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Abstract

In this paper we consider the problem of finding integers k such that the
sum of k consecutive cubes starting at n3 is a perfect square. We give an
upper bound of k in terms of n and then, list all possible k when 1 < n ≤ 300.
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1. Introduction

The problem of finding integers k such that the sum of k consecutive squares is
a square has been initiated by Lucas [3], who formulated the problem as follows:
when does a square pyramid of cannonballs contain a number of cannonballs which
is a perfect square? This is equivalent to solving the diophantine equation

12 + 22 + 32 + 42 + · · ·+ k2 = y2. (1.1)

It was not until 1918 that a complete solution to Lucas’ problem was given by
Watson [5]. He showed that the diophantine equation (1.1) has only two solutions,
namely (k, y) = (1, 1) and (24, 70). It is natural to ask whether this phenomenon
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keeps occurring when the initial square is shifted. This is in fact equivalent to
solving the following diophantine equation

n2 + (n+ 1)2 + · · ·+ (n+ k − 1)2 = y2. (1.2)

This problem has been considered by many authors from different points of view.
For instance, Beeckmans [1] determined all values 1 ≤ k ≤ 1000 for which equation
(1.2) has solutions (n, y). Using the theory of elliptic curves Bremner, Stroeker
and Tzanakis [2] found all solutions k and y to equation (1.2) when 1 ≤ n ≤ 100.
Stroeker [4] considered the question of when does a sum of k consecutive cubes
starting at n3 equal a perfect square. He [4], considered the case where k is a fixed
integer. In this paper we take n > 1 a fixed integer and consider the question of
when does a sum k consecutive cubes starting at n3 equal a perfect square. We will
give in theorem 1 an upper bound of k in term of n, and then use this upper bound
to do some computations to list all possible k when 1 ≤ n ≤ 300. Our method uses
only elementary techniques.

2. The sum of k consecutive cubes being a square

Stroeker [4] considered the question of when does a sum of k consecutive cubes
starting at n3 equal a perfect square. He [4] considered the case where k is a fixed
integer. This is equivalent to solving the following diophantine equation:

n3 + (n+ 1)3 + · · ·+ (n+ k − 1)3 = y2. (2.1)

The problem is interesting only when n > 1. In fact, when n = 1, because of the

well known equality 13 + 23 + · · · + k3 =
(

k(k+1)
2

)2
equation (2.1) is always true

for any value of the integer k. Stroeker [4] solved equation (2.1) for 2 ≤ k ≤ 50
and k = 98. We prove the following.

Theorem 2.1. If n > 1 is a fixed integer, there are only finitely many k such
that the sum of k consecutive cubes starting at n3 is a perfect square. Moreover,
k ≤ b n2

√
2
− n+ 1c.

Proof. The equality

13 + 23 + 33 + · · ·+ (n− 1)3 =

(
(n− 1)n

2

)2

leads

n3 + (n+ 1)3 + · · ·+ (n+ k − 1)3 =

(
(n+ k)(n+ k − 1)

2

)2

−
(
n(n− 1)

2

)2

.

Hence equation (2.1) gives
(
(n+ k)(n+ k − 1)

2

)2

−
(
n(n− 1)

2

)2

= y2.
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It is well known that the positive solutions of the last equation are given by




(n+k)(n+k−1)
2 = α(a2 + b2),

n(n−1)
2 = α(a2 − b2)

y = α(2ab)

α ∈ N (2.2)

or 



(n+k)(n+k−1)
2 = α(a2 + b2)

n(n−1)
2 = α(2ab)

y = α(a2 − b2)
α ∈ N (2.3)

where a, b ∈ N, gcd(a, b) = 1, a > b, a 6= b (mod 2). The first equation in system
(2.2) gives that

(n+ k − 1)2 < 2α(a2 + b2). (2.4)

The second equation in system (2.2) gives

n2

2
>
n(n− 1)

2
= α(a2 − b2) ≥ α(a+ b).

Hence (
n2

2

)2

> (α(a+ b))
2 ≥ α(a2 + b2). (2.5)

Inequality (2.4) combined with inequality (2.5) yield

(n+ k − 1)2 < 2α(a2 + b2) ≤ 2

(
n2

2

)2

.

Whereupon

n+ k − 1 <
n2√
2
,

hence,

k ≤ n2√
2
− n+ 1.

The second equation in system (2.3) implies that

n(n− 1)

2
= 2α(ab),

hence
n2

4
> αab.

This last inequality combined with the first equation in system (2.3) yield

2

(
n2

4

)2

> 2α2a2b2 > α(a2 + b2) >

(
n+ k − 1

2

)2

.

Whereupon

k ≤ n2√
2
− n+ 1.
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3. Some computations

Based upon Theorem 2.1, we wrote a program in MAPLE and found the solutions
to equation (2.1) for 1 < n ≤ 300. The solutions are listed in the following table.

n k y2

4 1 64
9 1 729

17 104329
14 12 97344

21 345744
16 1 4096
21 128 121528576
23 3 41616
25 1 15625

5 99225
15 518400
98 56205009

28 8 254016
33 33 4322241
36 1 46656
49 1 117649

291 3319833924
64 1 262144

42 26904969
48 34574400

69 32 19998784
78 105 268304400
81 1 531441

28 24147396
69 114383025
644 68869504900

88 203 1765764441
96 5 4708900
97 98 336098889
100 1 1000000
105 64 171714816

Remark 3.1. Let Cn = |{(k, y) solution to equation (2.1) }|. We see from theorem
1, that for every n, Cn is finite, and from the table above, that for 1 ≤ n ≤ 300,
Cn ≤ 7. It would be interesting to see if there exists a constant C such that Cn ≤ C
for every n.
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111 39 87609600
118 5 8643600

60 200505600
120 17 35808256

722 125308212121
121 1 1771561

1205 771665618025
133 32 106007616
144 1 2985984

13 43956900
21 77053284
77 484968484
82 540423009
175 2466612225
246 5647973409

153 18 76055841
305 10817040025

165 287 10205848576
168 243 6902120241
169 1 4826809

2022 5755695204609
176 45 353816100

195 4473603225
189 423 34640654400
196 1 7529536
216 98 1875669481

784 248961081600
217 63 976437504

242 10499076225
434 44214734529

221 936 446630236416
225 1 11390625

35 498628900
280 15560067600
3143 32148582480784

232 87 1854594225
175 6108204025

256 1 16777216
169 7052640400
336 29537234496
1190 1090405850625

265 54 1349019441
2209 9356875327801
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289 1 24137569
4616 144648440352144

295 76 2830240000
298 560 133210400400
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