vol 141 (2004), 157-183.
[4] Barman, A., On a type of quarter-symmetric non-metric ϕ-connection on a Kenmotsu manifold, Bull. Math. Analy. and Appl., Vol 4 (2012), No.3, 1-11.
[5] Călin, C., Contributions to geometry of CR-submanifold, Thesis, University of Iasi (Romania) (1998).
[6] Duggal, K. L., Jin, D. H., Generic lightlike submanifolds of an indefinite Sasakian manifold, Int. Elec. J. Geo., Vol 5 (2012), No.1, 108-119.
[7] Golab, S. On semi-symmetric and quarter-symmetric connections, Tensor, N.S., Vol 29 (1975), 249-254.
[8] Jin, D. H., Half lightlike submanifolds of an indefinite trans-Sasakian manifold, Bull. Korean Math. Soc., Vol 51 (2014), No.4, 979-994.
[9] JIn, D. H., Indefinite generalized Sasakian space form admitting a generic lightlike submanifold, Bull. Korean Math. Soc., Vol 51 (2014), No.6, 1711-1726.
[10] Jin, D. H., Generic lightlike submanifolds of an indefinite trans-Sasakian manifold of a quasi-constant curvature, Appl. Math. Sci., Vol 9 (2015), No.60, 2985-2997.
[11] Jin, D. H., Special lightlike hypersurfaces of indefinite Kaehler manifolds, Filomat, Vol 30 (2016), No.7, 1919-1930.
[12] Jin, D. H., Lightlike hypersurfaces of an indefinite trans-Sasakian manifold with a non-metric ϕ-symmetric connection, Bull. Korean Math. Soc., Vol 53 (2016), No.6, 1771-1783.
[13] Jin, D. H., Lightlike hypersurfaces of an indefinite Kaehler manifold with a nonmetric ϕ-symmetric connection, Bull. Korean Math. Soc., Vol 54 (2017), No.2, 619632.
[14] Jin, D. H., Lee, J. W., Generic lightlike submanifolds of an indefinite cosymplectic manifold, Math. Probl. in Engin., Vol 2011, Art ID 610986, 1-16.
[15] Jin, D. H., Lee, J. W., A semi-Riemannian manifold of quasi-constant curvature admits lightlike submanifolds, Inter. J. of Math. Analysis, Vol 9 (2015), No.25, 12151229.
[16] Jin, D. H., Lee, J. W., Generic lightlike submanifolds of an indefinite Kaehler manifold, Inter. J. Pure and Appl. Math., Vol 101 (2015), No.4, 543-560.
[17] Kupeli, D. N., Singular Semi-Riemannian Geometry, Kluwer Academic, Vol 366 (1996).
[18] Oubina, J. A., New classes of almost contact metric structures, Publ. Math. Debrecen, Vol 32 (1985), 187-193.
[19] Shaikh, A. A., Sanjib Kumar Jana, On quarter symmetric metric connections on a (k, m)-contact metric manifolds, Commun. Fac. Sci. Univ. Ank. Series A1, Vol 55 (2006), No.1, 33-45.
[20] Yadav, S., Suthar, D. L., A quart symmetric non-metric connection in a generalized co-symmpletic manifolds, Glob. J. Sci. Fron. Res., Vol 11 (2011), No.9, 1-7.

[^0]: *Corresponding author

