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Abstract

The problem of avoiding a single pattern or a pair of patterns of length four
by permutations has been well studied. Less is known about the avoidance of
three 4-letter patterns. In this paper, we show that the number of members of
Sn avoiding any one of twelve triples of 4-letter patterns is given by sequence
A129775 in OEIS, which is known to count maximally clustered permutations.
Numerical evidence confirms that there are no other (non-trivial) triples of 4-
letter patterns giving rise to this sequence and hence one obtains the largest
(4, 4, 4)-Wilf-equivalence class for permutations. We make use of a variety
of methods in proving our result, including recurrences, the kernel method,
direct counting, and bijections.
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1. Introduction

1.1. Background

The pattern avoidance question is an extensively studied problem in enumerative
and algebraic combinatorics. It has its origins with Knuth [5] and Simion and
Schmidt [8] who considered the problem on permutations and enumerated the
number of members of Sn avoiding a particular element or subset, respectively, of
S3. Since then the problem has been addressed on several other discrete structures,
such as compositions, k-ary words, and set partitions; see, e.g., the texts [3, 7]
and references contained therein. Here, we provide further enumerative results
concerning the classical avoidance problem on permutations.

Members of Sn avoiding a single 4-letter pattern have been well studied (see,
e.g., [9, 10, 11]). There are 56 symmetry classes of pairs of 4-letter patterns, for all
but 8 of which the avoiders have been enumerated [2]. Less is known about the 317
symmetry classes of triples of 4-letter patterns. In this paper, we show that pre-
cisely 12 of them have the counting sequence of maximally clustered permutations
(sequence A129775 in OEIS), which has generating function

2(1− 4x)

2− 9x+ 4x2 − x
√
1− 4x

= 1 +
x

2− x− C(x)
,

where C(x) = 1−√
1−4x
2x is the generating function for the Catalan numbers. Based

on numerical evidence, this corresponds to the largest (4, 4, 4)-Wilf-equivalence
class for permutations.

A computer check of initial terms eliminates all but 12 candidate classes for
this counting sequence. We next recall basic terminology, review some standard
results, list a representative triple πi, i = 1, 2, . . . , 12, for each class, and state the
main result. Then, in Section 2, we treat each πi in turn. Our methods include
recurrences, the kernel method for solving them, direct counting, and bijections.

1.2. Notation, terminology and main result

Let π = π1π2 · · ·πn ∈ Sn and τ ∈ Sk be two permutations. We say that π contains
τ if there exists a subsequence 1 ≤ i1 < i2 < · · · < ik ≤ n such that πi1πi2 · · ·πik

is order-isomorphic to τ ; in this context τ is usually called a pattern. We say that
π avoids τ , or is τ-avoiding, if such a subsequence fails to exist. The set of all
τ -avoiding permutations in Sn is denoted Sn(τ). For an arbitrary finite collection
of patterns T , we say that π avoids T if π avoids every τ ∈ T ; the corresponding
subset of Sn is denoted Sn(T ). Two sets of patterns T and T ′ are said to be
Wilf-equivalent if |Sn(T )| = |Sn(T

′)| for all n ≥ 0.
The maximally clustered permutations are those that avoid 3421, 4312 and 4321,

and this triple is in the same symmetry class as π3 in Theorem 1.1 below. (See
[1], where a different proof is given in this particular case.) Here, symmetry refers
to the action of the dihedral group of order 8 generated by the operations reverse,
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complement, and inverse on permutation patterns. Two pattern sets so related
obviously have equinumerous avoiders, in short, are trivially Wilf-equivalent.

For a permutation p on a set of positive integers, the standardization of p, de-
noted St(p), is obtained by replacing the smallest entry of p by 1, the next smallest
by 2, and so on. Thus π avoids τ iff no subsequence of π has standardization
equal to τ . It is well known [8] that, for each 3-letter pattern τ, |Sn(τ)| is the
Catalan number Cn = 1

n+1

(
2n
n

)
. Throughout, we use C(x) = 1−√

1−4x
2x to denote

the generating function
∑

n≥0 Cnx
n.

Theorem 1.1 (Main Theorem). Define

π1 = {1324, 2134, 2143}, π2 = {1243, 1324, 2134}, π3 = {1234, 1243, 2134},
π4 = {2314, 2341, 2413}, π5 = {2314, 2413, 2431}, π6 = {1423, 3142, 4132},
π7 = {1324, 1342, 3142}, π8 = {1324, 1342, 3124}, π9 = {1324, 1342, 2314},
π10 = {1324, 1432, 2431}, π11 = {1423, 1432, 4132}, π12 = {1342, 1423, 4123}.

Then, for all j = 1, 2, . . . , 12,
∑

n≥0

#Sn(πj)x
n =

2(1− 4x)

2− 9x+ 4x2 − x
√
1− 4x

.

2. Proof of main theorem

2.1. Class 1
π1 = {1324, 2134, 2143}, with graphical representation

b

b
b

b

b
b

b
b

b
b

b
b

Let An = Sn(π1). Define an = #An and an(i1, . . . , is) to be the number of
permutations σ1σ2 · · ·σn ∈ An such that σ1σ2 · · ·σs = i1i2 · · · is. Then we have
the following recurrence.

Lemma 2.1. For all 1 ≤ i ≤ n− 2,

an(i) = 2an−1(i) + an−2(i)δi≤n−3 +

n−2∑

j=i+2

Cn−jaj−1(i),

with an(n− 1) = an(n) = an−1.

Proof. By the definitions, an(n) = an(n− 1) = an−1. If 1 ≤ i ≤ n− 2, then

an(i) = an(i, i+ 1) + an(i, n) + an(i, n− 1)δi≤n−3 +

n−2∑

j=i+2

an(i, j)
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= 2an−1(i) + an(i, n− 1, n)δi≤n−3 +

n−2∑

j=i+2

an(i, j)

= 2an−1(i) + an−2(i)δi≤n−3 +

n−2∑

j=i+2

an(i, j).

Note that any permutation π = ijπ′ ∈ An with i+2 ≤ j ≤ n−2 can be decomposed
as π = ijαβ, where each letter of α is greater than each letter of β and α avoids
213 and iβ ∈ Aj−1. Thus, by the fact that the number of permutations of length
d that avoid 213 is given by the d-th Catalan number (see [5]), we obtain that
an(i, j) = Cn−jaj−1(i), which completes the proof.

Define An(v) to be the polynomial
∑n

i=1 an(i)v
i−1. Then Lemma 2.1 can be

translated in terms of An(v) as

An(v)−An−1(1)(v
n−2 + vn−1)

= 2An−1(v) +An−2(v)− 2An−2(1)v
n−2 −An−3(1)v

n−3

+

n−2∑

j=3

Cn−j(Aj−1(v)− Aj−2(1)v
j−2).

Note that A0(v) = A1(v) = 1 and A2(v) = 1+ v. Define A(x, v) =
∑

n≥0 An(v)x
n.

Multiplying the last recurrence by xn, and summing over n ≥ 3, yields

A(x, v) − x

v
(A(xv, 1) − 1)− xA(xv, 1) − 1

= x(2 + x)(A(x, v) − 1)− x2(2 + x)A(xv, 1)

+ x(C(x) − 1− x)(A(x, v) − 1− x)− x2(C(x) − 1− x)(A(xv, 1) − 1),

which, upon setting v = 1, gives the following result.

Theorem 2.2. The generating function for the number of permutations of length
n that avoid π1 is given by

2(1− 4x)

2− 9x+ 4x2 − x
√
1− 4x

.

2.2. Class 2
We use the representative triple π2 := {X,Y, Z}, as illustrated,

X = 3421 Y = 4231 Z = 4312 ,

b
b

b
b

b

b
b

b

b
b

b
b
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compared with

3421 4321 4312 ,

b
b

b
b

b
b

b
b

b
b

b
b

the pattern set π3 considered in Class 3 below. Note that they differ only in the
middle of the middle pattern. Clearly, a permutations avoids π2 if and only if each
of its components does so and the same is true of π3. So the following result shows
that |Sn(π2)| = |Sn(π3)|.

Theorem 2.3. The map “locate the maximal runs of consecutive fixed points and
reverse each run” is a bijection from the indecomposable permutations in Sn(π3) to
the indecomposable permutations in Sn(π2).

Proof. As an example,
(

1 2 3 4 5 6 7 8 9 10 11
3 11 1 4 5 6 2 8 9 7 10

)

7→
(

1 2 3 4 5 6 7 8 9 10 11
3 11 1 6 5 4 2 9 8 7 10

)
.

From the characterization of indecomposable π3-avoiders in Class 3 below, it is
clear that the map is one-to-one and into; the only issue is whether it is onto. To
show that it is, we investigate the structure of π2-avoiders.

Lemma 2.4. Suppose c > b1 > b2 > · · · > br > a, r ≥ 1, is a maximal decreasing
subsequence of length ≥ 3 in a π2-avoider p. Then, in the matrix diagram of p,
the entries b1, b2, . . . , br form the reverse (NW to SE) diagonal of a square bisected
by the main diagonal and c is the only entry lying NW of this square and a is the
only entry lying SE of it.

Proof. Consider the rectangles in the matrix determined by the subsequence as
shown in Figure 1 for r ≥ 2 (collapsing some regions covers the case r = 1).
The gray rectangles are all empty for the indicated reason where M refers to the
maximal condition in the hypothesis, and X,Z refer to offending patterns. The
entries in the rectangle B are decreasing (else a Y offender is present). Furthermore,
since the rest of the row and column containing B is empty, the entries in b1B br
must be consecutive and B must be a square of side length r− 2. Also, the entries
in rectangle A consist of [br−1] \ {a}. This means that A is a square of side length
br − 1, and so B is bisected by the main diagonal. Thus, all parts of the lemma
have been established.

It follows from Lemma 2.4 that the mapping is onto and, hence, a bijection.
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Figure 1: A decomposition

2.3. Class 3
We use the representative triple π3 := {3421, 4321, 4312}.

Losonczy [6] introduced the notion of maximally clustered elements in a Coxeter
group and showed that for Type A (symmetric) groups, they are characterized
precisely by avoiding the 3 patterns in π3. Soon after, Denoncourt and Jones
[1] considered heaps in Coxeter groups and found an expression for the generating
function for permutations that avoid both π3 and a heap H as a rational function of
the generating function for permutations that avoid 321 and H . The enumeration
of π3-avoiders follows by setting H = ∅.

For our bijective enumeration, we note that a permutation p avoids π3 if and
only if each of its components does so. So it suffices to determine un, the number of
indecomposable π3-avoiders of length n, for then the Invert transform of (un)n≥1

gives the unrestricted counting sequence. Clearly, u1 = 1 and we will show that
un = 1

2

(
2(n−1)
n−1

)
for n ≥ 2.

The left to right maxima (LR maxima) of a permutation determine a (rotated)
Dyck path P with the LR maxima at the NE corners (N = North, E = East),
as in Figure 2. The returns to the diagonal split P into its components, and P is
indecomposable if it has exactly one return (necessarily at its endpoint). Compo-
nents of the permutation p correspond to components of the Dyck path P and so
p is indecomposable iff P is.

We begin with an obvious connection between fixed points and 321 patterns.

Lemma 2.5. For any permutation p and a fixed point b of p, either b is a compo-
nent of p or b is the “ 2” of a 321 pattern in p.

Now we look at the structure of indecomposable π3-avoiders.

Lemma 2.6. Let p be an indecomposable π3-avoider.
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Figure 2: A permutation with LR maxima 2, 6, 7, 10, 12 and its
Dyck path. This permutation is indecomposable

(i) An entry b of p can be the “ 2” of at most one 321 pattern.

(ii) If cba is a 321 pattern in p, then b is a fixed point of p.

(iii) A fixed point b is the “ 2” of exactly one 321 pattern in p.

Proof. (i) If b was the “2” of more than one 321 pattern, a forbidden pattern would
be present.

(ii) By (i), the entries preceding b are precisely {c}∪ [b− 1]\{a} and so b is the
b-th entry.

(iii) This follows from part (i) and Lemma 2.5.

Corollary 2.7. An indecomposable permutation is a π3-avoider if and only if it
either avoids 321 or the “ 2”s of its 321 patterns are all distinct and all fixed points.

Proof. The “only if” part follows from Lemmas 2.5 and 2.6, and the presence of any
one of the offending patterns would imply two 321 patterns with the same 2.

Lemma 2.8. An indecomposable π3-avoider is determined by the locations in the
matrix diagram of its LR maxima and its fixed points.

Proof. All other entries must be increasing. Suppose not and that b > a were two
other entries, with b to the left of a. Then a LR maximum would precede b, so b
would be the “2” of a 321 and hence a fixed point, which it is not.
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Arbitrary indecomposable Dyck paths are possible for an indecomposable π3-
avoider, but what about the fixed points? For b to be a fixed point, b cannot be
either the value or position of a LR maximum and there must be exactly one LR
maximum preceding b and > b. In terms of the Dyck path in a matrix diagram, b
cannot be in the row or column of a NE corner, and the b-th E step (among the
E steps) and its bounce N step must be the end steps of a subpath with just one
peak (= NE corner). Any b meeting these conditions can be a fixed point. More
precisely, given an indecomposable Dyck path (determining the LR maxima and
their positions) and a subset B of the b′s meeting the above conditions, there is
exactly one indecomposable π3-avoider with this Dyck path and fixed point set B,
namely, the permutation in which all other entries are increasing.

It is convenient to focus on the vertices of the Dyck path, and call a vertex good
if it is the left endpoint of the E step directly above a possible fixed point b. Since
the Dyck path is indecomposable, we may delete the first and last step to get a
new (unrestricted) Dyck path of semilength n− 1 with a new diagonal line joining
its endpoints. In this formulation, a vertex is good if (i) it joins 2 E steps, (ii) its
bounce vertex (down to the diagonal, left to the path) joins 2 N steps, and (iii)
the subpath bounded by the vertex and its bounce contains only one peak. Some
examples are shown in Figure 3.

b

b b

b

b

b b b b

b

b b

2 good vertices

b

b

b b

b

b b b b

b

b

b b

1 good vertex

b

b

b

b b

b b b b

b

b

b

no good vertex

Figure 3: Good vertices

Thus we have shown that indecomposable π3-avoiders of length n correspond
to Dyck paths of semilength n− 1 in which some (maybe all or none) of the good
vertices are marked (with marked vertices corresponding to the fixed points). We
now give a bijection from these marked Dyck paths to the set of all balanced paths
of n− 1 N steps and n− 1 E steps that end with an E step, counted by 1

2

(
2(n−1)
n−1

)
.

For each marked vertex v, draw a line from v down to the diagonal and then, in
gray, left to the bounce vertex of v, so the new E steps are colored gray. Erase
all lines that can’t be “seen” from the diagonal, leaving a new Dyck path with
(possibly) some gray steps. Lastly, take each component that ends with a gray
step and flip it over the diagonal, and then “forget” the coloring. The result is the
desired balanced path. The terminal E step of the Dyck path remains undisturbed
and so the balanced path always ends with an E. For example, the permutation
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in Figure 2 is an indecomposable π3-avoider of length n = 12 with 4 fixed points
and it produces the Dyck path of semilength n− 1 = 11 with 4 marked vertices in
Figure 4a corresponding bijectively to the balanced path in Figure 4b. To reverse

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b b b b b

b b

b

b

b b b

b

b b b b

b b

b

b

−→

a

b

b

b

b

b

b

b

b

b

b

b

b b b

b b b

b

b

b b

b b b

b b b

b b

b

b

b b

b

Figure 4: A marked Dyck path (a) and its corresponding balanced
path (b)

the map, record the points p on the diagonal that terminate an N step lying below
the diagonal. Flip over the diagonal each component that lies below the diagonal.
Then, for each p, there is a new E segment (= maximal sequence of contiguous E
steps) into p and a N segment out of p that may be new or original. In any case,
interchange these E and N segments in the path. Lastly, mark the vertex directly
above each p.

2.3.1. Class 3, alternative count

Let an be the number of permutations of length n that avoid π3. In order to
study the sequence an, we extend our notation by defining an(i1, i2, . . . , is) to
be the number of permutations σ1σ2 · · ·σn of length n that avoid π3 such that
σ1σ2 · · ·σs = i1i2 · · · is.

Lemma 2.9. We have

an(i) = 2an−1(i) +

i∑

j=1

an−1(j)− 2

i∑

j=1

an−2(j), 1 ≤ i ≤ n− 3,

an(n− 2) = 2an−1(n− 2) +

n−3∑

j=1

an−1(j)− 2

n−3∑

j=1

an−2(j) + an−2 − an−3,
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with the initial conditions an(n) = an(n− 1) = an−1.

Proof. By the definitions the initial conditions hold, and for 1 ≤ i ≤ n− 2,

an(i) =

i−1∑

j=1

an(i, j) +

n−2∑

j=i+1

an(i, j) + an(i, n− 1) + an(i, n).

Clearly, an(i, j) = 0 for all 1 ≤ i < j ≤ n− 2 and an(i, n− 1) = an(i, n) = an−1(i)
for all 1 ≤ i ≤ n− 2. Thus,

an(i) = 2an−1(i) +

i−1∑

j=1

an(i, j). (2.1)

Also, for 1 ≤ j < i ≤ n− 3,

an(i, j) =

j−1∑

ℓ=1

an(i, j, ℓ) +

n−1∑

ℓ=j+1

an(i, j, ℓ) + an(i, j, n) =

j−1∑

ℓ=1

an−1(j, ℓ) + an−1(i, j),

which, by (2.1), implies an(i, j) = an−1(j) − 2an−2(j) + an−1(i, j). Hence, (2.1)
gives

an(i) = 2an−1(i) +

i∑

j=1

an−1(j)− 2

i∑

j=1

an−2(j), 1 ≤ i ≤ n− 3,

an(n− 2) = 2an−1(n− 2) +

n−3∑

j=1

an−1(j)− 2

n−3∑

j=1

an−2(j) + an−2 − an−3.

In order to solve the recurrence in Lemma 2.9, we define An(v) to be the
polynomial

∑n
i=1 an(i)v

i−1. Then, by translating these recurrences in terms of
An(v), we obtain

An(v)− an−3v
n−3 − an−1v

n−1 − an−1v
n−2

= 2(An−1(v) − an−2v
n−2) +

An−1(v)− vn−2An−1(1)

1− v

− 2(An−2(v)− vn−2An−2(1))

1− v
,

which is equivalent to

An(v) = An−3(1)v
n−3 + 2An−1(v)

+
An−1(v) − vnAn−1(1)

1− v
− 2(An−2(v)− vn−1An−2(1))

1− v
, (2.2)
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for all n ≥ 3. By the definitions, we have A0(v) = A1(v) = 1 and A2(v) = 1 + v.
Now let A(x, v) =

∑
n≥0 An(v)x

n be the generating function for the sequence
An(v). Multiplying (2.2) by xn, and summing over all n ≥ 3, yields

A(x, v) − (1 + v)x2 − x− 1 = x3A(xv, 1) + 2x(A(x, v) − x− 1)

+
x

1− v
(A(x, v) − 1− x− v(A(xv, 1) − 1− xv))

− 2x2

1− v
(A(x, v) − 1− v(A(xv, 1) − 1)),

which may be written as
(
1− 2

x

v
− x

v(1− v)
+

2x2

v2(1− v)

)
A(x/v, v)

=
x2

v2
+

x2

v
− x− 3x

v
+ 1 +

(
x3

v3
− x

1− v
+

2x2

v(1 − v)

)
A(x, 1).

To solve the preceding functional equation, we make use of the kernel method (see,
e.g., [4]). Let v = v0(x) =

1+
√
1−4x
2 . Then, the kernel 1− 2x

v − x
v(1−v) +

2x2

v2(1−v) at
v = v0(x) equals zero, which implies
(

x

1− v0(x)
− x3

v30(x)
− 2x2

v0(x)(1 − v0(x))

)
A(x, 1) =

x2

v20(x)
+

x2

v0(x)
−x− 3x

v0(x)
+ 1.

Simplifying the formula found for A(x, 1) yields, after several algebraic steps, the
following result.

Theorem 2.10. The generating function for the number of permutations of length
n that avoid π3 is given by

2(1− 4x)

2− 9x+ 4x2 − x
√
1− 4x

.

2.4. Class 4

π4 = {2314, 2341, 2413}

b
b

b

b

b
b

b

b
b

b

b

b

Let An = Sn(π4). Let σ ∈ An with n ≥ 2. By considering the positions of n−1
and n within σ, one can show the following block decomposition result.

Lemma 2.11. Let n ≥ 2. A permutation σ of length n avoids π4 if and only if
either
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• σ = σ′(n− 1)σ′′nσ′′′ such that σ′ > σ′′σ′′′ (that is, each letter of σ′ is greater
than each letter of σ′′ or σ′′′), σ′ is a permutation of [n − j + 1, n − 2] that
avoids 231, and σ′′nσ′′′ is a permutation of {1, 2, . . . , n− j, n} that avoids π4;
or

• σ = σ′nσ′′n−1σ′′′: If σ′ = ∅, then σ ∈ An if and only if σ′′(n−1)σ′′′ ∈ An−1.
If σ′ 6= ∅ and σ′′ = ∅, then σ ∈ An if and only if σ′(n − 1)σ′′′ ∈ An−1. If
σ′, σ′′ 6= ∅, then σ′ > σ′′σ′′′, σ′ avoids 231, and σ′′(n− 1)σ′′′ avoids π4.

Define A(x) =
∑

n≥0 #Anx
n. Since 231-avoiders are counted by Catalan num-

bers, we have by Lemma 2.11,

A(x) = 1 + x+ xC(x)(A(x) − 1)

+ x(A(x) − 1) + x(A(x) − 1− xA(x)) + x(C(x) − 1)(A(x) − 1− xA(x)),

where A(x)− 1− xA(x) is the generating function for the number of permutations
σ1 · · ·σn in An, n ≥ 2, with σ1 6= n. Thus, we can state the following result.

Theorem 2.12. The generating function for the number of permutations of length
n that avoid π4 is given by

2(1− 4x)

2− 9x+ 4x2 − x
√
1− 4x

.

2.5. Class 5
π5 = {2314, 2413, 2431}

b
b

b

b

b

b

b

b
b

b
b

b

Let An = Sn(π5). Let σ ∈ An with n ≥ 2. Again, we have a block decomposi-
tion of σ.

Lemma 2.13. Let n ≥ 2. A permutation σ of length n avoids π5 if and only if
either

• σ = σ′nσ′′(n − 1)σ′′′ such that σ′′(n− 1)σ′′′ > σ′, σ′ is a permutation of [j]
that avoids 231, and σ′′(n−1)σ′′′ is a permutation of [j+1, n−1] that avoids
π5; or

• σ = σ′(n − 1)σ′′nσ′′′: If σ′ = ∅, then σ ∈ An if and only if σ′′(n − 1)σ′′′ ∈
An−1. If σ′ 6= ∅ and σ′′ = ∅, then σ ∈ An if and only if σ′(n− 1)σ′′′ ∈ An−1.
If σ′, σ′′ 6= ∅, then σ′′nσ′′′ > σ′, σ′ is a permutation of [j] that avoids 231,
and σ′′(n− 1)σ′′′ is a permutation of {j + 1, j + 2, . . . , n− 2, n} that avoids
π5.
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Define A(x) =
∑

n≥0 #Anx
n. By Lemma 2.13, we have

A(x) = 1 + x+ xC(x)(A(x) − 1)

+ x(A(x) − 1) + x(A(x) − 1− xA(x)) + x(C(x) − 1)(A(x) − 1− xA(x)),

where A(x)− 1− xA(x) is the generating function for the number of permutations
σ1 · · ·σn in An, n ≥ 2, with σ1 6= n. Thus, we can state the following result.

Theorem 2.14. The generating function for the number of permutations of length
n that avoid π5 is given by

2(1− 4x)

2− 9x+ 4x2 − x
√
1− 4x

.

Note that Lemmas 2.11 and 2.13 yield a recursive bijection between Sn(π4) and
Sn(π5).

2.6. Class 6
We use the representative triple π6 = {2314, 3142, 3241}

b
b

b

b
b

b

b

b
b

b

b

b

In order to determine the number of π6-avoiders of length n, we refine the set by
considering a couple of auxiliary statistics as follows. Given n ≥ 2, ℓ ∈ [n− 1], and
1 ≤ i ≤ ℓ, let u(n; ℓ, i) denote the number of permutations of length n avoiding the
patterns in π6 in which the largest letter (if it exists) to the left of n is ℓ wherein
there are exactly i − 1 positions separating ℓ and n. Let u(n; ℓ) :=

∑ℓ
i=1 u(n; ℓ, i).

Denote by u(n) the number of permutations of length n avoiding the patterns in
π6, the set of which we will denote by Un. Since members of Un starting with n
are synonymous with members of Un−1, we have the relation

u(n) = u(n− 1) +

n−1∑

ℓ=1

u(n; ℓ), n ≥ 2, (2.3)

with u(1) = u(0) = 1. The following lemma provides a recurrence for the array
u(n; ℓ, i) which we will use to determine u(n).

Lemma 2.15. If 2 ≤ i ≤ ℓ < n, then

u(n; ℓ, i) = Cℓ−iCi−1u(n− ℓ− 1), i ≥ 2, (2.4)

with

u(n; ℓ, 1) = Cn−ℓ−1u(ℓ) + Cℓ−1u(n− ℓ− 1)− Cℓ−1Cn−ℓ−1
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+ (Cℓ − Cℓ−1)

n−ℓ−2∑

r=0

Cru(n− ℓ− r − 1), (2.5)

for ℓ ≥ 2, and u(n; 1, 1) = u(n− 2) for n ≥ 2.

Proof. That u(n; 1, 1) = u(n − 2) for n ≥ 2 follows from the definitions. We
give combinatorial proofs of (2.4) and (2.5). Let Un,ℓ,i denote the subset of Un

enumerated by u(n; ℓ, i). To show (2.4), note first that members of Un,ℓ,i, where
2 ≤ i ≤ ℓ, must be of the form α = α1ℓα2nδ, where α2 has length i − 1 and δ
comprises the elements of [ℓ + 1, n − 1]. (Note α2 non-empty implies that there
can be no members of [ℓ − 1] to the right of n, for otherwise there would be an
occurrence of 3241 or 3142 in which the roles of the “3” and “4” are played by the ℓ
and n, respectively.) Furthermore, any letter in α1 must be smaller than any letter
in α2 in order to avoid 2314. Finally, the subwords α1 and α2 must both avoid
231 (since n lies to their right), while there is no further restriction on δ (i.e., it
must only avoid the original patterns in π6). Conversely, any permutation α of [n]
of the form described above in which α1 and α2 both avoid 231, each letter of α2

is greater than each letter of α1, and δ avoids the patterns in π6 is seen to be a
member of Un,ℓ,i. This implies u(n; ℓ, i) = Cℓ−iCi−1u(n − ℓ − 1) for 2 ≤ i ≤ ℓ, as
desired.

To show (2.5), let X = Un,ℓ,1 and first consider the case in which there are no
elements of [ℓ − 1] occurring to the right of the letter n within a member of X .
Then such members of X may be decomposed as αℓnβ, where α is a permutation
of [ℓ− 1] avoiding the pattern 231 and β ∈ Un−ℓ−1 (on the letters in [ℓ+1, n− 1]).
Furthermore, permutations of this form are seen to avoid the patterns in π6. Thus,
there are Cℓ−1u(n− ℓ− 1) possibilities in this case.

Now suppose that all elements of [ℓ − 1] occur to the right of n within ρ ∈ X .
We consider subcases as follows. First assume ρ is of the form ρ = ℓnρ1ρ2, where
ρ1 and ρ2 are permutations of [ℓ + 1, n − 1] and [ℓ − 1], respectively. Then ρ1
must avoid the pattern 213 since ρ2 6= ∅, while ρ2 has no restrictions other than
those imposed by π6. This implies that there are Cn−ℓ−1u(ℓ − 1) possibilities in
this case. Now assume that at least one letter of [ℓ − 1] lies to the left of some
letter of [ℓ + 1, n − 1] within ρ. Then ρ must be of the form ρ = ℓnδ1γδ2 in this
case, where γ consists of all the letters in [ℓ − 1] and δ1 and δ2 together comprise
all of the letters in [ℓ + 1, n− 1], with δ2 non-empty. (For otherwise, there would
be a guaranteed occurrence of 3241 or 3142, with the ℓ playing the role of the
“3”.) Furthermore, since ℓ ≥ 2 implies γ is non-empty, it must be the case that all
letters of δ1 are larger than all letters of δ2 in order to avoid 2314. In addition, γ
non-empty implies δ1 must avoid 213 and δ2 non-empty implies γ must avoid 231.
Finally, the subword δ2 is seen to have no restrictions other than those imposed by
π6 since all letters of δ1 and γ are larger or smaller, respectively, than all letters of
δ2. Since the preceding conditions on γ, δ1 and δ2 are seen also to be sufficient for
membership of ρ within X , it follows that there are Cℓ−1

∑n−ℓ−2
r=0 Cru(n−ℓ−r−1)

possibilities in this case, where r denotes the length of δ1.
Now suppose that there is at least one element of [ℓ− 1] to the left and to the
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right of n within β ∈ X , whence ℓ ≥ 3 in this case. Then β can be expressed in
the form β = β1ℓnδ1β2δ2, where β1, β2 are non-empty words in [ℓ − 1] and δ1, δ2
are words in [ℓ + 1, n − 1]. First assume δ2 is non-empty. Note that all elements
of β1 must be less than all of those in β2 in this case in order to avoid 2314 (for
otherwise, there would be an occurrence of 2314 in which the ℓ plays the role of the
“3” and any member of δ2 plays the role of the “4”). Let p be the smallest element
of β2. Then 2 ≤ p ≤ ℓ − 1 since both β1 and β2 are non-empty. Furthermore,
δ2 non-empty implies both β1 and β2 avoid 231, which implies that there are∑ℓ−1

p=2 Cp−1Cℓ−p = Cℓ − 2Cℓ−1 possibilities for β1 and β2. Once the positions of
the letters in β1 and β2 have been determined, there are

∑n−ℓ−2
r=0 Cru(n− ℓ− r−1)

possibilities for the letters in δ1 and δ2, upon considering the length r of δ1 (note
that all letters in δ2 must be smaller than all letters in δ1 in order to avoid 2314).
Thus, there are (Cℓ − 2Cℓ−1)

∑n−ℓ−2
r=0 Cru(n − ℓ − r − 1) members β of the form

above in which δ2 6= ∅.
Finally, suppose δ2 = ∅ in the decomposition of β above. In this case, the

subsequence β1ℓβ2 constitutes a permutation of [ℓ] avoiding the patterns in π6

which does not start or end with the letter ℓ. By subtraction, there are u(ℓ) −
u(ℓ − 1) − Cℓ−1 possibilities for this subsequence. The letters of δ1 must avoid
213, with no other restrictions on δ1. Furthermore, any permutation β of the form
above satisfying the stated conditions on its constituent parts is seen to avoid the
patterns in π6. Since there are Cn−ℓ−1 possibilities for δ1, it follows that there are
(u(ℓ)− u(ℓ− 1)−Cℓ−1)Cn−ℓ−1 permutations β of the form above in which δ2 = ∅.
Combining all of the previous cases implies that the cardinality of X is given for
ℓ ≥ 2 by

Cℓ−1u(n− ℓ− 1) + Cn−ℓ−1u(ℓ− 1) + Cℓ−1

n−ℓ−2∑

r=0

Cru(n− ℓ− r − 1)

+ (Cℓ − 2Cℓ−1)

n−ℓ−2∑

r=0

Cru(n− ℓ− r − 1) + (u(ℓ)− u(ℓ− 1)− Cℓ−1)Cn−ℓ−1

= Cn−ℓ−1u(ℓ) + Cℓ−1u(n− ℓ− 1)− Cℓ−1Cn−ℓ−1

+ (Cℓ − Cℓ−1)
n−ℓ−2∑

r=0

Cru(n− ℓ− r − 1),

which gives (2.5).

Summing (2.4) over 2 ≤ i ≤ ℓ, and using the recurrence for Catalan numbers,
implies

u(n; ℓ) = u(n; ℓ, 1) + (Cℓ − Cℓ−1)u(n− ℓ− 1), ℓ ≥ 1. (2.6)

Summing (2.6) over 1 ≤ ℓ ≤ n− 1, and using (2.5), implies

n−1∑

ℓ=1

u(n; ℓ) =
n−1∑

ℓ=1

u(n; ℓ, 1) +
n−1∑

ℓ=1

(Cℓ − Cℓ−1)u(n− ℓ− 1)
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= u(n− 2) +

n−1∑

ℓ=2

Cn−ℓ−1u(ℓ) +

n−1∑

ℓ=2

Cℓ−1u(n− ℓ − 1)−
n−1∑

ℓ=2

Cℓ−1Cn−ℓ−1

+

n−1∑

ℓ=2

(Cℓ − Cℓ−1)

n−ℓ−2∑

r=0

Cru(n− ℓ− r − 1) +

n−1∑

ℓ=1

(Cℓ − Cℓ−1)u(n− ℓ− 1).

Thus, we have by (2.3),

u(n) =

n−1∑

ℓ=0

Cn−ℓ−1u(ℓ)− Cn−1 +

n−1∑

ℓ=1

Cℓ−1u(n− ℓ− 1)−
n−1∑

ℓ=1

Cℓ−1Cn−ℓ−1

+

n−1∑

ℓ=1

(Cℓ − Cℓ−1)

n−ℓ−2∑

r=0

Cru(n− ℓ− r − 1) +

n−1∑

ℓ=0

(Cℓ − Cℓ−1)u(n− ℓ− 1)

= 2

n−1∑

ℓ=1

Cn−ℓ−1u(ℓ) + Cn−1 −
n−1∑

ℓ=1

Cℓ−1Cn−ℓ−1

+
n−1∑

ℓ=1

(Cℓ − Cℓ−1)
n−ℓ−2∑

r=0

Cru(n− ℓ− r − 1)

= 2

n−1∑

ℓ=1

Cn−ℓ−1u(ℓ) +

n−1∑

ℓ=1

(Cℓ − Cℓ−1)

n−ℓ−2∑

r=0

Cru(n− ℓ− r − 1), n ≥ 2.

(2.7)

Let f(x) =
∑

n≥1 u(n)x
n. Multiplying both sides of (2.7) by xn, and summing

over n ≥ 2, yields

f(x) = x+ 2xC(x)f(x) +
∑

ℓ≥1

(Cℓ − Cℓ−1)
∑

r≥0

Cr

∑

n≥ℓ+r+2

u(n− ℓ− r − 1)xn

= x+ 2xC(x)f(x) + x
∑

ℓ≥1

(Cℓ − Cℓ−1)x
ℓ
∑

r≥0

Crx
r
∑

n≥1

u(n)xn

= x+ 2xC(x)f(x) + x((1 − x)C(x) − 1)C(x)f(x)

= x+ xC(x)f(x) + (1− x)(C(x) − 1)f(x)

= x+ (C(x) + x− 1)f(x),

where we have used the fact xC2(x) = C(x) − 1. Thus, we have

∑

n≥0

u(n)xn = 1 + f(x) =
2− C(x)

2− x− C(x)
=

1− 4x−
√
1− 4x

1− 4x+ 2x2 −
√
1− 4x

=
2(1− 4x)

2− 9x+ 4x2 − x
√
1− 4x

,

as desired.
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2.7. Class 7
π7 = {1324, 1342, 3142}

b

b
b

b

b

b
b

b
b

b

b

b

To count π7-avoiders by first entry m, set u(n) = |Sn(π7)| and u(n,m) = |{p ∈
Sn(π7) : p1 = m}.

Clearly, u(n,m) = u(n − 1) for m = n. For 1 ≤ m < n, use the left to right
maxima (mi)

k+1
i=1 , where k ≥ 1, m1 = m, and mk+1 = n, to decompose p as

p = m1A1m2A2 · · ·mkAkmk+1Ak+1. (2.8)

Proposition 2.16.
(i ) m1, . . . ,mk are consecutive integers.
(ii ) A1 > A2 > · · · > Ak > [m − 1] ∩ Ak+1, where Ai > Aj means min (Ai) >
max (Aj).
(iii ) For 1 ≤ i ≤ k, Ai avoids 132.

Proof. (i) Say mi = a and mi+1 = c ≥ a+2. Then b := a+1 occurs after mi+1 and
{a, c, b, n} occur either in the order acbn (1324) or acnb (1342), both forbidden.

(ii) If ai < aj with 1 ≤ i < j ≤ k + 1, ai ∈ Ai, aj ∈ Aj , then miaimjaj is a
3142.

(iii) If not, then n = mk+1 would be the “4” of a 1324.

Thus p is captured by the list (recall St refers to standardizing a list)

St(A1), . . . , St(Ak), St(m1Ak+1) .

Conversely, if these conditions hold and St(m1Ak+1) is a π7-avoider, then so is p.
Since 132-avoiders of length n are equinumerous with Dyck paths of size (semi-

length) n, and (k + 1)-lists of Dyck paths of total size n are counted by the gener-
alized Catalan number C(n, k) := (k+1)

(
2n+k+1

n

)
/(2n+ k+1), the decomposition

(2.8) leads to the recurrence

u(n,m) =
n−m∑

k=1

m−1∑

h=0

C(m− h− 1, k − 1)u(n−m+ h− k + 1, h+ 1),

where the index h refers to the number of entries of Ak+1 that are < m1. Recall
that the generating function C(x, y) :=

∑
n,k≥0 C(n, k)xnyk is given by C(x, y) =

C(x)/(1− yC(x)) where C(x) is the generating function for the Catalan numbers.
Now define generating functions F (x) =

∑
n≥1 u(n)x

n and

F (x, y) =
∑

n≥1

n∑

m=1

u(n,m)xnym.
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Note that F (x) = F (x, 1).
Split F (x, y) into F1 + F2, where F1 is the sum over m < n and F2 is the sum

over m = n. Using the recurrence, we have

F1 =
∑

n≥2

n−1∑

m=1

n−m∑

k=1

m−1∑

h=0

C(m− h− 1, k − 1)u(n−m+ h− k + 1, h+ 1)xnym.

Introduce new summation indices r = m−h−1, s = k−1, t = n−m+h−k+1, j =
h+ 1 to get

F1 =
∑

r,s≥0,t≥1

t∑

j=1

C(r, s)u(t, j)xr+s+t+1yj+r = xC(xy, x)F (x, y) .

Also, we have
F2 =

∑

n≥1

u(n− 1)(xy)n = xy
(
1 + F (xy, 1)

)
.

So F (x, y) satisfies

F (x, y) = xC(xy, x)F (x, y) + xy + xyF (xy, 1) . (2.9)

Set y = 1 in (2.9) to get F (x, 1) = x/(1− x− xC(x, x)), leading to

F (x) =
x

1− x− xC(x)
1−xC(x)

,

and, after expansion,

F (x, y) =
xy

(
1 + F (xy)

)

1− xC(xy, x)
,

and 1 + F (x) = 2(1−4x)

2−9x+4x2−x
√
1−4x

.
As an aside, the decomposition (2.8) readily yields a bijection from Sn(π7) to a

certain subset of the Schroder paths of size n− 1. We represent a Schroder path as
a Motzkin path consisting of upsteps U = (1, 1), flatsteps F = (1, 0) and downsteps
D = (1,−1), but with size measured by # U ’s + # F ’s rather than length. Let
An denote the set of Schroder paths of size n with all flatsteps at ground level,
ending with an F , and decorated so that, for each descent (maximal sequence of
contiguous downsteps) that ends at ground level, one of its downsteps is marked.
Let Bn denote the set of Schroder paths of size n such that, for each flatstep not at
ground level, the portion of the path between the flatstep and the next vertex at
ground level consists of a Dyck path (possibly empty) followed only by downsteps.
There is a simple bijection from An to Bn−1: delete the last step (necessarily F )
and, for each marked downstep, if it is the last downstep of a descent, just erase the
mark, otherwise delete the marked step and turn its matching upstep into a flatstep.
For example, here is a bijection from Sn(π7) to the paths in An. Let φ be your
favorite bijection from 312-avoiders to Dyck paths. Given p ∈ Sn(π7), if the first
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Figure 5: The bijection An −→ Bn−1

entry of p is n, begin the path with a flatstep, delete n, and start over. Otherwise,
consider the decomposition (2.8). Replace each mi, 1 ≤ i ≤ k, by an upstep, each
Ai, 1 ≤ i ≤ k, by the Dyck path φ

(
St(Ai)

)
, append k downsteps and mark the first

one. These replacements and the appendage produce a primitive Dyck path with
one marked downstep on the last descent. Next, ignore the entry mk+1 = n and
start over with St(m1Ak+1). The process will end when St(m1Ak+1) = 1, which
will terminate the path with a flatstep.

2.7.1. Class 7, alternative count

Let b(n; i, j) denote the number of permutations of length n avoiding the patterns
in π7 in which the first letter is i and the second is j. If n ≥ 2, then define
b(n; i) =

∑n
j=1,j 6=i b(n; i, j) and b(n) =

∑n
i=1 b(n; i), with b(1) = b(1; 1) = 1. Put

b(n; i, j) = 0 if i = 0 or j = 0.
We have the following obvious initial values. If n = 2, then b(2) = 2, with

b(2; 1) = b(2; 1, 2) = 1 and b(2; 2) = b(2; 2, 1) = 1. If n = 3, then b(3) = 6, with
b(3; 1) = b(3; 2) = b(3; 3) = 2 and b(3; 1, 2) = b(3; 1, 3) = b(3; 2, 1) = b(3; 2, 3) =
b(3; 3, 1) = b(3; 3, 2) = 1.

If n ≥ 4, then the array b(n; i, j) is determined as follows.

Lemma 2.17. If 1 ≤ i ≤ n − 1, then b(n; i, i + 1) = b(n; i, n) = b(n;n, i) =
b(n−1; i), with b(n; i, i−1) = b(n−1; i−1) for 1 < i ≤ n. If 1 ≤ i < j−1 < n−1,
then b(n; i, j) = 0. If 1 ≤ j < i− 1 < n− 1, then

b(n; i, j) = b(n− 1; i− 1, j) +

j−1∑

k=1

b(n− 1; i− 1, k). (2.10)

Proof. Let Bn denote the subset of the permutations of length n avoiding the
patterns in π7 and Bn,i,j the subset of Bn enumerated by b(n; i, j). The first
statement is clear since a letter n in either the first or second position is seen to be
extraneous concerning the avoidance of the patterns in π7, as is the letter i+1 within
members of Bn,i,i+1 and the letter i− 1 within members of Bn,i,i−1. Permutations
of length at least four starting with the letters i, j where 1 ≤ i < j − 1 < n − 1
always contain an occurrence of either 1324 or 1342, which implies b(n; i, j) = 0 in
these cases.

To show (2.10), we consider the third letter k within a member of Bn,i,j where
1 ≤ j < i − 1 < n − 1. Note that k cannot belong to [i + 1, n], for if it did, then
there would be an occurrence of 3142, as witnessed by any subsequence ijkx, where
x ∈ [j + 1, i − 1]. It also cannot be the case that k belongs to [j + 2, i − 1], for

Twelve subsets of permutations enumerated as maximally clustered permutations 59



otherwise there would be an occurrence of 1342 or 1324 with either jkn(j + 1) or
jk(j + 1)n. Thus, it must be the case that k = j + 1 or k ∈ [j − 1]. The first term
on the right-hand side of (2.10) accounts for when k = j + 1 since the letter k is
seen to be extraneous in this case concerning the avoidance of the patterns in π7

and thus may be deleted.
So assume k ≤ j − 1, and we will show that the letter j may be deleted from

members of Bn,i,j in this case. Given λ ∈ Bn−1,i−1,k, let λ′ be obtained from λ by
inserting j between the i−1 and k and increasing all letters of λ in [j, n−1] by one.
We will show that if λ avoids the patterns in π7, then so must λ′. Suppose, to the
contrary, that λ′ contains an occurrence of some pattern ρ ∈ π7. Then ρ cannot be
either 1342 or 1324, for otherwise the letter j would play the role of the “1” in an
occurrence of either pattern within λ′, and replacing j with k < j would imply λ
contains one of these patterns, a contradiction. Thus ρ must be 3142. Note that
the role of the “3” must be played by the letter j, for otherwise λ would contain an
occurrence of 3142 with the “3” and “1” played by i− 1 and k, respectively.

Thus, the occurrence of 3142 in λ′ is realized by a subsequence jℓrs. Note that
r < i, for otherwise λ would contain an occurrence of 3142 with (i − 1)ℓ(r − 1)s,
which is impossible. We now consider the position of the element n within λ′. If n
lies to the left of r within λ′, then (i− 1)k(n− 1)(r− 1) would form an occurrence
of 3142 in λ, a contradiction. On the other hand, if n lies to the right of r within
λ′, then there would be an occurrence of 1324 or 1342 within λ′ as witnessed by
either ℓrsn or ℓrns, a contradiction. Thus, λ′ must avoid the patterns in π7 if λ
does, which completes the proof.

Define b(n; i|w) = ∑n
j=1 b(n; i, j)w

j−1 and

Bn(v, w) =

n∑

i=1

n∑

j=1

b(n; i, j)vi−1wj−1.

Then the recurrence (2.10) implies

b(n; i|w)− b(n− 1; i− 1)wi−2 − b(n− 1; i)wiδi<n−1 − b(n− 1; i)wn−1

=
i−2∑

j=1

wj−1

j∑

k=1

b(n− 1; i− 1, k)

=
1

1− w

(
b(n− 1; i− 1|w)− wi−2b(n− 1; i− 1|1)

+ b(n− 2; i− 1)((1 + δi<n−1)w
i−2 − wi−1 − wn−2δi<n−1)

)
,

which implies

b(n; i|w) = b(n− 1; i− 1)wi−2 + b(n− 1; i)wiδi<n−1 + b(n− 1; i)wn−1

+ b(n− 2; i− 1)wi−2 +
1

1− w
(b(n− 1; i− 1|w)− wi−2b(n− 1; i− 1|1)
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+ b(n− 2; i− 1)(wi−2 − wn−2)δi<n−1). (2.11)

Note that b(n; 1|w) = 2n−3(w+wn−1) and b(n;n|w) = ∑n−1
j=1 b(n− 1; j)wj−1 =

Bn−1(w, 1). Also, b(n; 2, j) equals 2n−3, 0, or b(n−1; 2) when j = 1, 4 ≤ j ≤ n−1,
or j = 3, n, respectively. Thus, b(n; 2|w) = 2n−3+ b(n− 1; 2|1)(w2+wn−1), which,
by induction, implies b(n; 2|w) = 2n−3 + (n− 2)2n−4(w2 + wn−1).

Multiplying (2.11) by vi−1, and summing over i = 3, 4, . . . , n− 1, implies

Bn(v, w) = Bn−1(w, 1)v
n−1 + (v + w)Bn−1(vw, 1)− (vw)n−2(v + w)Bn−2(1, 1)

+ wn−1Bn−1(v, 1) + vBn−2(vw, 1)− vn−2wn−3Bn−3(1, 1)

+
v

1− w

(
Bn−1(v, w) − vn−2Bn−2(w, 1)−Bn−1(vw, 1)

+ (vw)n−2Bn−2(1, 1) +Bn−2(vw, 1)− wn−2Bn−2(v, 1)

)
,

with B0(v, w) = B1(v, w) = 1, B2(v, w) = v+w and B3(v, w) = v+ v2 +w+w2 +
vw2 + wv2.

Define B(x; v, w) =
∑

n≥0 Bn(v, w)x
n. Multiplying the last recurrence by xn

and summing over n ≥ 4, we obtain after several algebraic steps

1− vx− w

1− w
B(x; v, w) = 1− (v + w + 1)x− vx2

− x(vwx + vw − 2vx− w + w2)

1− w
B(x; vw, 1)

+
x(1 − vx− w)

1− w
(B(vx, w, 1) +B(wx; v, 1))

+
x2(vw + wvx + w2 − w − vx)

1− w
B(vwx; 1, 1).

Substituting w = 1− vx into the preceding functional equation yields

1 = (2 + v)x+ (1 − vx− 2x)B(x; v(1 − vx), 1)− x(1 − vx− x)B(vx(1 − vx); 1, 1).

Let v be a solution of the equality v(1 − vx) = 1, namely, v = C(x) = 1−√
1−4x
2x .

Replacing v by C(x) in the last functional equation then gives

B(x; 1, 1) =
2(1− 4x)

2− 9x+ 4x2 − x
√
1− 4x

,

as desired.

2.8. Class 8

π8 = {1324, 1342, 3124}
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Let a(n; i, j) denote the number of permutations of length n avoiding the pat-
terns in π8 in which the first letter is i and the second is j. If n ≥ 2, then define
a(n; i) =

∑n
j=1,j 6=i a(n; i, j) and a(n) =

∑n
i=1 a(n; i), with a(1) = a(1; 1) = 1. Put

a(n; i, j) = 0 if i = 0 or j = 0.
We have the following obvious initial values. If n = 2, then a(2) = 2, with

a(2; 1) = a(2; 1, 2) = 1 and a(2; 2) = a(2; 2, 1) = 1. If n = 3, then a(3) = 6, with
a(3; 1) = a(3; 2) = a(3; 3) = 2 and a(3; 1, 2) = a(3; 1, 3) = a(3; 2, 1) = a(3; 2, 3) =
a(3; 3, 1) = a(3; 3, 2) = 1.

If n ≥ 4, then the array a(n; i, j) is determined as follows.

Lemma 2.18. If 1 ≤ i ≤ n − 1, then a(n; i, i + 1) = a(n; i, n) = a(n;n, i) =
a(n−1; i), with a(n; i, i−1) = a(n−1; i−1) for 1 < i ≤ n. If 1 ≤ i < j−1 < n−1,
then a(n; i, j) = 0. If 1 ≤ j < i− 1 < n− 1, then

a(n; i, j) = a(n− 1; i, j) + a(n− 1; i− 1, j − 1) +

j−2∑

k=1

a(n− 1; j, k). (2.12)

Proof. Let An = Sn(π8) and An,i,j be the subset of An enumerated by a(n; i, j).
The first statement is clear since a letter n in either the first or second position
is seen to be extraneous concerning the avoidance of the patterns in π8, as is the
letter i + 1 within members of An,i,i+1 and the letter i − 1 within members of
An,i,i−1. Permutations of length at least four starting with the letters i, j where
1 ≤ i < j − 1 < n− 1 must contain an occurrence of either 1324 or 1342, whence
a(n; i, j) = 0 in these cases.

We now show (2.12). To do so, we consider the third letter k within a member
of An,i,j where 1 ≤ j < i− 1 < n− 1. Note that k cannot belong to [i+ 1, n− 1],
for if it did, then there would be an occurrence of 1342 or 1324, as witnessed by
either jkn(i − 1) or jk(i − 1)n. It also cannot belong to [j + 1, i − 1], for if it
did, then there would be an occurrence of 3124, as witnessed by ijkn. Thus, it
must be the case that k = n or k ∈ [j − 1]. It is seen that the first two terms on
the right-hand side of (2.12) account for the cases in which k = n or k = j − 1,
respectively. Now assume k ∈ [j − 2]. In this case, we will argue that the letter
i is superfluous when considering the avoidance of patterns in π8, whence it may
be deleted. This will give the sum on the right-hand side of (2.12) and complete
the proof. Given λ ∈ An−1,j,k, let λ′ be obtained from λ by writing the letter i
before λ and increasing all elements of [i, n−1] within λ by one. We will show that
if λ avoids the patterns in π8, then so does λ′. Suppose, to the contrary, that λ′

contains an occurrence of some pattern ρ of π8. Since λ avoids the patterns in π8,
we must have ρ = 3124, with the letter i playing the role of the “3”.

Suppose that the 3124 subsequence within λ′ is witnessed by iℓrs. Note that
r > j, for otherwise λ would contain an occurrence of 3124 with the subsequence
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jℓr(s− 1). We consider several cases on ℓ. First assume ℓ ∈ [j + 1, i− 1]. Then all
elements of [k+1, j−1] within λ′ must occur to the left of r in order to avoid 1342,
and thus to the left of ℓ as well in order to avoid 1324. But then λ would contain
3124 as witnessed by jkxℓ, where x is any element of [k+1, j− 1], a contradiction.
On the other hand, if ℓ ∈ [k + 1, j − 1], then λ would contain 3124 with the
subsequence jkℓr, which is again not possible. Finally, let us assume ℓ ∈ [k]; note
that ℓ = j is included in this case, for if the second letter in an occurrence of 3124
starting with i is j, then one may replace j with k since k < j. Note that then any
x ∈ [k + 1, j − 1] must lie to the left of s within λ′, for if x was to the right of s,
then kr(s− 1)x would be an occurrence of 1342 within λ, which is impossible. But
x lying to the left of s within λ′ would cause λ to contain an occurrence of 3124 as
witnessed by jkx(s − 1). Thus, it must be the case that λ′ avoids the patterns in
π8 if λ does, as desired.

Summing (2.12) over 1 ≤ j ≤ i− 2 yields the recurrence

a(n; i) = a(n− 1; i− 1) + 2a(n− 1; i) + a(n− 3)δi=n−2

+

min(i,n−2)∑

j=1

(a(n− 1; j)− a(n− 2; j − 1)− 2a(n− 2; j)), 3 ≤ i ≤ n− 1.

(2.13)

Since a(n; 2) = a(n− 1; 1)+ 2a(n− 1; 2), recurrence (2.13) is seen to hold for i = 2
and n ≥ 3 as well, with a(n; 1) = #Sn−1(231, 213) = 2n−2 and a(n;n) = a(n− 1).

Define the generating functions

A(x, y) =
∑

n≥1

n∑

i=1

a(n; i)xnyi

and
A(x) =

∑

n≥1

a(n)xn.

Note that A(x) = A(x, 1). The following lemma, valid for arbitrary a(n; i), will be
useful. Its proof is routine.

Lemma 2.19.

∑

n≥1

n∑

i=1

i∑

j=1

a(n; j)xnyi =
A(x, y) − yA(xy, 1)

1− y
.

Using (2.13) for n ≥ 3 and Lemma 2.19 yields after several algebraic steps the
functional equation

A(x, y) = xy(1 − x)(1 − x− xy)− x
(
x(y + 2) + y2 + y − 3

)

1− y
A(x, y)
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+
xy

(
x2

(
1− y2

)
+ x

(
y2 + 3y − 1

)
− y

)

1− y
A(xy, 1). (2.14)

Taking y = 1− x in (2.14) implies

A(x− x2, 1) =
x(1 − x)2

1− 3x+ 2x2 − x3
,

which gives the generating function 2(1−4x)

2−9x+4x2−x
√
1−4x

for 1+A(x). Since A(xy, 1) =
A(xy), substituting in (2.14) gives the bivariate generating function A(x, y).

2.9. Class 9

π9 = {1324, 1342, 2314}

b

b
b

b

b

b
b

b b
b

b

b

Let d(n; i) denote the number of permutations of length n avoiding the three
patterns in question and starting with the letter i and let d(n) =

∑n
i=1 d(n; i). We

have the following recurrence formula for the d(n; i).

Lemma 2.20. If n ≥ 2, then d(n; 1) = 2n−2 and d(n;n) = d(n;n− 1) = d(n− 1),
with d(1) = d(1; 1) = 1. If n ≥ 4, then

d(n; i) = 2n−i−1d(i − 1) +

n∑

ℓ=i+1

i−1∑

j=1

d(ℓ − 1; j), 2 ≤ i ≤ n− 2. (2.15)

Proof. That d(n;n) = d(n;n − 1) = d(n − 1) is clear since neither n nor n − 1
can start an occurrence of any pattern in π9. Let Dn,i denote the subset of the
permutations of length n enumerated by d(n; i) and let Dn = ∪n

i=1Dn,i. That
d(n; 1) = 2n−2 follows from the fact that members of Dn,1 are synonymous with
permutations of length n− 1 avoiding both 213 and 231 (which are seen to number
2n−2). We now assume 2 ≤ i ≤ n − 2 and show (2.15). We first count members
α ∈ Dn,i in which all elements of [i+1, n] occur to the left of all elements of [i− 1],
i.e., α that may be decomposed as α = iα1α2 where α1 and α2 are permutations
of [i + 1, n] and [i − 1], respectively. Note that α1 must avoid both 213 and 231,
while α2 need only avoid the original patterns in π9. Thus, there are 2n−i−1d(i−1)
possibilities in this case.

Now assume that the leftmost element j of [i − 1] occurs earlier than some
element of [i + 1, n] within α ∈ Dn,i. Then α must have the form α = iα1jα2,
where α1 = n(n− 1) · · · (ℓ + 1) for some i+ 1 ≤ ℓ ≤ n. To see this, note first that
i+1 must occur somewhere to the right of j, for if it occurred to the left of j, then
some element x of [i+ 1, n] occurring to the right of j within α implies that there
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would be an occurrence of 2314 as witnessed by the subsequence i(i+ 1)jx. Then
i+1 occurring to the right of j implies any elements of [i+2, n] to the left of j must
be in descending order so as to avoid 1342. Finally, if i < y < n lies to the left of j,
then so must y + 1, for otherwise there would be an occurrence of 2314 witnessed
by the subsequence iyj(y + 1). Thus, α1 has the stated form. Furthermore, it is
seen that the letters in α2 constitute a member of Dℓ−1,j , upon arguing that jα2

avoids the patterns in π9 if and only if ijα2 does. Conversely, any permutation
of the form α above with the stated restrictions on its constituent parts is seen to
avoid the patterns in π9. Considering all possible ℓ and j, it follows that there are∑n

ℓ=i+1

∑i−1
j=1 d(ℓ− 1; j) members of Dn,i in which some element of [i+1, n] occurs

to the right of some element of [i− 1]. Combining this case with the previous one
yields (2.15).

Let v(n; y) =
∑n

i=1 d(n; i)y
i. Multiplying both sides of (2.15) by yn, and sum-

ming over 2 ≤ i ≤ n− 2, implies

v(n; y) = 2n−2y + (1 + y)d(n− 1)yn−1 + 2n−1
n−2∑

i=2

d(i − 1)
(y
2

)i

+

n−1∑

i=2

yi
n∑

ℓ=i+1

i−1∑

j=1

d(ℓ− 1; j)− yn−1
n−2∑

j=1

d(n− 1; j)

= 2n−2y + (1 + y)d(n− 1)yn−1 + 2n−1
n−2∑

i=2

d(i − 1)
(y
2

)i

+
y

1− y

n−1∑

ℓ=2

(v(ℓ; y)− yℓv(ℓ; 1))− yn−1(v(n− 1; 1)− v(n− 2; 1)), n ≥ 3. (2.16)

Let v(x, y) =
∑

n≥1 v(n; y)x
n. Then recurrence (2.16) implies

v(x, y) − v(1; y)x− v(2; y)x2 =
2x3y

1− 2x
(1 + v(xy, 1)) + x(1 + y)(v(xy, 1)− xy)

+
xy

(1− x)(1 − y)
(v(x, y)− v(xy, 1))− x(v(xy, 1)− xy) + x2yv(xy, 1),

which may be rewritten as
(
1− xy

(1− x)(1 − y)

)
v(x, y)

=
xy(1 − x)

1− 2x
+

(
xy(1− x)

1− 2x
− xy

(1− x)(1 − y)

)
v(xy, 1). (2.17)

To solve functional equation (2.17), we use the kernel method and let y = 1− x to
obtain

v(x(1 − x), 1) =
x(1 − x)2

1− 2x− x(1 − x)2
.
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Replacing x with 1−√
1−4x
2 then implies

1 + v(x, 1) =

√
1− 4x

√
1− 4x−

(
1−√

1−4x
2

)(
1+

√
1−4x
2 − x

) =
2
√
1− 4x

(2− x)
√
1− 4x− x

=
2(1− 4x)

2− 9x+ 4x2 − x
√
1− 4x

,

as desired. (Note that replacing x with 1+
√
1−4x
2 leads to a power series whose

coefficients are not all positive integers.)

2.10. Class 10
π10 = {1324, 1432, 2431}

b

b
b

b

b

b
b

b b

b
b

b

We will count the number u(n) of length-n π10-avoiders directly. The first 3
letters of each pattern in π10 form a 132 pattern. So, not surprisingly, 132-avoiders,
counted by the Catalan numbers C(n), will figure prominently. Every 132-avoider
is a π10-avoider. Let V(n) denote the set of length-n π10-avoiders that do contain
a 132, and set v(n) = |V(n)|. Thus u(n) = C(n)[ avoids 132 ]+ v(n)[ contains 132 ].

Now suppose acb is a 132 pattern in p ∈ V(n). Then every entry of p after b is
< c (else a 1324 is present) and > b (else a 1432 or 2431 is present), and the entries
after b are increasing (else a 1432 is present). This stringent restriction implies
that only one entry, say b = b(p), is the “2” of a 132 in p. Note that if all entries
after b in a permutation p ∈ V(n) are deleted, the resulting permutation, when
standardized, is a 132-ender, defined to be a π10-avoider that contains a 132 and
such that all its 132’s end at its last entry.

Our strategy will be to start with a length-k 132-ender p and, viewing it as a
permutation matrix, determine how many ways to append n− k increasing entries
all lying between the appropriate bounds without introducing a 1324 (we need not
worry about introducing a 1432 or 2431 since these new entries are increasing).
Then we sum over all k and p.

For a length-k 132-ender p, let b denote its last entry and c the smallest entry
that serves as the “3” of a 132. Draw heavy lines above b and below c as in Figure
6. These heavy lines determine the inner and outer permutations of p, denoted
Inn(p) and Out(p) respectively: standardize the subpermutation consisting of the
entries between the 2 heavy lines to get Inn(p) and standardize the entries outside
the heavy lines to get Out(p). The original permutation p can be recovered from
Inn(p) and Out(p) because, as is easily seen, the entries between the heavy lines
necessarily form a contiguous block (factor) of p that lies immediately to the left
of the leftmost entry < b.
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9
10

11

Inn(p) =
St(5 6 4) = 2 3 1

Out(p) =
St(10 11 8 2 7 9 1 3) =

7 8 5 2 4 6 1 3

Figure 6: A 132-ender, 10 11 8 5 6 4 2 7 9 1 3, with b = 3 and c = 7

Any 132-avoider can be an inner permutation, and outer permutations are char-
acterized by the properties (i) is a 132-ender, (ii) the smallest c that serves as the
“3” of a 132 is b + 1 where b is the last entry. Let Am denote the set of length-m
permutations meeting these two conditions and set w0(m) = |Am|.

The number of ways to append n−k increasing entries as specified to a length-k
132-ender p depends only on the 132-avoider q:=Inn(p) and t := n−k. Let w1(q, t)
denote this number. Then, refining the count by the length m of Inn(p), we have

v(n) =

n∑

k=3

k−3∑

m=0

w0(k −m)
∑

q∈Sm(132)

w1(q, n− k). (2.18)

To evaluate the inner sum, we use a bijection from Sm(132) to certain restricted
growth sequences. Set RGm = {a1a2 · · · am+1 : a1 = 1, 2 ≤ ai ≤ ai−1 + 1 for 2 ≤
i ≤ m + 1}. Thus RG0 = {1}, RG1 = {12}, RG2 = {122, 123}, RG3 =
{1222, 1223, 1232, 1233, 1234}. There is an obvious correspondence between RGm

and primitive Dyck paths of semilength m+ 1 via upstep heights; thus

UUDUUDDD 7→ 1223.

The bijection Sm(132) → RGm is illustrated in Figure 7 below. Given q ∈ Sm(132),
append 0 m + 1, and in the matrix diagram, draw a line segment from each non-
terminal entry to the next larger entry. Set ai = number of segments crossing
the i-th interior horizontal line. To reverse the map, discard a1 and set bi =
ai+1 − 1, 1 ≤ i ≤ m. Start with 1 and then, for 2 ≤ i ≤ m, build the permutation
by successively inserting i in the bi-th currently available slot (right to left), where
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Figure 7: The bijection Sm(132) → RGm with m = 7: q =
6572314 7→ a = 12332343
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Figure 8: Counting the ways to append entries
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available means “won’t introduce a 132”. Now let us count the number of ways
to suitably append t increasing entries to a 132-avoider, using the permutation q
of Figure 7 as an example. Since the new entries are increasing, this amounts to
inserting t balls into m+1 boxes, the boxes being the protruding horizontal lines in
Figure 8 above. But there are restrictions. The presence of a ball on line i means
all balls lie on or below line bi, where bi is the next larger entry after i− 1 (else a
1324 is present). This implies the upper bounds bi listed in Figure 8.

Consequently, if i is the largest numbered line containing a ball, then the other
t − 1 balls are constrained to lie on a line j satisfying j ≤ i and bj ≥ bi. The
number of such lines is given in the last column and this column coincides with the
image a ∈ RGn of q under the preceding bijection. So the total number of ways to
extend q is

∑m+1
i=1

(
ai+(t−1)−1

t−1

)
using the familiar balls-in-boxes formula.

Hence, with t := n− k, the inner sum in (2.18) becomes

∑

q∈Sm(132)

w1(q, t) =
m+1∑

j=1

(total number of j’s in RGm)×
(
j + (t− 1)− 1

t− 1

)

=

m+1∑

j=1

C(m+ 1− j, 2j − 2)

(
j + t− 2

t− 1

)
,

(2.19)

where C(n, k) = k+1
2n+k+1

(
2n+k+1

n

)
=

(
2n+k

n

)
−

(
2n+k
n−1

)
is the generalized Catalan

number that counts nonnegative lattice paths of n + k upsteps and n downsteps.
The second equality in (2.19) is left as an exercise for the reader.

Next, we compute w0(m) = |Am|. A 132-ender with consecutive bc arises by
suitably appending an entry to a 132-avoider. As Figure 9 illustrates, you can
append an entry on any non-top line except just below a LR min. There are

b
b
b
b
b
b
b

5
6

7

2
1

3
4

OK

OK

OK

OK

no 132

not consecutive bc

no 132

Figure 9: Constructing 132 enders with consecutive bc

N(m − 1, k) (Narayana number, N(n, k) = 1
k

(
n−1
k−1

)(
n

k−1

)
) 132-avoiders of length

m − 1 with k LR minima, each of which contributes m − 1 − k elements to Am.
Hence w0(m) =

∑m−1
k=1 (m− 1− k)N(m− 1, k) =

(
2m−3
m−3

)
.
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So (2.18) becomes

v(n) =

n∑

k=3

k−3∑

m=0

(
2(k −m)− 3

k −m− 3

)m+1∑

j=1

C(m+ 1− j, 2j − 2)

(
j + n− k − 2

n− k − 1

)

=

n∑

k=3

k−2∑

j=1

(
j + n− k − 2

n− k − 1

) k−3∑

m=j−1

(
2(k −m)− 3

k −m− 3

)
C(m+ 1− j, 2j − 2)

=
n∑

k=3

k−2∑

j=1

(
j + n− k − 2

n− k − 1

)(
2k − 2

k − j − 2

)
.

(2.20)
The last equality follows from the identity

n−k∑

i=1

(
2i+ 1

i− 1

)
C(n− k − i, 2k) =

(
2n+ 2

n− k − 1

)
,

which has a simple combinatorial proof: it counts lattice paths of n+k+3 upsteps
and n− k− 1 downsteps, starting at the origin, by the x-coordinate, 2i+ 1, of the
last vertex at height 3. This vertex is the left endpoint of an upstep whose removal
splits the path into a pair of paths counted by the summand on the left.

Now let us find the generating function for the sequence u(n), that is, U(x) =∑
n≥0 u(n)x

n. By the above, we have

U(x) =
∑

n≥3

v(n)xn +
∑

n≥0

1

n+ 1

(
2n

n

)
xn

=
∑

n≥4




n−1∑

k=3

k−2∑

j=1

(
j + n− k − 2

n− k − 1

)(
2k − 2

k − 2− j

)
xn




+
∑

n≥3

(
2n− 2

n− 3

)
xn +

2

1 +
√
1− 4x

=
∑

k≥3

k−2∑

j=1

(
2k − 2

k − 2− j

)
 ∑

n≥k+1

(
j + n− k − 2

n− k − 1

)
xn




+
16x3

√
1− 4x(1 +

√
1− 4x)4

+
2

1 +
√
1− 4x

=
∑

j≥1

∑

k≥j+2

(
2k − 2

k − 2− j

)
xk+1

(1− x)j

+
16x3

√
1− 4x(1 +

√
1− 4x)4

+
2

1 +
√
1− 4x

=
∑

j≥1

4j+1xj+3

(1 − x)j
√
1− 4x(1 +

√
1− 4x)2j+2
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+
16x3

√
1− 4x(1 +

√
1− 4x)4

+
2

1 +
√
1− 4x

=
16x4(1 − 2x+

√
1− 4x)√

1− 4x(1 +
√
1− 4x)4((1− x)

√
1− 4x+ 1− 5x+ 2x2)

+
16x3

√
1− 4x(1 +

√
1− 4x)4

+
2

1 +
√
1− 4x

,

which implies ∑

n≥0

U(n)xn =
2(1− 4x)

2− 9x+ 4x2 − x
√
1− 4x

.

2.11. Class 11
We use the representative triple π11 = {1423, 1432, 4132}

b

b

b
b

b

b
b

b

b

b

b
b

Let An = Sn(π11). Let σ ∈ An with n ≥ 1. Then σ can be decomposed as
either which can be described as follows.

nb

σ′

bn

σ′ 6= ∅

σ′′

bn

bkσ′ 6= ∅

σ′′

σ′′′

Figure 10: Decompositions

Lemma 2.21. Let n ≥ 2. A permutation π of [n] avoids π11 if and only if either

• π = nπ′ such that π′ is a permutation of [n− 1] that avoids 132; or

• π = π′nπ′′ such that π′ > π′′, where π′ is a non-empty permutation of [n−
j + 1, n − 1] that avoids π11 and π′′ is a permutation of [n − j] that avoids
132; or

• π = π′nπ′′kπ′′′ such that π′ > π′′ > π′′′, where π′k is a permutation of
[n− j + 1, n− 1] avoiding π11 of length at least two such that k 6= n− j + 1,
π′′ is a permutation of [d+1, n− j] that avoids 132, and π′′′ is a permutation
of [d] that avoids 132.

Let A(x) =
∑

n≥0 #Anx
n. Using Lemma 2.21, we obtain

A(x) = 1 + xC(x) + x(A(x) − 1)C(x) + x(A(x) − 1− xA(x))C(x),
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where A(x)− 1− xA(x) is the generating function for the number of permutations
σ = σ1 · · ·σn of An, n ≥ 2, such that σn 6= 1. Thus, we can state the following
result.

Theorem 2.22. The generating function for the number of permutations of length
n that avoid π11 is given by

2(1− 4x)

2− 9x+ 4x2 − x
√
1− 4x

.

2.12. Class 12

We use the representative triple π12 = {2314, 2341, 3124}

b

b

b
b

b

b
b

b

b

b

b
b

Let c(n; i, j) denote the number of permutations of length n avoiding the pat-
terns in π12 in which the first letter is i and the second is j. For n ≥ 2, define
c(n; i) =

∑n
j=1,j 6=i c(n; i, j) and c(n) =

∑n
i=1 c(n; i), with c(1) = c(1; 1) = 1. The

values of the array c(n; i, j) for n ≤ 3 clearly are the same as those given above for
a(n; i, j).

If n ≥ 4, then the array c(n; i, j) satisfies the following relations.

Lemma 2.23. If 1 ≤ i ≤ n − 1, then c(n; i, n) = c(n;n, i) = c(n − 1; i), with
c(n; 1, i) = c(n; i, i − 1) = c(n − 1; i − 1) for 1 < i ≤ n. If 2 ≤ i < j < n, then
c(n; i, j) = 0. If 1 ≤ j < i− 1 < n− 1, then

c(n; i, j) = c(n− 1; i, j) + c(n− 1; i− 1, j − 1) +

j−2∑

k=1

c(n− 1; j, k). (2.21)

Proof. Let Cn denote the subset of the permutations of length n avoiding the pat-
terns in π12 and Cn,i,j the subset of Cn enumerated by c(n; i, j). The first statement
is clear since a letter n in either the first or second position is seen to be extraneous
concerning the avoidance of the patterns in π12, as is the letter 1 within members
of Cn,1,i and the letter i − 1 within members of Cn,i,i−1. Permutations of length
at least four starting with the letters i, j where 2 ≤ i < j < n must contain an
occurrence of either 2314 or 2341, whence c(n; i, j) = 0 in these cases. We now
show (2.21). To do so, consider the third letter k within a member of Cn,i,j where
1 ≤ j < i− 1 < n− 1. The letter k cannot belong to [i+1, n− 1], for if it did, then
there would be an occurrence of 2314 or 2341, and it cannot belong to [j+1, i− 1],
for if it did, then 3124 would occur. Thus, we must have k = n or k ∈ [j − 1],
and the first two terms on the right-hand side of (2.21) are seen to account for the
cases in which k = n or k = j − 1, respectively.
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So let us assume k ≤ j − 2. Given λ ∈ Cn−1,j,k, let λ′ be the permutation
obtained from λ by writing the letter i before λ and increasing all elements of
[i, n− 1] within λ by one. We will show that λ avoiding the patterns in π12 implies
λ′ does. Suppose, to the contrary, that λ′ contains an occurrence of some pattern
ρ ∈ π12 and that ρ is realized within λ′ by the subsequence iℓrs. First assume
ρ = 3124. Note that one may take ℓ ≤ k within an occurrence of ρ in this case,
for if ℓ > k, one may replace ℓ with k. Furthermore, observe that we must have
r > j, for if not, then λ would contain ρ with the subsequence jℓr(s − 1), which
is impossible. Now consider the position of any y ∈ [k + 1, j − 1]. If y lies (i) to
the right of s, (ii) between r and s, or (iii) to the left of r, then there would be
an occurrence within λ of 2341, 2314, or 3124, respectively, as witnessed by the
subsequences jr(s− 1)y, jry(s− 1), or jkyr, with each scenario being impossible.
This implies ρ = 3124 is not possible.

Now assume ρ = 2314. Note that r > j, for otherwise λ would contain 2314
with j(ℓ − 1)r(s − 1). But then r > j implies λ′ contains an occurrence of 3124
with ijrs, which is impossible by the preceding case. Finally, assume ρ = 2341.
If y ∈ [k + 1, j − 1], then λ would contain an occurrence of 2341, 2314, or 3124,
respectively, as witnessed by the subsequences j(ℓ− 1)(r− 1)y, j(ℓ− 1)y(r− 1), or
jky(ℓ− 1), depending on whether y lies (i) to the right of r, (ii) between ℓ and r,
or (iii) to the left of ℓ. Thus, ρ = 2341 is also not possible, which implies λ′ avoids
the patterns in π12 if λ does, as desired.

Note that (2.21) implies for 2 ≤ i ≤ n− 1,

c(n; i) = c(n− 1; i− 1) + c(n− 1; i)

+

i∑

j=3

(c(n− 1; j)− c(n− 2; j − 1)− c(n− 2; j)), (2.22)

with c(n;n) = c(n; 1) = c(n− 1).
Define Cn(v) =

∑n
i=1 c(n; i)v

i−1. Multiplying both sides of (2.22) by vi−1, and
summing over 2 ≤ i ≤ n− 1, yields

Cn(v) = (1 + vn−1)Cn−1(1) + (1 + v)Cn−1(v)− (1 + vn−1)Cn−2(1)

+
1

1− v
(Cn−1(v)− Cn−2(1)− vn−1Cn−1(1) + vn−1Cn−2(1))

− 1 + v

1− v
(Cn−2(v)− Cn−3(1)− vn−2Cn−2(1) + vn−2Cn−3(1))

− v − vn−1

1− v
Cn−3(1)− vn−2(Cn−2(1)− Cn−3(1)), n ≥ 3,

with C0(v) = C1(v) = 1 and C2(v) = 1 + v.
Define C(x, v) =

∑
n≥0 Cn(v)x

n. Multiplying both sides of the last recurrence
by xn, and summing over n ≥ 3, we obtain

(1− x− xv)(1 − x− v)

1− v
C(x, v) = (1 − x)2 − vx+

x(1 − x)(1 − x− v)

1− v
C(x, 1)

Twelve subsets of permutations enumerated as maximally clustered permutations 73



− vx(1 − vx− 2x+ vx2)

1− v
C(xv, 1).

Substituting v = 1−x in the preceding functional equation yields C(x(1−x), 1) =
1−2x

(1−x)3−x2 , which implies

C(x, 1) =
2(1− 4x)

2− 9x+ 4x2 − x
√
1− 4x

.
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