On a variant of the Lucas' square pyramid problem

Salima Kebli ${ }^{a}$, Omar Kihel ${ }^{b}$
${ }^{a}$ Départment de Mathématiques, Université d'Oran 1 Ahmed Benbella Bp 1524, Algeria
kabli.salima@univ-oran.dz
${ }^{b}$ Department of Mathematics, Brock University, Ontario, Canada L2S 3A1
okihel@brocku.ca

Submitted October 31, 2015 - Accepted February 24, 2016

Abstract

In this paper we consider the problem of finding integers k such that the sum of k consecutive cubes starting at n^{3} is a perfect square. We give an upper bound of k in terms of n and then, list all possible k when $1<n \leq 300$. Keywords: Diophantine equation, Lucas' square pyramid problem, sum of squares, sum of cubes

MSC: 11A99, 11D09, 11D25

1. Introduction

The problem of finding integers k such that the sum of k consecutive squares is a square has been initiated by Lucas [3], who formulated the problem as follows: when does a square pyramid of cannonballs contain a number of cannonballs which is a perfect square? This is equivalent to solving the diophantine equation

$$
\begin{equation*}
1^{2}+2^{2}+3^{2}+4^{2}+\cdots+k^{2}=y^{2} \tag{1.1}
\end{equation*}
$$

It was not until 1918 that a complete solution to Lucas' problem was given by Watson [5]. He showed that the diophantine equation (1.1) has only two solutions, namely $(k, y)=(1,1)$ and $(24,70)$. It is natural to ask whether this phenomenon
keeps occurring when the initial square is shifted. This is in fact equivalent to solving the following diophantine equation

$$
\begin{equation*}
n^{2}+(n+1)^{2}+\cdots+(n+k-1)^{2}=y^{2} . \tag{1.2}
\end{equation*}
$$

This problem has been considered by many authors from different points of view. For instance, Beeckmans [1] determined all values $1 \leq k \leq 1000$ for which equation (1.2) has solutions (n, y). Using the theory of elliptic curves Bremner, Stroeker and Tzanakis [2] found all solutions k and y to equation (1.2) when $1 \leq n \leq 100$. Stroeker [4] considered the question of when does a sum of k consecutive cubes starting at n^{3} equal a perfect square. He [4], considered the case where k is a fixed integer. In this paper we take $n>1$ a fixed integer and consider the question of when does a sum k consecutive cubes starting at n^{3} equal a perfect square. We will give in theorem 1 an upper bound of k in term of n, and then use this upper bound to do some computations to list all possible k when $1 \leq n \leq 300$. Our method uses only elementary techniques.

2. The sum of k consecutive cubes being a square

Stroeker [4] considered the question of when does a sum of k consecutive cubes starting at n^{3} equal a perfect square. He [4] considered the case where k is a fixed integer. This is equivalent to solving the following diophantine equation:

$$
\begin{equation*}
n^{3}+(n+1)^{3}+\cdots+(n+k-1)^{3}=y^{2} . \tag{2.1}
\end{equation*}
$$

The problem is interesting only when $n>1$. In fact, when $n=1$, because of the well known equality $1^{3}+2^{3}+\cdots+k^{3}=\left(\frac{k(k+1)}{2}\right)^{2}$ equation (2.1) is always true for any value of the integer k. Stroeker [4] solved equation (2.1) for $2 \leq k \leq 50$ and $k=98$. We prove the following.

Theorem 2.1. If $n>1$ is a fixed integer, there are only finitely many k such that the sum of k consecutive cubes starting at n^{3} is a perfect square. Moreover, $k \leq\left\lfloor\frac{n^{2}}{\sqrt{2}}-n+1\right\rfloor$.
Proof. The equality

$$
1^{3}+2^{3}+3^{3}+\cdots+(n-1)^{3}=\left(\frac{(n-1) n}{2}\right)^{2}
$$

leads

$$
n^{3}+(n+1)^{3}+\cdots+(n+k-1)^{3}=\left(\frac{(n+k)(n+k-1)}{2}\right)^{2}-\left(\frac{n(n-1)}{2}\right)^{2}
$$

Hence equation (2.1) gives

$$
\left(\frac{(n+k)(n+k-1)}{2}\right)^{2}-\left(\frac{n(n-1)}{2}\right)^{2}=y^{2}
$$

It is well known that the positive solutions of the last equation are given by

$$
\left\{\begin{array}{l}
\frac{(n+k)(n+k-1)}{2}=\alpha\left(a^{2}+b^{2}\right), \tag{2.2}\\
\frac{n(n-1)}{2}=\alpha\left(a^{2}-b^{2}\right) \\
y=\alpha(2 a b)
\end{array} \alpha \in \mathcal{N}\right.
$$

or

$$
\begin{cases}\frac{(n+k)(n+k-1)}{2}=\alpha\left(a^{2}+b^{2}\right) \tag{2.3}\\ \frac{n(n-1)^{2}}{2}=\alpha(2 a b) \\ y=\alpha\left(a^{2}-b^{2}\right) & \alpha \in \mathcal{N} \text { } \quad l\end{cases}
$$

where $a, b \in \mathbb{N}, \operatorname{gcd}(a, b)=1, a>b, a \neq b(\bmod 2)$. The first equation in system (2.2) gives that

$$
\begin{equation*}
(n+k-1)^{2}<2 \alpha\left(a^{2}+b^{2}\right) \tag{2.4}
\end{equation*}
$$

The second equation in system (2.2) gives

$$
\frac{n^{2}}{2}>\frac{n(n-1)}{2}=\alpha\left(a^{2}-b^{2}\right) \geq \alpha(a+b)
$$

Hence

$$
\begin{equation*}
\left(\frac{n^{2}}{2}\right)^{2}>(\alpha(a+b))^{2} \geq \alpha\left(a^{2}+b^{2}\right) \tag{2.5}
\end{equation*}
$$

Inequality (2.4) combined with inequality (2.5) yield

$$
(n+k-1)^{2}<2 \alpha\left(a^{2}+b^{2}\right) \leq 2\left(\frac{n^{2}}{2}\right)^{2}
$$

Whereupon

$$
n+k-1<\frac{n^{2}}{\sqrt{2}}
$$

hence,

$$
k \leq \frac{n^{2}}{\sqrt{2}}-n+1
$$

The second equation in system (2.3) implies that

$$
\frac{n(n-1)}{2}=2 \alpha(a b)
$$

hence

$$
\frac{n^{2}}{4}>\alpha a b
$$

This last inequality combined with the first equation in system (2.3) yield

$$
2\left(\frac{n^{2}}{4}\right)^{2}>2 \alpha^{2} a^{2} b^{2}>\alpha\left(a^{2}+b^{2}\right)>\left(\frac{n+k-1}{2}\right)^{2}
$$

Whereupon

$$
k \leq \frac{n^{2}}{\sqrt{2}}-n+1
$$

3. Some computations

Based upon Theorem 2.1, we wrote a program in MAPLE and found the solutions to equation (2.1) for $1<n \leq 300$. The solutions are listed in the following table.

n	k	y^{2}
4	1	64
9	1	729
14	17	104329
	12	97344
16	21	345744
21	1	4096
23	128	121528576
25	3	41616
	1	15625
	5	99225
	15	518400
28	98	56205009
33	8	254016
36	33	4322241
49	1	46656
64	1	117649
	291	3319833924
69	1	262144
78	42	26904969
81	48	34574400
	32	19998784
88	105	268304400
96	1	531441
97	28	24147396
100	69	114383025
105	644	68869504900

Remark 3.1. Let $C_{n}=\mid\{(k, y)$ solution to equation (2.1) $\} \mid$. We see from theorem 1, that for every n, C_{n} is finite, and from the table above, that for $1 \leq n \leq 300$, $C_{n} \leq 7$. It would be interesting to see if there exists a constant C such that $C_{n} \leq C$ for every n.

111	39	87609600
118	5	8643600
	60	200505600
120	17	35808256
	722	125308212121
121	1	1771561
	1205	771665618025
133	32	106007616
144	1	2985984
	13	43956900
	21	77053284
	77	484968484
	82	540423009
	175	2466612225
	246	5647973409
153	18	76055841
	305	10817040025
165	287	10205848576
168	243	6902120241
169	1	4826809
	2022	5755695204609
176	45	353816100
	195	4473603225
189	423	34640654400
196	1	7529536
216	98	1875669481
	784	248961081600
217	63	976437504
	242	10499076225
	434	44214734529
221	936	446630236416
225	1	11390625
	35	498628900
	280	15560067600
	3143	32148582480784
232	87	1854594225
	175	6108204025
256	1	16777216
	169	7052640400
	336	29537234496
	1190	1090405850625
265	54	1349019441
	2209	9356875327801

289	1	24137569
295	4616	144648440352144
298	76	2830240000

Acknowledgements. The authors express their gratitude to the anonymous referees for constructive suggestions which improved the quality of the paper. The second author was supported in part by NSERC.

References

[1] L. Beeckmans, Squares expressible as sum of consecutive squares, Amer. Math. Monthly 101 (1994), no. 5, 437-442.
[2] A. Bremner, R. J. Stroeker, N. Tzanakis, n sums of consecutive squares, J. Number Theory 62 (1997), no. 1, 39-70.
[3] E. Lucas, Question 1180, Nouvelles Annales de Mathématiques, ser. 2, 14 (1875), 336.
[4] R. J. Stroeker, On the sum of consecutive cubes being a perfect square. Special issue in honour of Frans Oort. Compositio Math. 97 (1995), no. 1-2, 295-307.
[5] G. N. Watson, The Problem of the Square Pyramid, Messenger of Mathematics 48 (1918-19), 1-22.

