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Abstract
The purpose of this paper is to establish a general strong law of large

numbers (SLLN) for arbitrary sequences of random variables (rv’s) based on
the squared indice method and to provide applications to SLLN of associated
sequences. This SLLN is compared to those based on the Hájek–Rényi type
inequality. Nontrivial examples are given. An interesting issue that is related
to extreme value theory (EVT) is handled here.
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1. Introduction

In this paper, we present a general SLLN for arbitrary rv’s and particularize it for
associated sequences. In the recent decades both strong law of large numbers and
central limit theorem for associated sequences have received and are still receiving
huge interests since Lebowitz [13] and Newman [17] results under the strict sta-
tionarity assumption. The stationarity assumption was dropped by Birkel [3], who
proved a version of a SLLN that can be interpreted as a generalized Kolmogorov’s
one. A recent account of such researches in this topic is available in [19]. Although
many results are available for such sequences, there are still many open problems,
especially regarding nonstationary sequences.

We intend to provide a more general SLLN for associated sequences as appli-
cations of a new general SLLN for arbitrary rv’s. This new general SLLN is used
to solve a remarkable issue of extreme value theory by using a pure probabilistic
method.

Here is how this paper is organized. Since association is the central notion used
here, we first make a quick reminder of it in Section 2. In Section 3, we make a
round up of SLLN’s available in the literature with the aim of comparing them
to our findings. In Section 4, we state our general SLLN for arbitrary rv’s and
derive some classical cases. In Section 5, we give an application to EVT where the
continuous Hill’s estimator is studied by our method. The Section 6 concerns the
conclusion and some perspectives are given. The paper is ended by the Appendix,
where are postponed the proofs of Propositions 2 and 3 stated in Section 5.

To begin with, we give a short reminder of the concept of association.

2. A brief reminder of the concept of association

The notion of positive dependence for random variables was introduced byLehmann
(1966) (see [14]) in the bivariate case. Later this idea was extended to multivariate
distributions by Esary, Proschan and Walkup (1967) (see [7]) under the name of
association. The concept of association for rv’s generalizes that of independence
and seems to model a great variety of stochastic models. This property also arises
in Physics, and is quoted under the name of FKG property (Fortuin, Kastelyn
and Ginibre (1971), see [9]), in percolation theory and even in Finance (see [11]).
The definite definition is given by Esary, Proschan and Walkup (1967) (see [7]) as
follows.

Definition 2.1. A finite sequence of random variables (X1, . . . , Xn) is associated if
for any couple of real and coordinate-wise non-decreasing functions f and g defined
on Rn, we have

Cov(f(X1, . . . , Xn), g(X1, . . . , Xn)) ≥ 0

whenever the covariance exists. An infinite sequence of random variables is associ-
ated whenever all its finite subsequences are associated.
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We have a few number of interesting properties to be found in ([19]): (P1) A
sequence of independent rv’s is associated. (P2) Partial sums of associated rv’s
are associated. (P3) Order statistics of independent rv’s are associated. (P4)
Non-decreasing functions and non-increasing functions of associated variables are
associated. (P5) Let the sequence Z1, Z2, . . . , Zn be associated and let (ai)1≤i≤n
be positive numbers and (bi)1≤i≤n real numbers. Then the rv’s ai(Zi − bi) are
associated.

As immediate other examples of associated sequences, we may cite Gaussian
random vectors with nonnegatively correlated components (see [18]) and homoge-
neous Markov chains (see [4]).

The negative association was introduced by Joag-Dev and Proschan (1983) (see
[12]) as follows

Definition 2.2. The variables X1, . . . , Xn are negatively associated if, for ev-
ery pair of disjoint subsets nonempty A, B of {1, . . . , n}, A = {i1, . . . , im}, B =
{im+1, . . . , in} and for every pair of coordinatewise nondecreasing functions f :
Rm → R and g : Rn−m → R,

Cov(f(Xi, i ∈ A), g(Xi, i ∈ B)) ≤ 0 (2.1)

whenever the covariance exists. An infinite collection is said to be negatively asso-
ciated if every finite sub-collection is negatively associated.

Remark 2.3. For negatively associated sequences, we have (2.1), so the covariances
are non-positive. This remark will be used in Subsubsection 4.1.2.

A usefull result of Newman (see [15]) on assocation, that is used in this paper,
is the following

Lemma 2.4 (Newman [15]). Suppose that X and Y are two random variables with
finite variance and, f and g are C1 complex valued functions on R1 with bounded
derivatives f ′ and g′. Then

|Cov(f(X), g(Y ))| ≤ ||f ′||∞||g′||∞ Cov(X,Y ).

Here, we point out that strong laws of large numbers and, central limit theorem
and invariance principle for associated rv’s are available. Many of these results in
that field are reviewed in [19]. Such studies go back to Lebowitz (1972) (see [13])
and Newman (1984) (see [17]). As Glivenko-classes for the empirical process for
associated data, we may cite Yu (1993) (see [22]). We remind the results of such
authors in this:

Theorem 2.5 (Lebowitz [13] and Newman [17]). Let X1, X2, . . . be a strictly
stationary sequence which is either associated or negatively associated, and let T
denote the usual shift transformation, defined so that

T (f(Xj1 , . . . , Xjm)) = f(Xj1+1, . . . , Xjm+1).
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Then T is ergodic (i.e., every T -invariant event in the σ-field generated by the Xj’s
has probability 0 or 1) if and only if

lim
n→+∞

1

n

n∑

j=1

Cov(X1, Xj) = 0. (2.2)

In particular, if (2.2) is valid, then for any f such that f(X1) is L1,

lim
n→+∞

1

n

n∑

i=1

f(Xi) = E (f(X1)) almost surely (a.s).

Now we are going to state some classical SLLN’s for arbitrary rv’s in relation
with Hájek–Rényi’s scheme.

3. Strong laws of large numbers

For independent rv’s, two approaches are mainly used to get SLLN’s. A direct
method using squared indice method seems to be the oldest one. Another one
concerns the Kolmogorov’s law based on the maximal inequality of the same name.
Many SLLN’s for dependent data are kinds of generalization of these two meth-
ods. Particularly, the second approach that has been developed to become the
Hájek–Rényi’s method (see [10]), seems to give the most general SLLN to han-
dle dependent data. Since we will use such results to compare our findings to,
we recall one of the most sophisticated forms of the Hájek–Rényi setting given
by Tómács and Líbor (see [21]) denoted by (GCHR). These authors introduced a
Hájek–Rényi’s inequality for probabilities and, subsequently, got from it SLLN’s
for random sequences. They obtained first:

Theorem 3.1. Let r be a positive real number, an be a sequence of nonnegative
real numbers. Then the following two statements are equivalent.
(i) There exists C > 0 such that for any n ∈ N and any ε > 0

P
(

max
`≤n
|S`| ≥ ε

)
≤ Cε−r

∑

`≤n
a`.

(ii) There exists C > 0 such that for any nondecreasing sequence (bn)n∈N of positive
real numbers, for any n ∈ N and any ε > 0

P
(

max
`≤n
|S`|b−1` ≥ ε

)
≤ Cε−r

∑

`≤n
a`b
−r
`

where Sn =
∑n
i=1Xi for all n ∈ N.

And next, they derived this SLLN from it.
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Theorem 3.2. Let an and bn be non-negative sequences of real numbers and let
r > 0. Suppose that bn is a positive non-decreasing, unbounded sequence of positive
real numbers. Let us assume that

∑

n

an
brn

< +∞

and there exists C > 0 such that for any n ∈ N and any ε > 0

P
(

max
m≤n

|Sm| ≥ ε
)
≤ C ε−r

∑

m≤n
am.

Then
lim

n→+∞
Sn
bn

= 0 a.s.

For convenience, introduce these three notations. We say that a sequence of
random variables X1, X2, . . . has the P-max-variance(r) property, with r > 0, if
and only if there exists a constant C > 0 such that for any fixed n ≥ 1, for any
λ > 0,

P (max (|S1|, . . . , |Sn|) ≥ λ) ≤ Cλ−r Var(Sn).

It has the Var-max-variance(r) property, with r > 0, if and only if there exists a
constant C > 0 such that for any fixed n ≥ 1,

Var(max(|S1|, . . . , |Sn|))2/r ≤ C Var(Sn)

and it has the E-max-variance(r) property, with r > 0, if and only if there exists a
constant C > 0 such that for any fixed n ≥ 1,

(
E (max(|S1|, . . . , |Sn|))2

)2/r
≤ C Var(Sn).

In the sequel we will say that max-variance property is satisfied if one of the three
above max-variance properties holds.

Theorem 3.1 leads to these general laws.

Proposition 1. Let X1, X2, . . . be a sequence of centered random variables. Let
(bk)k≥1 be an increasing and nonbounded sequence of positive real numbers. Assume
that

lim sup
n→+∞

∑

1≤i≤n
b−ri Cov(Xi, Sn) < +∞ (3.1)

and the sequence has the P-max-variance(r) property, r > 0. Then Sn/bn → 0 a.s.
as n→ +∞.

If the sequence has the Var-max-variance(2) property or the E-max-variance(2)
property and if

∑
i≥1 b

−2
i

∑
j≥1 Cov(Xi, Xj) < +∞, then Sn/bn → 0 a.s. as n →

+∞.

Remark 3.3. Here, (3.1) is called the general condition of Hájek–Rényi (GCHR).
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Proof. If the sequence has the E-max-variance(r) property, then there exists a
constant C > 0 such that for any fixed n ≥ 1, for any λ > 0, and for r = 2,

P(max(|S1|, . . . , |Sn|) ≥ λ) ≤ λ−r Var(max(|S1|, . . . , |Sn|))
≤ λ−rE (max(|S1|, . . . , |Sn|))2

≤ Cλ−r Var(Sn) = Cλ−r
n∑

i=1




n∑

j=1

Cov(Xi, Xj)


 .

The conclusion comes out by taking ai =
[∑n

j=1 Cov(Xi, Xj)
]

= Cov(Xi, Sn) in
the Hájek–Rényi’s Theorem 3.1 and applying Theorem 3.2.

It is worth mentioning that the Hájek–Rényi’s inequality is indeed very pow-
erfull but, unfortunately, it works only if we have the max-variance property. For
example, the E-max property holds for strictly stationary and associated sequences
(see [16]).

As to the squared indice method, it seems that it has not been sufficiently
standed to provide general strong laws for dependent data. We aim at filling such
a gap.

Indeed, in the next section, we provide a new general SLLN that inspired by the
squared indice method. This SLLN will be showed to have interesting applications
when comparing to the results of the present section.

4. Our results

In this section, we present a general SLLN based on the squared indice method and
give different forms in specific types of dependent data including association with
comparison with available results. The result will be used in Section 5 to establish
the strong convergence for the continuous Hill’s estimator with in the frame of
EVT.

Theorem 4.1. Let X1, X2, . . . be an arbitrary sequence of rv’s, and let (fi,n)i≥1,n≥1
be a sequence of measurable functions such that Var[fi,n(Xi)] < +∞, for i ≥ 1 and
n ≥ 1. Let us suppose that for some δ, 0 < δ < 3,

C1 = sup
n≥1

sup
q≥1

Var

(
1

q(3−δ)/4

q∑

i=1

fi,n(Xi)

)
< +∞ (4.1)

and that for some δ, 0 < δ < 3,

C2 < +∞, (4.2)

where C2 is defined by

sup
n>0

sup
k≥1

sup
q : q2+1≤k≤(q+1)2

sup
k≤j≤(q+1)2

Var


 1

q(3−δ)/2

j−q2∑

i=1

fq2+i,n
(
Xq2+i

)

 .
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Then
1

n

n∑

i=1

(fi,n(Xi)− E (fi,n(Xi)))→ 0 a.s. as n→ +∞.

Remark 4.2. We say that the sequence X1, X2, . . . , Xn satisfies the (GCIP) when-
ever (4.1) and (4.2) hold.

Proof. It suffices to prove the announced results for Yi = fi,n(Xi) and E(Yi) = 0,
i ≥ 1. Observe that omitting the subscript n does not cause any ambiguity in the
proof below. We have for any positive real number β,

P

(∣∣∣∣∣
1

k

k∑

i=1

Yi

∣∣∣∣∣ ≥ k
−β
)
≤ P

(∣∣∣∣∣
k∑

i=1

Yi

∣∣∣∣∣ ≥ k
1−β
)
≤ 1

k2(1−β)
Var

(
k∑

i=1

Yi

)
.

We apply this formula for k = q2 and get for 0 < δ < 3,

P



∣∣∣∣∣∣

1

q2

q2∑

i=1

Yi

∣∣∣∣∣∣
≥ q−2β


 ≤ 1

q4(1−β)
Var




q2∑

i=1

Yi




≤ 1

q1+δ−4β
Var


 1

q(3−δ)/2

q2∑

i=1

Yi


 ≤ C1

q1+δ−4β
.

Then we have for 0 < β < δ/4,
∑+∞
q=1 P

(∣∣∣ 1
q2

∑q2

i=1 Yi

∣∣∣ > q−2β
)
< +∞. We conclude

that
1

q2

q2∑

i=1

Yi → 0 a.s. as q → +∞. (4.3)

Now set q2 ≤ k ≤ (q + 1)2 and εk,q = 0 if k = q2 and 1 otherwise. We have

1

k

k∑

i=1

Yi −
1

q2

q2∑

i=1

Yi =
1

k

k∑

i=1

Yi −
1

k

q2∑

i=1

Yi +
1

k

q2∑

i=1

Yi −
1

q2

q2∑

i=1

Yi

=
εk,q
k




k∑

i=1

Yi −
q2∑

i=1

Yi


+

1

q2

q2∑

i=1

Yi

(
q2 − k
k

)

=
εk,q
k




k∑

i=q2+1

Yi


+

1

q2

q2∑

i=1

Yi

(
q2 − k
k

)
. (4.4)

But (q2 − k)/k → 0 as q → +∞. This combined with (4.3) proves that the
second term of (4.4) converges to zero a.s. It remains to handle the first term. For
0 < δ < 3,
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P


1

k

∣∣∣∣∣∣
εk,q

k∑

i=q2+1

Yi

∣∣∣∣∣∣
≥ k−β


 ≤ P



∣∣∣∣∣∣
εk,q

k∑

i=q2+1

Yi

∣∣∣∣∣∣
≥ k1−β




≤ P



∣∣∣∣∣∣
εk,q

k∑

i=q2+1

Yi

∣∣∣∣∣∣
≥ q2(1−β)


 ≤ εk,q

q4−4β
Var




k∑

i=q2+1

Yi




≤ εk,q
q1+δ−4β

Var


 1

q(3−δ)/2

k∑

i=q2+1

Yi


 ≤ εk, qC2

q1+δ−4β
.

Now for 0 < β < δ/4,
∑+∞
k=1 P

(
εk,q

∣∣∣
∑k
i=q2+1 Yi

∣∣∣ ≥ k1−β
)
< +∞. Then

εk,q
k




k∑

i=1

Yi −
q2∑

i=1

Yi


→ 0 a.s. as q → +∞. (4.5)

Now in view of (4.3), (4.4) and (4.5) and since (q2 − k)/k → 0, we may conclude
the proof.

Remark 4.3. In most cases, conditions (4.1) and (4.2) are used for δ = 1, as it
is the case for the independent and indentically distributed random variables. We
will exhibit a situation in Proposition 2 that cannot be handled without using (4.1)
and (4.2) for δ < 1.

4.1. Comparison and particular cases

Let us see how (GCIP), that is fulfilment of conditions (4.1) and (4.2), works in
special cases. We have to compare our (GCIP) to (GCHR). But (GCHR) is used
only when max-variance property is satisfied. We only consider the case where
X1, X2, . . . are real and the fi,n’s are identity functions.

4.1.1. Independence case.

By using Theorem 3.1, we observe that we have the P-max-variance(2) property,
that is the Kolmogorov’s maximal inequality. By using the Hájek–Rényi’s general
condition, we have the strong law of large numbers of Kolmogorov: Sn/n→ 0 a.s.
whenever ∑

n≥1
Var(Xn)/n2 < +∞.

To apply Theorem 4.1 here, we notice that the sequence of variances Var(Sn) is
non-decreasing in n. Then (4.1) and (4.2) are implied by, for some 0 < ν1 and
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0 < ν2,

sup
k≥1

1

k1+ν1

k∑

i=1

Var(Xi) < +∞ and sup
k≥1

1

k2+ν2

(k+1)2∑

i=k2+1

Var(Xi) < +∞.

But, by observing that the latter is

k−(2+ν2)
(k+1)2∑

i=k2

Var(Xi) = k−(2+ν2)



(k+1)2∑

i=1

Var(Xi)−
k2∑

i=1

Var(Xi)


 ,

we conclude that the SLLN is implied by

sup
k≥1

1

k1+ν

k∑

i=1

Var(Xi) < +∞, (4.6)

some ν > 0. In the independent case, one has the SLLN for k−1
∑k
i=1 Var(Xi) →

σ2. And the parameter ν in (4.6) is useless in that case. But the availability of
the parameter ν is important for situations beyond the classical cases. As a first
example, let us use the Kolmogorov’s Theorem and construct a probability space
holding a sequence of independent centered rv’s X1, X2, . . . with EX2

n = n1/3. But
(4.6) does not hold for ν = 0 since

1

n

n∑

i=1

i1/3 ≥ 1

n

n∫

1

x1/3dx ≥ 3

4

(
n1/3 − 1

)
→ +∞, as n→ +∞

while (GCHR) entails the SLLN.
We will consider in proposition 2 below an important other example which

cannot be concluded unless we use a positive value of ν. Now, if we may take
ν = 1/3, we have that n−(1+ν)

∑n
i=1 i

1/3 is bounded and our Theorem also ensures
the SLLN.

Now if the sequence is second order stationary, then (4.1) and (4.2) are both
valid. Also, if the variances are bounded by a common constant C0, both (4.1) and
(4.2) are valid.

4.1.2. Pairwise negatively dependent variables.

In that case, we may drop the covariances in (GCIP) and then (4.1) and (4.2) lead
to (4.6) as a general condition for the validity of the SLLN in the independent case.
As to (GCHR), we don’t have any information whether or not the max-variance
property holds.
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4.1.3. Associated sequences

Here Var(Sn) is non-decreasing in n and (GCIP) becomes for ν = (1 − δ)/2 ≥ 0
with 0 < δ < 1

sup
q≥1

1

q1+ν
Var

(
q∑

i=1

Xi

)
< +∞ (4.7)

and

sup
q≥1

1

q2(1+ν)
Var




(q+1)2∑

i=q2+1

Xi


 < +∞. (4.8)

If the sequence is second order stationary, then (4.7) implies (4.8), since

1

q2(1+ν)
Var




(q+1)2∑

i=q2+1

Xi


 =

(2q + 1)
1+ν

q2(1+ν)

[
1

(2q + 1)
1+ν Var

(
2q+1∑

i=1

Xi

)]

∼ 2

q(1+ν)
Var

(
1

k(1+ν)/2

k∑

i=1

Xi

)
,

for k = 2q + 1. And (4.7) may be witten as

sup
q≥1

1

qν

[
Var(X1) +

2

q

q∑

i=2

(q − i+ 1) Cov(X1, Xi)

]
< +∞. (4.9)

This is our general condition under which SLLN holds for second order stationary
associated sequence. Then, by the Kronecker lemma, we have the SLLN if

σ2 = Var(X1) + 2
+∞∑

i=2

Cov(X1, Xi) < +∞. (4.10)

Condition (4.10) is obtained by Newman [16]. Clearly, by the Cesàro lemma, (4.10)
implies

lim
q→+∞

1

q

q∑

i=1

Cov(X1, Xi)→ 0.

And, in fact, the latter is a necessary condition of strong law of large numbers as
proved in Theorem 7 in [17], from the original result of Lebowitz (see [13]).

The reader may find a larger review on this subject in [19]. Our result seems
more powerful since we may still have the strong law of large numbers even if
σ2 = +∞.

We only need to check condition (4.9). We will comment this again after Propo-
sition 2.

For strictly stationary associated sequences with finite variance, we have the
E-max-variance(2) property (see [16]). Then (GCHR) may be used. It becomes

lim sup
n

n∑

i=1

1

i2
Cov(Xi, Sn) < +∞, (4.11)
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which is equivalent to

lim sup
n




n∑

i=1

Var(Xi)

i2
+

n∑

j=2



n−j+1∑

i=1

1

i2
+

n∑

i=j

1

i2


Cov(X1, Xj)


 < +∞

and reduces to
+∞∑

j=2

Cov(X1, Xj) < +∞.

We then see that (GCHR) gives weaker results than ours. Indeed, in our formula
(4.9), we did not require that 2

q

∑q
i=2 (q − i+ 1) Cov(X1, Xi) is bounded. It may

be allowed to go to infinity at a slower convergence rate than q−ν . Then our
condition (4.9) besides being more general, applies to any associated sequences
and is significantly better than the (GCHR) for strictly stationary sequences.

Nevertheless, for (4.11), it is itself more powerfull than Theorem 6.3.6 and
Corollary 6.3.7 in [19], due to the use of Theorem 3.1 and Proposition 1, of Tómács
and Líbor (see [21]). Such a result is also obtained by Yu (1993) (see [22]) for the
strong convergence of empirical distribution function for associated sequence with
identical and continuous distribution.

Birkel (see [3]) used direct computations on the convariance structure for asso-
ciated variables and got the following condition

lim sup
n

n∑

i=1

1

i2
Cov(Xi, Si) < +∞

for SLLN for associated variables.
Now, to sum up, the comparison between (GCIP) and (GCHR) is as follows:

1. For independent case the two conditions are equivalent.

2. In negatively associated case, the form of (GCIP) for independent case re-
mains valid. And we have no information whether the max-variance property
holds to be able to apply (GCHR).

3. For association with strictly stationary of sequences, (GCIP) gives a better
condition than (GCHR).

4. For association with no information on stationarity, so (GCHR) cannot be
applied unless a max-variance property is proved. Our condition still works
and is the same as for the stationary associated sequences in point 3.

5. For arbitrary sequences with finite variances, point 4 may be recontacted.

In conclusion, our method effectively brings a significant contribution to SLLN
for associated random variables. And we are going to apply it to an associated
sequence in the extreme value theory fields.
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5. Applications

5.1. Application to extreme value theory
The EVT offers us the opportunuity to directly apply our general conditions (4.1)
and (4.2) to a sum of dependent and non-stationary random variables and to show
how to proceed in such a case.

We already emphasized the importance of the parameter ν = (1 − δ)/2 in
(GCIP). In the example we are going to treat, we will see that a conclusion cannot
be achieved with ν = 0.

Let E1, E2, . . . be an infinite sequence of independent standard exponential
random variables, f(j) is an increasing function of the integer j ≥ 0 with f(0) = 0
and γ > 0 a real parameter. Define the following sequences of random variables

Wk =
k−1∑

j=1

f(j)


exp


−γ

k−1∑

h=j+1

Eh/h


− exp


−γ

k−1∑

h=j

Eh/h




 , k ≥ 1. (5.1)

The characterization of the asymptotic behavior of (5.1) has important applications
and consequences in two important fields: the extreme value theory in statistics
and the central limit theorem issue for sum of non stationary associated random
variables. Let us highlight each of these points.

On one side, let X,X1, X2, . . . be independent and identically random variables
in Weibull extremal domain of parameter γ > 0 such that X > 0 and let X1,n ≤
X2,n ≤ · · · ≤ Xn,n denote the order statistics based on the n ≥ 1 observations. The
distribution function G of Y = logX has a finite upper endpoint y0 and admits
the following representation:

y0 −G−1(1− u) = cu1/γ(1 + p(u)) exp




1∫

u

t−1b(t)dt


 , u ∈ (0, 1)

where c is a constant and, p(u) and b(u) are functions of u ∈ (0, 1) such that
(p(u), b(u))→ 0 as u→ 0. This is called a representation of a sequence of random
variables in the Weibull domain of attraction.

To stay simple, suppose that p(u) = b(u) = 0 for all u ∈ (0, 1) consider the
simplest case

y0 −G−1(1− u) = uγ , u ∈ (0, 1). (5.2)
The so-called Hill’s statistic, based on the identity function id(x) = x and the k
largest values with 1 ≤ k ≤ n,

Tn(id) =
1

id(k)

k∑

j=1

id(j) (logXn−j+1,n − logXn−j,n)

is an estimator of γ in the sense that

Tn(id)

(y0 − logXn−k,n)
→P (γ + 1)−1,
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as n → +∞. When we replace the identity function with an increasing function
f(j) of the integer j ≥ 0 with f(0) = 0, we get the functional Hill’s estimator
defined as

Tn(f) =
1

f(k)

k∑

j=1

f(j) (logXn−j+1,n − logXn−j,n)

introduced by Dème E., Lo G.S. and Diop, A. (2012) (see [5]). From this processus
is derived the Diop and Lo (2006) (see [6]) generalization of Hill’s statistic. We are
going to highlight that f(k)Tn(f)/(y0 − logXn−k,n) is of the form of (5.1) when
(5.2) holds. We have to use two representations. The Rényi’s representation allows
to find independent standard uniform random variables U1, U2, . . . such that the
following equalities in distribution hold

{log Yj , j ≥ 1} =d {G−1(1− Uj), j ≥ 1}

and

{{logXn−j+1,n, 1 ≤ j ≤ n}, n ≥ 1} =d

{
{G−1(1− Uj,n), 1 ≤ j ≤ n}, n ≥ 1

}
.

Next, by the Malmquist representation (see ([20]), p. 336), we have for each n ≥ 1,
the following equality in distribution holds

{j−1 log(Uj+1,n/Uj,n), 1 ≤ j ≤ n} =d {E(n)
j , 1 ≤ j ≤ n},

where E(n)
j , 1 ≤ j ≤ n, are independent exponential random variables. We apply

these two tools to get that for each fixed n and k = k(n)

Tn(f)

(y0 − logXn−k,n)
=d Wk(n). (5.3)

For an arbitrary element of the Weibull extremal domain of attraction, it may
be easily showed that f(k)Tn(f)/(y0 − logXn−k,n) also behaves as (5.1) if some
extra conditions are imposed of the auxiliary functions p and b. Hence a complete
characterization of the asymptotic behavior of (5.1) provides asymptotic laws in
extreme value theory.

On another side, easy algebra leads to

Wk = f(k − 1) +

k−1∑

j=1

∆f(j) exp


−γ

k−1∑

h=j

Eh/h


 ,

where ∆f(j) = f(j)− f(j − 1), j ≥ 1. We consider

W ∗k = Wk −E(Wk) =
k−1∑

j=1

∆f(j)


exp


−γ

k−1∑

h=j

Eh/h


− E exp


−γ

k−1∑

h=j

Eh/h




 .
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This is a sum of non stationary dependent random variables. In fact the rv’s

∆f(j)


exp


−γ

k−1∑

h=j

Eh/h


− E exp


−γ

k−1∑

h=j

Eh/h






are associated.
Now, we are going to apply our general conditions to (5.4), defined below

S∗k =
k−1∑

j=1

∆f(j)


exp


−γ

k−1∑

h=j

Eh/h


− E exp


−γ

k−1∑

h=j

Eh/h




α(k), (5.4)

where α(k) is a sequence of positive real numbers. Next, we will particularize
the result for f(j) = jτ , τ > 0. Our results depend on computation techniques
developed in [8]. Here are our results:

Proposition 2. Suppose that, for L and q large enough such that L ≤ q2, the
following conditions hold for some δ, 0 < δ < 3.

sup
k≥L

α2(k)

k2γ+1+ν

k−1∑

j=L

∆2f(j)j2γ < +∞, (5.5)

sup
k≥L

α2(k)

k1+ν

k−1∑

j=L+1

[
j−1∑

i=L

∆f(i)

]
∆f(j)

1

j
< +∞, (5.6)

sup
k≥L

α2(k)

k1+ν

∑

L≤j≤k−1
∆f(j)/j < +∞, (5.7)

sup
k≥1

1

q(3−δ)

2q+1∑

i=1

α2(k)∆2f(q2 + i)

(
q2 + i

k

)2γ

< +∞ (5.8)

and

sup
k≥1

sup
(q2+1)≤k≤(q+1)2

α2(k)

q(3−δ)

2q+1∑

j=2

[
j−1∑

i=1

∆f(q2 + i)

]
∆f(q2 + j)

1

q2 + j
< +∞. (5.9)

Then
S∗k
k
→ 0 a.s.

Further, if

µk =
k−1∑

j=1

α(k)∆f (j)E exp


−γ

k−1∑

h=j

Eh/h


→ µ,

where µ is a finite, then

k−1
k−1∑

j=1

α(k)∆f (j) exp


−γ

k−1∑

h=j

Eh/h


→ µ a.s.
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Proposition 3. For f(j) = jτ , if (5.5), (5.6), (5.7), (5.8) and (5.9) hold, α(k) =
1/kτ−1 and if µ = τ/(τ + γ). Then

1

kτ

k−1∑

j=1

(jτ − (j − 1)τ ) exp


−γ

k−1∑

h=j

Eh/h


→ τ

γ + 1
a.s. as k → +∞.

Remark 5.1. Since these results are only based on moments, the a.s. convergence
remains true for Tn(f)/(y0−logXn−k,n) in vertue of (5.3). We get under the model
that

Tn(f)

(y0 − logXn−k,n)
→ τ

γ + 1
a.s. as n→ +∞ and k = k(n)→ +∞ and k/n→ 0

under the assumptions (5.5), (5.6), (5.7), (5.8) and (5.9), in the general case.
Remark 5.2. This strong law may be easily checked by Monte Carlo simulations.
For example, consider γ = 2 and τ = 1. We observe the following errors corre-
sponding to the values of 50, 75 and 100 of k: 0.358, 0.321 and 0.3332. This shows
the good performance of this strong law for the particular values γ = 2 and τ = 1.

5.1.1. Proofs

Both proofs of the two propositions are postponed in the Appendix.

6. Conclusion and perspectives

We have established a general SLLN and applied it to associated variables. Com-
parison with SLLN’s derived from the Hájek-Rényi inequality proved that this
SLLN is not trivial. We have also used it to find the strong convergence of statis-
tical estimators under non-stationary associated samples in EVT.

It seems that it has promising applications in non-parametric statistic, when
dealing with the strong convergence of the empirical process and the non-parametric
density estimator for a stationary sequence with an arbitrary parent distribution
function.

7. Appendix

7.1. Proofs of Proposition 2 and Proposition 3

7.1.1. Assumptions

We have to show that the assumptions of Proposition 2 entail the general condition
(GCIP). We first remind that

S∗k =
k−1∑

j=1

∆f(j)


exp


−γ

k−1∑

h=j

Eh/h


− E exp


−γ

k−1∑

h=j

Eh/h




α(k)
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that we write as

S∗k =
k−1∑

j=1

α(k)∆f(j) (Sj,k − sj,k) , (7.1)

where Sj,k = exp
(
−γ∑k−1

h=j Eh/h
)
and sj,k = E exp

(
−γ∑k−1

h=j Eh/h
)
. Next, we

are going to check (4.1) and (4.2) for this sum of random variables. Fix δ, 0 < δ < 3.
Let us split (7.1) into

S∗k =

L−1∑

j=1

α(k)∆f(j) (Sj,k − sj,k) +

k−1∑

j=L

α(k)∆f(j) (Sj,k − sj,k) =: S1
L + S2

L.

Then for ν = (1− δ)/2 with 0 < δ < 1,

1

k1+ν
Var(S∗k) =

1

k1+ν
Var

(
S1
L

)
+

1

k1+ν
Var

(
S2
L

)
+

2

k1+ν
Cov

(
S1
L, S

2
L

)

=: Ak +Bk + 2Ck.

Let us treat each term in the above equality. Here, we use Formulas 18 and 21 in
[8] and take L large enough to ensure

Var (Sj,k) =

(
j

k − 1

)2γ

V (1, j)V (2, j), (7.2)

with

|V (1, j)| = 1 +O(j−1) and 0 ≤ V (2, j) ≤ 2γ2 |a1(∈)|
j

and

Cov(Sj,k, Sj+`,k) = Var (Sj+`,k)

(
j

j + `− 1

)γ
(1 +O(j−1)).

We suppose that L is large enough so that |V (1, j)| ≤ 1/2, for j ≥ L.
First we see that

Ak → 0, as k → +∞, (7.3)

since Var(S1
L) is let constant with L. Next, split Bk into

Bk =
1

k1+ν

k−1∑

j=L

α2(k)∆2f(j)Var (Sj,k − sj,k)

+
1

k1+ν

∑

L≤i 6=j≤k−1
α2(k)∆f(j)∆f(i) Cov (Si,k, Sj,k)

=: Bk,1 +Bk,2.

By (7.2) we get
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Bk,1 =
1

k1+ν

k−1∑

j=L

α2(k)∆2f(j)Var (Sj,k) ≤ (1/2)
α2(k)

k2γ+1+ν

k−1∑

j=L

∆2f(j)j2γ . (7.4)

Now let us turn to the term Bk,2. Let us remark that the rv′s Sj,k are non increasing
functions of independent rv’s Ej . So they are associated. We then use the Lemma
3 of Newman [15] stated in Lemma 2.4 to get

∣∣∣∣∣∣
Cov


exp

(
−γ

k−1∑

h=i

Eh/h

)
, exp


−γ

k−1∑

h=j

Eh/h





∣∣∣∣∣∣

≤ Cov


γ

k−1∑

h=i

Eh/h, γ

k−1∑

h=j

Eh/h


 ,

where we use the one-value bound of exp(−x). For i ≤ j,

Cov


γ

k−1∑

h=i

Eh/h, γ

k−1∑

h=j

Eh/h


 = Var


γ

k−1∑

h=j

Eh/h


 = γ2

k−1∑

h=j

h−2 ≤ γ2

j
, (7.5)

the latter inequality is directly obtained by comparing
∑k−1
h=j h

−2 and
∫ k
j
x−2dx.

We get

|Bk,2| ≤
1

k1+ν

∑

L≤i 6=j≤k
α2(k)∆f(j)∆f(i) Cov


γ

k−1∑

h=i

Eh/h, γ
k−1∑

h=j

Eh/h




≤ 2γ2

k1+ν

∑

L≤i<j≤k
α2(k)∆f(j)∆f(i)/j

=
2γ2

k1+ν
α2(k)

k−1∑

j=L+1

[
j−1∑

i=L

∆f(i)

]
∆f(j)

1

j
. (7.6)

Finally, by using the techniques of (7.5) and (7.6), we get

Ck =
∑

1≤i≤L−1

∑

L≤j≤k−1
α2(k)∆f(i)∆f(j) Cov(Si,k, Sj,k)

≤ α2(k)γ2

k1+ν

∑

L≤j≤k−1


 ∑

1≤i≤L−1
∆f(i)


∆f(j)/j, (7.7)

where
[∑

1≤i≤L−1 ∆f(i)
]
is a constant. By putting together (7.3), (7.4), (7.6) and

(7.7), we get that assumptions (5.5), (5.6) and (5.7) entail (4.1) in Theorem 4.1.
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We are going to check for (4.2) now. We already noticed that the rv’s α(k)∆f(q2 +
i)(Sk,q2+i − sk,q2+i) are associated and partial sums of associated rv’s have non
decreasing variances. Then for j ≤ 2q + 1, we have

Var

(
j∑

i=1

α(k)∆f(q2 + i)
(
Sk,q2+i − sk,q2+i

)
)

≤ Var

(
2q+1∑

i=1

α(k)∆f(q2 + i)
(
Sk,q2+i − sk,q2+i

)
)
.

And (4.2) becomes

sup
k≥1

sup
(q2+1)≤k≤(q+1)2

1

q(3−δ)
Var

(
2q+1∑

i=1

α(k)∆f(q2 + i)
(
Sk,q2+i − sk,q2+i

)
)
. (7.8)

We fix q but large enough to ensure q2 ≥ L, where L is introduced in (7.2). So
(7.8) is bounded by

sup
(q2+1)≤k≤(q+1)2

1

q(3−δ)
Var

(
2q+1∑

i=1

α(k)∆f(q2 + i)
(
Sk,q2+i − sk,q2+i

)
)
.

Now, we only have to show that

D = sup
(q2+1)≤k≤(q+1)2

1

q(3−δ)
Var

(
2q+1∑

i=1

α(k)∆f(q2 + i)
(
Sk,q2+i − sk,q2+i

)
)

is bounded for q2 ≥ L. Let us split term in the brackets into

D =
1

q(3−δ)

2q+1∑

i=1

α2(k)∆2f(q2 + i)Var
(
Sk,q2+i

)

+
1

q(3−δ)
∑

1≤i 6=j≤2q+1

α2(k)∆f(q2 + i)∆f(q2 + j) Cov
(
Sk,q2+i, Sk,q2+j

)

=: D1 +D2.

We have, by (7.2),

D1 =
1

q(3−δ)

2q+1∑

i=1

α2(k)∆2f(q2 + i)Var
(
Sk,q2+i

)

≤ (1/2)
1

q(3−δ)

2q+1∑

i=1

α2(k)∆2f(q2 + i)

(
q2 + i

k

)2γ

. (7.9)
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Now, we handle D2. We use again the techniques that lead to (7.6) based on the
Newman’s Lemma to get, for i ≤ j,

|D2| ≤
1

q(3−δ)
∑

1≤i 6=j≤2q+1

α2(k)∆f(q2 + i)∆f(q2 + j)Var


γ

2q+1∑

h=q2+j

Eh/h


 .

We remind, as in (7.5), that

Var


γ

2q+1∑

h=q2+j

Eh/h


 ≤ γ2/(q2 + j)

and then

|D2| ≤
2γ2

q(3−δ)
α2(k)

∑

1≤i<j≤2q+1

∆f(q2 + i)∆f(q2 + j)
1

q2 + j

=
2γ2

q(3−δ)
α2(k)

2q+1∑

j=2

[
j−1∑

i=1

∆f(q2 + i)

]
∆f(q2 + j)

1

q2 + j
. (7.10)

By putting together (7.9) and (7.10), we get that assumptions (5.8) and (5.9) entail
(4.2) in Theorem 4.1. We may conclude that the strong law of large numbers holds
for S∗k .

7.1.2. Special case for f(j) = jτ

We are going to check the conditions (5.5), (5.6), (5.7), (5.8) and (5.9) for the
special function f(j) = jτ , τ > 0. We fix L as indicated, consider q ≥ L and work
with k ≥ q2 + 1. We notice that ∆f(j) is equivalent to τjτ−1 and ∆f(q2 + j) is
uniformly equivalent to τjτ−1 uniformly in j ≥ L. Here α(k) = k−(τ−1). Then (5.5)
holds when

sup
k≥L

τ2

k2γ+2τ−1+ν

k−1∑

j=L

j2γ+2τ−2

is bounded. But if 2γ + 2τ − 1 = 0, we get

1

kν

k−1∑

j=L

j−1 ∼ k−ν log k → 0

and for 2γ + 2τ − 1 6= 0, we get

1

k2γ+2τ−1+ν

k−1∑

j=L

j2γ+2τ−2 ∼ k−ν(2γ + 2τ − 1)−1
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and (5.5) holds. (5.6) holds with boundedness of

sup
k≥L

1

k2τ−1+ν

k−1∑

j=L+1

j2τ−2

which is, for 2τ − 1 6= 0
1

2τ − 1
k−ν → 0,

and for 2τ = 1
k−ν ln k → 0.

Next (5.7) is equivalent to the boundedness of

1

k2τ−1+ν

k−1∑

j=L

jτ−2,

which is equivalent to the boundedness of k−(τ+ν) log k, for τ − 1 = 0 and to
that of k−(τ+ν) for τ − 1 6= 0. Let us now handle (5.8) which is equivalent to the
boundedness of

1

q(3−δ)
α2(k)

2q+1∑

j=2

[
j−1∑

i=1

∆f(q2 + i)

]
∆f(q2 + j)

1

q2 + j

≤ 1

q(3−δ)
α2(k)

2q+1∑

j=1

[
j−1∑

i=1

∆f(q2 + i)

]
∆f(q2 + j)

1

q2 + j
,

for enough large q. We have to establish that

sup
k≥1

sup
(q2+1)≤k≤(q+1)2

1

q(3−δ)
1

k2γ+2τ−2

2q+1∑

j=1

(q2 + j)2γ+2τ−2 < +∞.

If 2γ + 2τ − 1 6= 0, then 1
q(3−δ)

1
k2γ+2τ−2

∑k−(2k+1−q2)
j=1 (q2 + j)2γ+2τ−2 is bounded

whenever

1

q(3−δ)
1

k2γ+2τ−2
k2γ+2τ−1

2γ + 2τ − 1
=

1

2γ + 2τ − 1
(k/q2)q−(1−δ)

is bounded. And if 2γ+2τ −1 = 0,
∑k−(2k+1−q2)
j=1 (q2 + j)2γ+2τ−2 is bounded along

with
k

q(3−δ)
log k ≤

(
k/q2

)
q−(1−δ) log k.

In both cases,
(
k/q2

)
q−(1−δ) ∼ q−(1−δ) → 0 as k (and q) goes to infinity. The

proof is now complete.
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