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Abstract

The presented research shows how the first derivatives (slope and aspect)
can be calculated from a fuzzy surface by the means of fuzzy arithmetic
within the geographic information system. The proposed method works with
fuzzy numbers of arbitrary shape which helps with more precise specification
of input values as well as more exact calculation of results. Three most im-
portant methods of partial derivatives calculation based on finite elements
approximation of a surface are presented and discussed. The presented ap-
proach provides an alternative for uncertainty propagation that is commonly
performed by the utilization of statistics and the Monte Carlo method in geo-
graphic applications. The example calculation shows the differences between
the obtained results calculated with the utilization of fuzzy arithmetic and
the Monte Carlo method.
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1. Introduction
The process of modelling surface from a finite set of samples is a common problem

in geosciences. Surfaces are often treated as certain and error-free models [41]
even though there is a wide set of reasons why they are not. Perhaps the biggest
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issue arises from incomplete knowledge about the surface under study [32]. A
user cannot be sure that the sample of surface values contains values that are
representative enough to construct a precise surface. There is also the issue of
measurement precision of the individual sample point, some authors point out
that every measurement is fuzzy, at least to some extent, because there are no
absolutely precise measurements [26, 37]. Another uncertainty can be introduced
to the surface by the selection of interpolation technique [32]. Not only there is
a range of methods that can be used for interpolation (IDW, spline interpolators,
kriging etc.) but some of these methods have parameters (e.q. tension of spline,
parameters of variogram in kriging) containing epistemic uncertainty. The values
of these parameters are selected by the user and their selection is partially arbitrary
[27]. In fact, these parameters are better described as a set of possible values than
a single value which may not be correct. Authors [25] argue that much, if not the
most, of uncertainty of surfaces in geosciences is interval, fuzzy or possibilistic in
its nature. Fisher [13] mentions that the fuzzy set theory should be used if the
definition of a class or an individual object is vague. The individual object in the
case of a surface, represented commonly in geographic information system (GIS)
by a grid, is a cell and its value is definitely vague because it can be based on
uncertain data, influenced by epistemic uncertainty in the interpolation method
[27] and even the grid model itself is a simplification and idealization of a real
surface, which introduces yet another source of uncertainty [11].

Based on these facts a model of surface that would account for its inherent
uncertainty is needed [26]. Such model was firstly proposed in [8] and [4]. A fuzzy
surface as described in [8] is a result of interpolation with imprecise data, while
the model in [4] was based on precise data but imprecise variogram in kriging
interpolation. These two studies were the first to introduce fuzzy numbers into
spatial modelling and spatial prediction but the applications of fuzzy approaches
for predictions and modelling were used in mathematics before [36]. Later, more
techniques and approaches for the construction of fuzzy surfaces emerged, including
bayesian fuzzy kriging [3], kriging with imprecise variograms was further improved
[27], the inverse-distance weighting method [37], and spline interpolators [2, 26, 32].

The definition of a fuzzy surface is only slightly different from an ordinary sur-
face. A fuzzy surface is described by a set of points with known x,y coordinates
and a fuzzy number Z that represents the possible values of z at this location. The
fuzzy number that describes such set of possible values represents the vague, im-
precise or ill-know value. However, this uncertainty of the value does not originate
in variability [25]. Similar deduction was done in [30], who mentions that statisti-
cal models often require more information about uncertainty than a user actually
has. In such situations it might be reasonable and useful to formalize uncertainty
in an alternative way which could be amongst others by the usage of the fuzzy
set theory. Since methods for the creation of a fuzzy surface are either based on
interpolation with imprecise input data, imprecise parameters of the interpolation
and rarely on other methods, the outcome naturally contains this uncertainty. In-
stead of storing only one value of elevation at any point of the surface, the fuzzy
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surface stores a range of possible values (Fig. 1) that the surface can have at the
given point. Fuzzy surfaces are an alternative to probabilistic surfaces that are
commonly used in geography to estimate the influence of uncertainty on surface
analyses [20, 31, 41]. While both these approaches have a lot in common there
are also fundamental differences regarding the way how the resulting uncertainty
is calculated and also about semantics of the results [30].

Figure 1: 3D visualization of a small fuzzy surface

The statistical approach to surface uncertainty tries to conceptualize uncer-
tainty that occurs within the whole area of the surface through the specification of
its spatial autocorrelation parameters [31]. The most commonly used method for
statistical processing of uncertainty within GIS field is the Monte Carlo method
[20]. Fuzzy surfaces are focused mainly on modelling uncertainty of a single cell in a
grid [1, 25] while not accounting for the spatial autocorrelation explicitly. However,
when the spatial autocorrelation of uncertainty is considered, it requires the user to
describe it very precisely, by the specification of parameters of the autocorrelation
function. This information is very rarely available to the user [30] which leads to
providing of expert estimates instead of exact values [31].

As noted in [14], fuzzy mathematics has been rarely employed to actually anal-
yse fuzzy surfaces, even though fuzzy surface exist in geosciences for a long time.
However, some examples of calculations of fuzzy slopes [6, 16, 37] and the visibil-
ity analysis on fuzzy surfaces [1] exist. All of them are, however, rather a cases
of specific examples that describes only one method with specific type of fuzzy
surface. In this article we summarize several methods for the calculation of slope
and aspect from the fuzzy surfaces that are working with the arbitrary type of
fuzzy numbers. The presented methods should provide an approach for the fuzzy
slope and the fuzzy aspect calculation as general as possible. Further the presented
method serves as an example of a spatial analysis on a fuzzy surface and the article
explains all the necessary steps needed to devise fuzzy equivalent of any subsequent
analysis.

2. Fuzzy numbers and fuzzy arithmetic

A fuzzy number is a special case of a fuzzy set [40], that represents a imprecise or
uncertain value. Like a fuzzy set a fuzzy number F is also defined by a membership
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function p;(x) that assigns the value from the interval [0, 1] to every z from the
universe X. The value of pz(z) is denoted as membership value and describes how
much likely it is that the given value z belongs to the fuzzy number F. Authors [24]
explain the semantics of a fuzzy number using the concept of interval of confidence
(not to be confused with the confidence interval from statistics) and the level of
presumption. The level of presumption is another designation for membership
value. The interval of confidence describes the range that the value can take,
while the level of presumption determines how likely this interval of confidence
is. As the level of presumption increases the interval of confidence never increases
[24]. This association corresponds to the mechanism of human thinking about
uncertain variables. The less likely values (lower presumption levels) can be found
in wider intervals while the values that are more likely (higher presumption levels)
are situated in narrower intervals.

There are three main conditions that a fuzzy set has to fulfil in order to be a
fuzzy number [19]. The universe on which the set is defined should be real numbers
— R. The height of the fuzzy set have to be equal to 1 [40] so that there is at least
one value with a full membership to the set. The fuzzy set has to be convex. The
convex fuzzy set fulfils:

pp (e + (L= Nrz) > min(up(a1), pp(a2)) (2.1)

for each z; and z2 from R and A from the interval [0, 1] [40].

There are several types of fuzzy numbers, however the piecewise linear fuzzy
numbers are of special importance here because they are simple for implementation
and calculations [7, 19]. Visualization of different types of fuzzy numbers is shown
in Fig. 2.

Figure 2: Visualization of fuzzy numbers: a) triangular, b) trape-
zoidal, ¢) piecewise linear, d) piecewise linear approximating gaus-
sian
There are several important notions describing fuzzy numbers:
o kernel is a set of all x where pz(z) =1

e support is a set of all = where pz(x) > 0

e a—cut is a set of all © where pz(x) > o for all a € [0, 1], and is denoted as
F,
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The important property is that all a-cuts (including kernel and support) are crisp
sets [9, 40]. Such a-cut can be written as F,, = [F,, F,], where F, is a closed
interval and F, , F, are lower and upper endpoints of this interval. This is useful
for further processing of fuzzy sets. The value of « is the level of presumption and
the a-cut itself is the interval of confidence in the description provided in [24].

The decomposition theorem states that every fuzzy set can be described by a
sequence of a-cuts [19]. The theorem further states that for every z € R that
belongs to the fuzzy set F applies:

pp(x) =sup{a € (0,1) |z € F,}. (2.2)

This theorem helps with representing the fuzzy set by a finite number of a-cuts. It
also allows the transformation from the description by membership function into
the description by a-cuts and vice versa.

For practical implementations it may be necessary to describe fuzzy sets by a
list of its a-cuts then the number of such cuts has to be specified. After choosing a
suitable m as the number of intervals to divide the interval [0, 1] into, m + 1 values
of a-cuts is given by following equation [19]:

= ji=0,1,....m (2.3)

Such decomposition of a fuzzy set is very useful for practical applications, especially
for the calculation with fuzzy numbers.

Classic crisp numbers can be seen as a special case of fuzzy numbers, where
each a-cut is a degenerative interval ([z,Z], where z = T) [19]. This fact allows the
combination of crisp values with fuzzy numbers in calculations.

2.1. Fuzzy arithmetic

Fuzzy arithmetic is an extension of a classic arithmetic on fuzzy numbers [24]. It
allows complex mathematical operations with vague values. For functional combi-
nation fuzzy numbers X,Y the membership function of resulting fuzzy number Z
is defined by the extension principle [40]:

pz(z) = sup min(pg(z), py(y)). (2.4)

z=F(z,y)

In this equation the F(z,y) is the functional combination of values z and y that
belongs to fuzzy sets X and Y respectively. Eq. (2.4) is the most general form of
extension principle which can be either simplified for functions of only one fuzzy
number or extended to functions of more than two fuzzy numbers [19, 24]. The
extension principle provides complete theoretical foundation for the calculation of
all possible operations with fuzzy numbers. However, it is not particularly suit-
able for the practical implementation due to its high computational demand [19].
Three alternatives to this approach exist: the concept of L-R fuzzy numbers [9],
decomposed fuzzy numbers [19] and the usage of interval arithmetic for calculation
of a-cuts [19, 24, 29]. This last approach is identified as the most suitable for the
practical use in [19].
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2.2. Use of interval arithmetic for calculations with fuzzy
numbers

The practical implementation of fuzzy arithmetic that uses interval arithmetic is
based on the usage of the decomposition theorem (Eq. (2.2)). Fuzzy numbers
decomposed on their a-cuts can be combined as ordered sets of intervals according
to interval arithmetic defined in [29]. The implementation can be described as a
following series of steps. Fuzzy numbers X and Y are divided into m + 1 a-cuts
(Eq. (2.3)). Then for each of those p;:

[Zo Za) = [Xas Xa] © [Ya, Ya] = [min(G), max(G)] (2.5)
G={X00Ye,Xo0Ya,Xo0Ya XaoYs} (2.6)

If the operation o is division, we assume that 0 ¢ [Y,,,Y,], otherwise the operation
is not valid.

2.3. Functions of fuzzy numbers

The issue of propagation of fuzzy numbers through functions is much more complex
than the basic fuzzy arithmetic. Still some approaches from interval arithmetic
are of use and can simplify the process significantly [19]. For functions that are
monotonous with respect to all their variables the problem is simple, there is only
a need to the propagate combinations of endpoints of a-cuts [29]:

f(Ya) = min(f(Xa), f(Xa)), max(f(Xa), f(Xa))] (2.7)

Other functions like the integer exponentiation of a fuzzy number can be ex-
plained by a set of rules [24, 29]. If the exponent n is an odd number, then:

X", X" if Xo <0
K2 = 2= { X" X0 if Xo > 0 (28)
[min(X,", X, ), max(X,", X, )] otherwise .

if the exponent is an even number:

X" Xo"] if Xo <0
X =Zo={[Xa" X" if Xo >0 (2.9)

[0, max(X,", Xo )] otherwise .

In other cases it is usually necessary to use directly the extension principle
(Eq. (2.4)) or some technique that simplifies this use — i.e. the transformation
method [19]. The extensive description of fuzzy arithmetic and related topics can
be found in [19, 24, 29].
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3. Comparison of fuzzy arithmetic and monte carlo

Utilization of the Monte Carlo method for the uncertainty propagation is rather
common in surface analyses [12, 20, 21, 31|, on the other hand fuzzy arithmetic is
used rather rarely [14]. The main reason is because the Monte Carlo procedure is
very simple to implement [19], as described in [31]. The method can be described
by four main steps. The first step is to develop a model of surface and a model
of uncertainty. The model of uncertainty is usually based on experts’ knowledge
and reasonable assumptions about the spatial autocorrelation of uncertainty [31].
The next step is to draw enough random realizations of uncertainty and add it to
the surface to produce the uncertain surface. For each realization the calculation
of analysis (e.g. slope, aspect, visibility calculation) is performed. The last step
is to statistically evaluate the results, usually by calculating mean and standard
deviation of the results. The process itself does not require any changes to the
calculation of analysis, only its repetition for several times. The method is only
demanding on computational power and time, because the number of iterations is
generally in hundreds or even thousands.

The utilization of fuzzy arithmetic requires the adjustment to the analysis al-
gorithms, because it has to be done according to the principles of fuzzy arithmetic.
So far fuzzy arithmetic is not implemented in any software that would allow calcu-
lations of anything else but very simple examples. This is one of the reasons why
the use of fuzzy arithmetic is at present limited to the scientific studies [19]. In
case of the surface analysis, uncertainty of the surface is directly included in the
fuzzy surface, so there is no need to generate random realizations of the surface
and the result is calculated in one pass, without the need to iteratively calculate
the outcomes.

Fuzzy arithmetic and the Monte Carlo method serve the same purpose — the
uncertainty propagation. However, semantics and procedures vary significantly.
The biggest difference is in both semantics of the result and its range. Since Monte
Carlo is based on probability, it focuses on obtaining the probable outcomes and
it cannot guarantee that the results will include all possible outcomes. Fuzzy
arithmetic is focused on obtaining all the possible outcomes, so it guarantees that
even the extreme combinations of input values will be included in the result. This
is the main difference that arises from semantic differences between the Monte
Carlo method (probabilistic model of uncertainty) and fuzzy arithmetic (model
of uncertainty based on imprecision). The more developed analysis of semantics
differences amongst the uncertainty theories is provided in [30].

The Monte Carlo method can be adjusted to produce results that are actually
close to the results of fuzzy arithmetic, by use of optimization methods like for
example the latin hypercube sampling [28]. But the usage of these optimization
techniques in geosciences is not common. Indeed, fuzzy arithmetic provides results
that yield larger uncertainties, however, if there is very little knowledge about
uncertainty, it is the semantically correct approach [30].
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4. Derivatives of surfaces

Derivatives are useful characteristics as they are providing a mathematical descrip-
tion of the surface appearance. The GIS tools for their calculation are based on
the approximation of a real surface by a finite number of elements [39]. In the case
of a grid structure these elements are cells [37]. This means that the derivative at
a specific cell is calculated based on the values of neighbouring cells. There are two
first derivatives of the surface: slope and aspect, several second derivatives that
describe various types of curvature [39], a complete list of primary and secondary
surface parameters and their significance is provided in [38]. All of those are com-
monly used in geographical and environmental analyses, for example in the fields
like hydrology, geomorphology, geology, oceanography, ecology and others [34].

According to [39], two conditions have to be met to allow the calculation of
the derivatives of the surface. The cells of the grid have to be aligned to the
geographical axes and the distance between the centres of the cell should be the
same for the whole grid. If both these conditions are met, the calculation is rather
straightforward. Otherwise it is necessary to resample the grid according to those
conditions. Other solution would be the modification of the equations which is
performed rather rarely due to the complexity of this process [39].

27 Z8 21

26 | 29 | %2

z5 Z4 | %3

Figure 3: Node numbering convention in the neighbourhood of a
central cell zg (edited from: [39])

4.1. Methods of derivatives calculation

The basis of the derivatives determination is to calculate partial derivatives of the
surface in two directions: North-South (denoted as g—z with respect to the alignment

with this axis) and East-West (denoted as 92). There are several methods for
calculation of those gradients, their comparison was performed in [23], [42] and
also in [34]. The conclusion was that the 4-Cell method [15] provides the most
precise results, closely followed by the Horn’s method [22]. The third best algorithm
was a modified version of Horn’s method and as the forth the method of Sharpnack
and Akin [33] was evaluated [23], these conclusions are approximately in agreement
with the conclusions made in [34]. Study [42] was focused mainly on other elements
of calculation. The algorithms were tested with respect to data quality and the
resolution of the grid but findings from all these papers [23, 34, 42] suggest that
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4-Cell, Horn’s, Sharpnack’s and Akin’s methods are all good estimators of the
first derivatives of the surface. Based on these results, these three algorithms for
gradient calculation are considered in the article, they happen to be the most
commonly implemented in GIS.

In all upcoming formulas the cells are labelled according to Fig. 3. The variable
d denotes the size of the grid cell. The arrangement and numbering of the cells
vary through the literature and the formulas for calculation of the derivations vary
accordingly [39].

The 4-Cell method calculates the values of gradients only from the cells that
have direct neighbourhood with the central cell. The method was firstly described
in [15]. The equations for this calculation are:

0z 29— zg

Er R (4.1a)
0z 23—
opTy =5 (4.1b)

Horn’s method considers even the cells in the neighbourhood that have only
one point common with the central cell. Cells that have common edge have been
assigned higher weight in the calculation. The method was presented in [22] and
the equations are:

0z (214 222+ 23) — (27 + 226 + 25)

0z _ (2zr+228+21) — (25 + 224 + 23) (4.2b)
Ay 8d ' '

Sharpnack and Akin’s Method is very similar to the Horn’s method with the
change that all cells have the same weight. This method was proposed in [33] and
the equations have the following form:

0z (214 22+ 23) — (27 + 26 + 25)

7= o , (4.3a)
0z (274 28+ 21) — (25 + 24 + 23)

— . 4.

5 T (4.3b)

4.2. Calculation of slope and aspect

The three methods that were mentioned in the previous section provide three ways
for the gradient calculation. These gradients are further used to calculate the slope
S and the aspect A. For the slope calculation as a proportional rise the following

equation is used:
02\ > 02\ >
= — — ] . 4.4
° \/<3f€) +(<’9y> “4)
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If the result should be in percent, a slightly different variation of the equation is

needed:
02\ 02\ 2
=1 — — ] . 4.
S 00\/<8x> +<8y> (4.5)

If the result should be provided in degrees, a slight modification is necessary. This
slope is labelled as geographical:

S, ) = $arctan \/(22)2 + (g;)z . (4.6)

The calculation of aspect is a bit more complicated and requires the use of
arctan2 function:

A= arctanQ(—% 0z

ay7_%)' (47)

The mathematical aspect A is different from the geographical aspect A,4, A has
a range of [—m, ] radians, the value of 0 for the East and the values increase in
a counter-clockwise direction. A, has a range of [0,27] in radians or [0°,360°] in
degrees, the value of 0 for the North and the values increase in a clockwise direction
[39]. So there is a need to adjust the values by this formula:

4.8
90° — %A otherwise. (48)

4500 — 180 4 jf 180 4 > 9q°
Ag (O) = { 0 o
Based on those equations the calculation of approximation of slope and aspect can
be calculated from the surface represented by the grid.

5. First derivatives of fuzzy surfaces

In any analysis calculated on a fuzzy surface uncertainty of the surface is propagated
through the analysis into the result. Such result then shows uncertainty connected
to the input data represented as fuzzy numbers. So far there are three examples
of the calculation of a fuzzy slope in the literature provided in [16], [37] and [6].
Unfortunately, in first two cases a fuzzy slope is not the main focus of the research
so it is not discussed in detail. [16] use a fuzzy slope to identify the areas having a
slope potentially higher than 25 %, but the calculation serves as one of the several
examples in the article, so it is discussed very briefly. [37] provided methods for
the calculation of partial derivatives using the finite elements method, but the
presented method is focused on a fuzzy surface constructed using purely triangular
fuzzy numbers. The equations are adjusted to work on such surface, but it does not
handle the calculation of a fuzzy slope in general, because triangular fuzzy numbers
are only one type of a theoretically infinite set of fuzzy number types. These case
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specific adjustments of equations are common for presenting methods that utilize
fuzzy arithmetic [19]. [6] described the calculation of only fuzzy slope using Horn’s
algortihm. There has been no attempt (of which the authors are aware) to calculate
the aspect of a fuzzy surface.

The basis for the determination of both slope and aspect is the calculation of
gradients % and %. Considering that all inputs are uncertain and represented
by fuzzy numbers, the results will also contain uncertainty and they will also be
represented by fuzzy numbers. The calculation of gradients themselves is based on
basic arithmetic operators that have fuzzy equivalents according to Egs. (2.2, 2.3)
and ((2.5, 2.6). This applies for all three methods of the gradient calculation (Egs.
(4.2, 4.1, 4.3)).

5.1. Slope

Calculating slope of a fuzzy surface according to Egs. (4.5, 4.6) does not need any
special approaches. Square of a fuzzy number can be calculated according to Eq.
(2.8) and square root is a monotonous function and can be calculated according to
Egs. (2.2) and (2.7). If the slope is to be provided in degrees then the Eq. (4.6) is
used. As mentioned previously, there is no problem with using crisp numbers with
fuzzy numbers while calculating. Thus obtaining the value of the slope as a fuzzy
number is a relatively simple matter.

5.2. Aspect

The aspect calculation is more complicated then the slope calculation. The Eq.
(4.7) contains the function arctan2 [18] that has to be calculated for two fuzzy
arguments. This in not a trivial operation and the function has to be modified to
allow the calculation. The common definition of arctan2 is:

arctan £ ifx>0

arctanZ 47 ify >0and x <0
arctanZ —7  if y <Oand x <0
+Z ify>0and =0
-3 ify<Oand =0
undefined ify=0and =0

arctan2(y, z) = (5.1)

From the viewpoint of the calculation with fuzzy numbers there are two main
problems. The function is not defined for ¥y = 0 and = 0 and it is discontinuous
for z > 0 and y = 0 (Fig. 5). This complicates the calculation if ¥ and X
contain 0. Figure 4 shows four examples of areas bounded by supports of fuzzy
numbers, labelled FN{, FNy, FN3 and FNy4. As visible from the examples, FN;
and FNy delimit angle intervals with the values of approximately [215°,250°] and
[30°,100°].1 Example FN3 shows a situation in which both intervals contain 0

1The presented examples are for the sake of understanding shown in degrees with 0° pointing
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and as a result FN3 has a range of [0°,360°], which practically means that the
aspect cannot be specified. The most interesting situation is FN4, the smallest
value contained in the rectangle is 0° and the highest value is 360° but actually
the values between 45° and 290° do not belong to the set. In such situation it is
impossible to construct a valid fuzzy number with respect to Eq.(2.1).

195 4g9——165

Figure 4: Four examples of bounding boxes on orientation

In order to allow the calculation with fuzzy numbers there is a need for a mod-
ified version of the function. As noted in [18] there exists a zero direction problem
in directional statistics, the problem that is encountered when arctan?2 is calculated
for the fuzzy arguments is quite similar. It can be avoided but the obtained results
will require a little bit more work in order to be interpreted correctly.

arctan £ — 27 if y <0and z >0

arctan £ ify<Oand x>0

arctan £ — 7 ify>0and z <0
arctan2m(y,z) = ¢ arctan £ —7  if y <0 and z <0 (5.2)

+5 - ify>0and z=0

-5 - ify<Oandx=0

undefined ify=0and =0

If the calculation of arctan2(Y, X) is to be performed, firstly it needs to be deter-
mined if the problem with discontinuity of the function will occur. This will happen
if for any a there exist a-cuts such that 0 € Y, and 0 > X,,. If this condition is
true, the modified version of arctan2 needs to be used (Eq. (5.2)). The rotated

upward and clockwise rise, even though those angles should be in radians with 0 pointing to the
left and counter-clockwise rise of values.
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variant of the function has a modified range [—1.57,0.57] instead of the original
range [—, 7] and it is discontinuous if = 0 and y < 0 (see Fig. 5). The problem
with undefined value of both functions is solved by setting the result interval to a
full range of values if x = 0 and also y = 0. In either case both functions arctan2
and arctan2m are continuous with respect to both variables and as such they can
be propagated by the use of simple approach according to Eq. (2.7).

=
- 5
5
) SSSS || ,
S S % S
¢ =
<>

2
- XK N—
<> POSIISSS
& SIS
Q‘:“

-1.0 -1.0 10 -10

Figure 5: Left figure — values of arctan2(y, z). Right figure — values
of arctan2m(y, z). Values of Z are in radians

When recalculating from the mathematical orientation onto the compass ori-
entation (Eq.(4.8)), the value used for the comparison is the maximal value of the
kernel — Ay. After calculating A, according to Eq. (4.8), the resulting values of 4,
then do not fit in the original range of aspect values [0°,360°], which is the result
of the propagation of fuzzy numbers through the calculation. Actually, the result-
ing values are from the range of [—90°,630°], meaning that the negative values v
have the aspect of 360° + v and the positive values v higher than 360° are equal
to v — 360°. The fuzzy orientation is more complicated for interpretation, but it is
necessary to calculate them as such values to allow the correct propagation of the
fuzzy numbers through the calculation. For the visualization and interpretation it
is necessary to ensure that all those values will be interpreted correctly.

6. Numerical example

In this section an example of the calculation of aspect and slope using Horn’s
method (Eq. (4.2)) will be shown. The method is chosen because it is the one that
is most commonly implemented in GIS. For the sake of readability the calculation
will only be done for a-cuts 0 and 1. Each alpha cut of the fuzzy number F will

be written as (« : &; XQ) The distance between cells has a value of d = 10
meters. The input fuzzy numbers or neighbouring cells are triangular and have the
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following definition:

= (0.0 : 382.81;384.01)(1.0 : 383.41;383.41)
= (0.0 : 384.34; 385.5)(1.0 : 384.92; 384.92)
= (0.0 : 385.83;386.93)(1.0 : 386.38; 386.38)
24 = (0.0 : 385.63;386.63)(1.0 : 386.13; 386.13)
= (0.0 : 385.46; 386.22)(1.0 : 385.84; 385.84)
= (0.0 : 384.13;384.87)(1.0 : 384.5;384.5)
27 = (0.0 : 382.63;383.53)(1.0 : 383.08; 383.08)
= (0.0 : 382.74; 383.78)(1.0 : 383.26; 383.26)

The surface used in this example is visualized in Fig. 6.

382,63

Figure 6: Visualization of a small fuzzy surface used in the example

The first step is to calculate the values of az and az , to do that we firstly

I
extract the necessary a-cuts from the fuzzy numbers according to Eq. (2.3) and
then calculate the values according to Eq. (4.2) for each a-cut, applying Egs. (2.5,
2.6) for each operation. The resulting fuzzy numbers have the values of:

% = (0.0 : —0.027;0.07)(1.0 : 0.021;0.021)

T

0z

gy — (0:0: ~0.19;-0.09)(1.0: ~0.14;~0.14).

With the knowledge of gradients the calculation of slope is a simple matter (Eq.
(4.5)). Eq. (2.8) will be used to calculate the power of fuzzy numbers, the addition
of fuzzy numbers is done according to Egs. (2.5, 2.6) and square root can be
calculated as a monotonous function (Eq. (2.7)).

2
a—; = (0.0 : 0.0;0.005)(1.0 : 0.00;0.00)

2= = (0.0:0.009;0.037)(1.0 : 0.02;0.02)
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S =(0.0:0.093;0.206)(1.0 : 0.145;0.145)
The value of slope S can be further transformed to percent according to Eq. (4.5):
S =(0.0:9.3;20.6)(1.0 : 14.5;14.5).
To calculate the aspect the Eq. (4.7) will be used.
A =(0.0:73.74;126.92)(1.0 : 98.48;98.48)

The mathematical aspect needs to be turned into the geographical aspect ac-
cording to Eq. (4.8). For the comparison the value of A4; is used and the geograph-
ical aspect is obtained.

Ay = (0.0 : —36.92;16.26)(1.0 : —8.48; —8.48)

As can be seen this is the case when the range of the resulting fuzzy easpect is
outside of the classic aspect range [0°,360°]. That means that this fuzzy aspect
needs to be used interpreted as described in section 5. The resulting geographical
aspect spans around north, with the modal value being slightly inclined towards
west. For the further comparison with Monte Carlo method the range of the result
can be described by two intervals [0,16.26],[323.08,360] (°) that have the same
interpretation as the support of fuzzy aspect.

Through the whole presented example for all variables the kernel value of each
fuzzy number is the same as it would be in case of the calculation with crisp values.
This fact shows that the propagation was done correctly because if triangular fuzzy
numbers, where the kernel value corresponds to what originally was a crisp number,
are used, then the kernel value of the result should be equal to the result of crisp
calculation [19].

As a comparison the same calculations were performed with the use of the
Monte Carlo simulation, using 100, 500, 1 000, 10 000 and 1 000 000 iterations.
Triangular probability distributions were used as they are specified by three values
[10], which makes them very similar to the triangular fuzzy numbers. The results
of the simulations are summarized in Tab. 1. It is obvious that as the number of
simulations raises, the ranges get closer to the range identified by fuzzy arithmetic.
But it is very unlikely, even with very high number of simulations, for Monte Carlo
to identify a complete range of possible outcomes.

The results that Monte Carlo failed to identify have very small probability of
occurrence, but that are feasible solutions to the problem, this result is in agreement
with the examples provided by [19] and [25]. These solutions can be perceived as
the best/worst possible solutions and they can possibly be important for decision
making. The complete range of outcomes should be [9.3,20.6] (%) for the slope
and [0, 16.26], [323.08,360] (°) for the aspect.

The Monte Carlo method did not reach these widths of intervals but it is visible
from the Tab. 1 that as the number of simulations increases, the estimates are
actually converging towards the results provided by fuzzy arithmetic. However,
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Table 1: Monte Carlo experiments

Simulations  Slope range (%) Aspect range (°)
100 [12.23,16.54] [344.24, 359.83]
500 [12.08,17.16] 0.01,1.28], [339.93, 359.77]
1000 [11.43,17.33] [0.06, 2.24], [341.30, 359.92]
10 000 [11.21,17.84] [0.06, 2.81], [339.54, 359.54]
1000 000 [10.61,18.27] [0.00, 5.93], [336.03, 360.00]

the number of simulations to obtain the true range is likely to be very high since
the extension of the intervals is not significant even for a significant increase in the
number of simulations. E.g. the change between the fourth and the fifth row of
Tab. 1, even though the number of simulations is increased by a factor of 100 the
obtained results change relatively insignificantly.

The calculation of slope and aspect for a whole grid instead of just one cell
requires simply repeating this step for each cell of a grid. The source code for
calculations of fuzzy derivatives with higher number of a-cuts and the other two
methods for derivatives calculation are referenced in the Appendix 8.

7. Case study: Analysis of artificial fuzzy surface

For the purpose of practical demonstration analysis of fuzzy surface the artificial
dataset is used. The dataset itself as well as code for its creation is described
in Appendix 8. The case study demonstrates practical usability of fuzzy surface
analyses in geographical applications.

Points from which the fuzzy surface is created are generated as Gaussian random
field with gaussian correlation function with sill 200, range 400, nugget 0 and mean
value equal to 150. To make the data less dependant on the specific function a
random value drawn from normal distribution with 0 mean and standard deviation
equal to 4 is added to each point. The dataset consists of 400 measurements
randomly distributed in the area of size 4000x4000 meters. The z value (elevation)
is interpolated into a grid of 401x401 cells, which makes cell size equal to 10. This
datasets simulates real data measured on a surface.

The dataset is interpolated using fuzzy kriging with uncertain variogram pro-
posed originally in [4] and later further developed in [27]. The kriging parameters
sill, range and nugget are specified as triangular fuzzy numbers. The specific values
are summarized in Tab. 2. The process of calculation of fuzzy kriging as well as
source code for fuzzy interpolation are presented in [5].

Based on the previously mentioned fuzzy surface the fuzzy slope and fuzzy
aspect can be calculated using procedures shown in section 5. For further use the
values of minimum, modal a maximum are the most important as they describe
the limits and the most likely value. The visualizations of fuzzy slope and fuzzy
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Table 2: The values of semivariogram parameters

Parameter Minimal value Modal value Maximal value

sill 130 138 145
range 390 395 400
nugget 13 15 17

aspect calculated with use of Horn’s derivatives equations (Eq. (4.2)) are on Figs.
7 and 8.

»

slope
(degrees)
13°

0 05 1 15  2km

Figure 7: Visualization of minimal (A), modal (B) and maximal
(C) slope calculated from the fuzzy surface. The slope unit are
degrees

The presented approach is useful in analysing uncertain surfaces, where it would
be illogical to present precise outcomes. For example the if the geostatistical esti-
mations based on imprecise information, as presented in [35], should be analysed
then using fuzzy arithmetic is the only proper way to do so.
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Figure 8: Visualization of minimal (A), modal (B) and maximal
(C) aspect calculated from fuzzy surface. The aspect is visualized
in directional categories

8. Conclusion

Hanss [19] noted that fuzzy arithmetic has received little attention and that the
applications barely exceeded the level of elementary academic examples. The same
statement regarding the analyses of fuzzy surfaces is done in [14]. The main reason
for this lack of practical utilization is that there is basically no implementation of
fuzzy arithmetic in even the mathematical software let alone within GIS. Excep-
tions are relatively new tools for R project FuzzyNumbers [17] and also FuzzyKrig
toolbox [35] for Matlab®. The former allows calculations with fuzzy numbers while
the latter is a tool for spatial interpolation with uncertain data and/or uncertain
parameters. The secondary reason could be that some operations are not straight-
forward, like the presented calculation of aspect of a fuzzy surface. The process is
more complex when compared to the commonly used Monte Carlo method. But
still, such analyses are possible and necessary for further progress in the topic of
analyses of fuzzy surfaces.

The presented research is in agreement with the previously performed stud-
ies that presented the processes of slope calculation [6, 16, 37|, above that the
procedure for calculating the aspect of a fuzzy surface is presented as well. The
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presented algorithms work for fuzzy numbers of arbitrary shape and the precision
of the calculation can be adjusted by selecting different amounts of a-cuts. Three
types of surface gradients that are the most commonly implemented in software
were shown to be compatible with fuzzy arithmetic and can be used to calculate
the first derivatives of fuzzy surfaces.

The advantage of the presented approach, when compared to another commonly
used technique of the uncertainty propagation — the Monte Carlo method, is that
the derivatives of a surface are calculated in one pass and all uncertainty of the
fuzzy surface is included in the result. Uncertainty is naturally incorporated in the
process by the use of fuzzy numbers and fuzzy arithmetic, so there is no need for
iterations in the calculation. Unlike Monte Carlo, fuzzy arithmetic can guarantee
inclusion of all possible outcomes (including limit cases) in the result. The Monte
Carlo method, on the other hand, focuses only on the most probable results [19].
This is an important difference amongst these two methods that might be important
for decision making process based on the result of calculation with uncertainty.

According to the extension principle [40], every operation can be extended to
its fuzzy equivalent. That means that every analysis that can be performed on
a surface in GIS can be also performed on a fuzzy surface and the result will
contain and bound uncertainty of the surface. Such approach to modelling should
provide an alternative to the currently used Monte Carlo method and provide GIS
users another possibility how to conceptualize and propagate uncertainty through
geographic analyses. The need for new approaches and methods is quite significant
as the issue of uncertainty propagation within GIS is still relatively undeveloped
[21].

Further research should focus on a subsequent surface analysis, which can in-
clude but are not limited to second derivatives, optimal path selection, visibility
analysis, catchment delimitation and others.

Acknowledgements Authors are thankful for the reviewers’ comments that
helped in improving this article.

Appendix: Code

The examples in section 6 are performed with the use of FuzzyNumbers package
[17]. The source code for the example and its variants, calculated using differ-
ent method of derivatives determination, can be found in https://github.com/
JanCaha/AMeI-paper. The data used in section 7 are available as well along with
the results calculated by other two methods for gradient calculation.

Procedure of creating the fuzzy surface that was used as input data in the case
study can be found in https://github.com/JanCaha/Hais2015-paper and in [5].
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