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Abstract

In the present paper the authors give some conditions preserved Rieman-
nian curvature tensor with respect to almost geodesic mappings of affinely
connected spaces. It is noteworthy that these conditions are valid for other
types of mappings. For the almost geodesic mappings of first type, when the
Riemannian curvature tensor is invariant, the authors deduce a differential
equations system of Cauchy type.

In addition the authors investigate almost geodesic mappings of first type,
where the Weyl tensor of projective curvature is invariant and Riemannian
tensor is not invariant.
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1. Introduction

Several works [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24] have been devoted to study almost geodesic mappings. These mappings are
generalization of geodesic and quasigeodesic mappings, see [11, 12, 13, 17].

The basic concepts of almost geodesic curve and almost geodesic mapping of
affinely connected spaces are introduced in paper [15] and included in the mono-
graphs [17, p. 156], [12, p. 457] and surveys [18, 4, 8, 10].

Definition 1.1. A curve x(t) in an affinely connected space An is called an almost
geodesic curve if there exists a plane τ(t) in every tangent space of the curve x(t)
such that:

(1) τ(t) are parallel translated along x(t), and

(2) the tangent vector ẋ(t) of the curve lies in τ(t).

Definition 1.2. A diffeomorphism f : An → Ān is called almost geodesic mapping,
if under f any geodesic curve of An coincides with an almost geodesic curve of Ān.

Theorem 1.3. Diffeomorphism f : An → Ān is almost geodesic mapping if and
only if the deformation tensor of the affine connections Phij(x) ≡ Γ̄hij(x) − Γhij(x)

satisfies for any vector λh the following conditions:

Ahαβγλ
αλβλγ = aPhαβλ

αλβ + b λh

where

Ahijk = Phij,k + PαijP
h
kα, (1.1)

Γhij (Γ̄hij) are objects of affine connections of spaces An (Ān) respectively, a and b
are some functions depend on xh and λh and x = (x1, x2, . . . , xn) is a common
system of coordinates. The symbol “ ,” means covariant derivation with respect
to An.

Three types of almost geodesic mapping was discovered by Sinyukov [15, 16,
17, 18], he called them π1, π2 and π3. In [2] it was proved that another almost
geodesic mapping, if n > 5 does not exist.

Almost geodesic mapping π1 is characterized by the following conditions:

Ah(ijk) = δh(iajk) + b(iP
h
jk),

where aij is a symmetric tensor, bi is a vector, and the symbol (ijk) means sym-
metrization without division for the indices i, j, k.
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2. Mappings of affinelly connected spaces that pre-
serve the Riemann curvature tensor

If we give a diffeomorphism f : An → Ān, then the relation between Riemann
curvature tensors Rhijk and R̄hijk of An and Ān is the following [18, p. 78], [11,
p. 86], [12, p. 184]:

R̄hijk = Rhijk + Phi[k,j] + Pαi[kP
h
j]α, (2.1)

where the symbol [kj] denotes the alternalization for the indices k and j.
Using of (1.1) and (2.1) we have

Theorem 2.1. A mapping preserves the Riemann curvature tensor if and only if
it satisfies the condition

Ahijk = Ahikj , (2.2)

that is, the tensor Ahijk is to be symmetric in the indices j and k.

If the Riemann curvature tensor is preserved by the mapping, then, of course,
Ricci tensor Rij = Rαiαj and Weyl tensor of projective curvature

Wh
ijk = Rhikj −

1

n+ 1
δhi R[jk] +

1

n2 − 1
[(nRij +Rji)δ

h
k − (nRik +Rki)δ

h
j ] (2.3)

also are invariant under this mapping.
The condition of Theorem 1.3 is sufficient condition for preserving the Ricci

tensor and Weyl tensor of projective curvature, but it is not necessary. Further on
we give an example.

3. Special almost geodesic mappings of first type
which preserve Riemannian tensor

Let be a mapping given between affinely connected spaces An and Ān, which sat-
isfies the condition:

Phij,k + Phik,j = −PαijPhαk − PαikPhαj + δh(iajk) (3.1)

This mapping is a special case of almost geodesic mapping of first type.
Alternating equation (3.1) in i and j, we get

Phik,j − Phjk,i = −PαikPhαj + PαjkP
h
αi. (3.2)

At now in (3.2), we exchange the indices i and k, we obtain

Phik,j − Phji,k = −PαikPhαj + PαjiP
h
αk. (3.3)

If we subtract equation (3.3) from equation (3.1), we have

2Phij,k = −2PαijP
h
αk + δh(iajk),
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that is,
Phij,k + PαijP

h
αk = δh(iãjk), (3.4)

where ãij = 1
2aij .

In this case the tensor Ahijk = δh(iãjk) is symmetric in indices j and k.
Using of Theorem 1.3 we have

Theorem 3.1. The almost geodesic mapping (determined by (3.1)) preserves the
Riemann curvature tensor Rhijk.

If Riemann curvature tensor vanishes in an affine space, then we have the fol-
lowing

Theorem 3.2. If an affine space An admits an almost geodesic mapping (deter-
mined by (3.1)) into Ān, then Ān is also an affine space.

So affinely spaces are closed under almost geodesic mapping (determined by
(3.1)).

From equation (3.1) we obtained the equation (3.4). Equation (3.4) is a system
of Cauchy type for deformation tensor. We can find it’s integrability conditions.

We differentiate covariantly equation (3.4) by xm, further on, we change the
indices k and m, using of Ricci identities we have

δhi ãj[k,m]+δ
h
j ãi[k,m]+δ

h
[kãij,lm] = PαijR

h
αkm+Phα(jR

α
i)km+ ˜aj[mP

h
k]i+ãi[mP

h
k]j . (3.5)

After transvecting of integrability conditions (3.5) by indices h and m we obtain

ãjk,i + ãik,j − (n+ 1)ãij,k = −PαijRαk + P βαjR
α
ikβ + P βαiR

α
jkβ

+ãjαP
α
ki − ãjkPααi + ãiαP

α
jk − ãikPαjα.

(3.6)

Alternating equation (3.6) in k and j, we obtain

ãij,k = ãik,j + 1
n+2 (−PαijRαk + PαikRαj − P βαjRαikβ + P βαkR

α
ijβ−

P βαiR
α
jkβ + P βαiR

α
kjβ − ãjαPαki + ãkαP

α
ij + ãikP

α
jα − ãijPαkα).

(3.7)

In equation we exchange the indices k and i, we get

ãkj,i = ãik,j + 1
n+2 (−PαkjRαi + PαkiRαj − P βαjRαkiβ + P βαiR

α
kjβ−

P βαkR
α
jiβ + P βαkR

α
ijβ − ãjαPαik + ãiαP

α
kj + ãkiP

α
jα − ãkjPαiα).

(3.8)

Substituting equation (3.7) and (3.8) into (3.6), we have

ãik,j = 1
(n−1)(n+2) (−n(PαikRαj + P βα(kR

α
i)jβ))−Rα(kPαi)j − P

β
αjR

α
(ik)β−

P βα(iR
α
|j|k)β + (n+ 1)(ãj(iP

α
k)α
− ãα(iPαk)j) + 2(ãikP

α
jα − ãjαPαik)).

(3.9)

Equation (3.4) and (3.9) are a system of Cauchy type for the function Phij(x) and
ãij(x), which satisfy the following

Phij(x) = Phji(x), ãij(x) = ãji(x). (3.10)

So is proved the
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Theorem 3.3. An affinely connected space An admits an almost geodesic mapping
(determined by (3.1)) into an affinely connected space Ān if and only if in An exist
solution functions Phij(x) and ãij(x) for equation system of Cauchy type (3.4), (3.9)
and (3.10).

4. Special almost geodesic mappings of first type
which preserve Weyl tensor of projective curva-
ture but does not preserve Riemann curvature
tensor

Let be the f : Ān → Ān mapping given, which satisfies the following condition

Phij,k + PαijP
h
αk = δhkaij , (4.1)

where aij is a symmetric tensor.
It is well known, that this above mentioned mapping is an almost geodesic

mapping of first type.
The tensor Ahijk on the basis of (4.1) is equal to δhkaij . If the tensor aij 6≡ 0,

then the tensor Ahijk is not symmetric in indices j and k. So, in general the mapping
(determined by (4.1)) does not preserve the Riemannian curvature tensor.

Using of (2.1) and (4.1) we get

R̄hijk = Rhijk − ai[jδhk]. (4.2)

It is easy to see, that after transvecting (4.2) in indices h and k, we have

aij =
1

n− 1
(R̄ij −Rij).

From the last formulae, symmetry aij , (2.3) and (4.2) we get

W̄ij = Wij ,
¯̃Wh
ijk = W̃h

ijk, and W̄h
ijk = Wh

ijk

where
Wij = Rij −Rji and W̃h

ijk = Rhijk +
1

n− 1
Ri[jδ

h
k].

The Wij and W̄ij are tensors of type
(
0
2

)
in the space An and Ān respectively. The

W̃h
ijk and ¯̃Wh

ijk are tensors of type
(
1
3

)
in the space An and Ān respectively. The

Wh
ijk and W̄h

ijk are Weyl tensors of projective curvature of An and Ān respectively.
Finally we obtain

Theorem 4.1. Tensors Wij, W̃h
ijk and Wh

ijk are invariants under almost geodesic
mapping (determined by (4.1)).

From Theorem 3.3 follows

Almost geodesic mappings of affinely connected spaces . . . 7



Theorem 4.2. If a projective-euclidean or equiaffinely space An admits almost
geodesic mapping (determined by (4.1)) into an affinely connected space Ān, then
Ān is a projective-euclidean or equiaffinely space respectively.

The proof of Theorem 4.1 follows from facts, that the Weyl tensor vanishes in
projective-euclidean space, and the tensor is equal to zero in equiaffinely space.

So, using of Theorem 4.1, we obtain, that the projective-euclidean and equiaffi-
nely spaces are closed sets under almost geodesic mapping (determined by (4.1)).

For almost geodesic mapping of first type, which determined by (4.1), the tensor
Ahijk is equal to δhi aij . If aij 6≡ 0, then the Ahijk tensor is not symmetric in indices
j and k.

So, the mapping (determined by (4.1)) does not preserve the Riemann curvature
tensor, but the Weyl tensor is invariant object.

Consider the equations (4.1) as a system of Cauchy-type for unknown Phij , find
it’s integrability condition. At first, we differentiate covariantly equation (4.1) in
xm, further on we alternate it in indices k and m. After transvecting integrability
condition of equation (4.1) in indices h and m, we obtain

(n− 1)aij,k = PαijRαk − P βα(iRαj)βk − (n− 1)Pαijaαk (4.3)

So equation (4.1) and (4.3) in a space An give a system of Cauchy type for unknown
functions Phij(x) and aij(x), which satisfies algebraic conditions

Phij(x) = Phji(x), aij(x) = aji(x) (4.4)

Therefore

Theorem 4.3. An affinely connected space admits almost geodesic mapping of first
type (determined by (4.1)) into an affinely connected space Ān if and only if in An
there exist solution Phij(x) and aij(x) for system of Cauchy type equations (4.1),
(4.3) and (4.4).
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