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Abstract

In this paper, we deal with convolutions of second order linear recursive se-
quences and give some special convolutions for Fibonacci-, Pell-, Jacobsthal-
and Mersenne-sequences and their associated sequences.
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1. Introduction

Let A,B be given real numbers with AB 6= 0. A second order linear recursive
sequence {Gn}∞n=0 is defined by the recursion

Gn = AGn−1 +BGn−2 (n ≥ 2),

where the initial terms G0, G1 are fixed real numbers with |G0| + |G1| 6= 0. For
brevity, we use the following notation Gn(G0, G1, A,B), too. The polynomial

p(x) = x2 −Ax−B (1.1)

is said to be the characteristic polynomial of the sequence {Gn}∞n=0. If D = A2 +
4B 6= 0 then the Binet formula of {Gn}∞n=0 is

Gn =
G1 − βG0

α− β αn − G1 − αG0

α− β βn,
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where α, β are distinct roots of the characteristic polynomial. If G0 = 0 and G1 = 1
then {Gn}∞n=0 is known as R-sequence {Rn}∞n=0 with it’s Binet formula

Rn =
αn − βn
α− β . (1.2)

If G0 = 2 and G1 = A then the sequence is known as associated-R, or R-Lucas
sequence {Vn}∞n=0 with it’s Binet formula

Vn = αn + βn. (1.3)

In the following sections, we will use the generating function and partial-fraction
decomposition for the proofs. The generating function of {Gn}∞n=0 (which can
easily be verified by the well known methods) is

g(x) =
G0 + (G1 −AG0)x

1−Ax−Bx2 . (1.4)

The following table contains some special, well-known sequences with their ini-
tial terms, characteristic polynomial and generating function, where P-Lucas, J-
Lucas and M-Lucas sequences are the associated sequences of Pell, Jacobsthal and
Mersenne sequences, respectively.

Name Gn(G0, G1, A,B) Characteristic polynomial Gen. function
Fibonacci Fn(0, 1, 1, 1) p(x) = x2 − x− 1 g(x) = x

1−x−x2

Pell Pn(0, 1, 2, 1 p(x) = x2 − 2x− 1 g(x) = x
1−2x−x2

Jacobsthal Jn(0, 1, 1, 2) p(x) = x2 − x− 2 g(x) = x
1−x−2x2

Mersenne Mn(0, 1, 3,−2) p(x) = x2 − 3x+ 2 g(x) = x
1−3x+2x2

Lucas Ln(2, 1, 1, 1) p(x) = x2 − x− 1 g(x) = 2−x
1−x−x2

P-Lucas pn(2, 2, 2, 1) p(x) = x2 − 2x− 1 g(x) = 2−2x
1−2x−x2

J-Lucas jn(2, 1, 1, 2) p(x) = x2 − x− 2 g(x) = 2−x
1−x−2x2

M-Lucas mn(2, 3, 3,−2) p(x) = x2 − 3x+ 2 g(x) = 2−3x
1−3x+2x2

Table 1: Named sequences

For further generating functions for second order linear recursive sequences see
the paper of Mező [3].

We consider the sequence {c(n)}∞n=0 given by the convolution of two different
second order linear recursive sequences {Gn}∞n=0 and {Hn}∞n=0:

c(n) =
n∑

k=0

GkHn−k.

Griffiths and Bramham [1] investigated the convolution of Lucas- and Jacobsthal-
numbers and got the result:

c(n) = jn+1 − Ln+1,
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which can be found in the OEIS [2] with the following id: A264038.
In this paper, we deal with convolution of two different sequences, where all of

the roots are distinct and the sequences are R-sequences or R-Lucas sequences. The
convolution of sequences with themselves was investigated by Zhang W., Zhang Z.,
He P., Feng H. and many others. In [5], Feng and Zhang Z. generalized the previous
results, i.e. they evaluated the following summation:

∑

a1+a2+···+ak=n
Wma1Wma2 · · ·Wmak .

For example, the convolution of Fibonacci numbers with themselves was given as
a corollary in [4] by Zhang W.:

∑

a+b=n

FaFb =
1

5
[(n− 1)Fn + 2nFn−1] , n ≥ 1.

2. Results

In this section, we present three theorems and give formulas for {c(n)}∞n=0, where
the formulas depend only on the initial terms and the roots of the characteris-
tic polynomials. After each theorem, we show the special cases of the theorem
in corollaries using the named sequences (Fibonacci, Pell, Jacobsthal, Mersenne,
Lucas, P-Lucas, J-Lucas, M-Lucas).

In this paper –for brevity–, we use the following notations:

a = (A1 −A2)α+B1 −B2,

b = (A1 −A2)β +B1 −B2,

c = (A2 −A1)γ +B2 −B1,

d = (A2 −A1)δ +B2 −B1,

(2.1)

where abcd 6= 0, α, β and γ, δ are distinct roots of the characteristic polynomial
of {Gn}∞n=0 and {Hn}∞n=0, respectively. We suppose that all the roots are real
numbers and the characteristic polynomials have no common roots.

In the following theorem, we deal with the convolution of two different R-
sequences.

Theorem 2.1. The convolution of Gn(0, 1, A1, B1) and Hn(0, 1, A2, B2) is

c(n) =

n∑

k=0

GkHn−k =
αn+1

a − βn+1

b

α− β +
γn+1

c − δn+1

d

γ − δ .

For the well-known sequences, listed in Table 1, we can get special convolution
formulas:
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Corollary 2.2. Using Theorem 2.1 the convolution of Fibonacci and Pell numbers
is:

c(n) =
n∑

k=0

FkPn−k = Pn − Fn.

Remark 2.3. In [2], (A106515) it can be found that

c(n) =
n∑

k=0

Fn−k−1Pk+1 = Pn − Fn + Pn+1,

where because of the different indices the term Pn+1 occures, as well.

Corollary 2.4. Using Theorem 2.1 the convolution of Fibonacci and Jacobsthal
numbers is:

c(n) =

n∑

k=0

FkJn−k = Jn+1 − Fn+1.

Remark 2.5. In [2], (A094687) the formula

c(n) =
n∑

k=0

FkJn−k = c(n− 1) + 2c(n− 2) + Fn−1

can be found. After a short calculation one can easily verify that the two formulas
for c(n) are the same ones.

Corollary 2.6. Using Theorem 2.1 the convolution of Fibonacci and Mersenne
numbers is:

c(n) =
n∑

k=0

FkMn−k = mn+1 − Fn+4.

Corollary 2.7. Using Theorem 2.1 the convolution of Pell and Jacobsthal numbers
is:

c(n) =

n∑

k=0

PkJn−k =
Pn+1 + Pn − Jn+2

2
.

Corollary 2.8. Using Theorem 2.1 the convolution of Pell and Mersenne numbers
is:

c(n) =

n∑

k=0

PkMn−k =
Pn+2 + Pn+1 −Mn+2

2
.

In the following theorem, we deal with the convolution of an R-sequence and
an R-Lucas sequence.

Theorem 2.9. The convolution of Gn(0, 1, A1, B1) and Hn(2, A2, A2, B2) is

c(n) =
n∑

k=0

GkHn−k =

=
αn+1(2α−A2)

a − βn+1(2β−A2)
b

α− β +
γn+1(2γ−A2)

c − δn+1(2δ−A2)
d

γ − δ .
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For the well-known sequences, listed in Table 1, we can get special convolution
formulas:

Corollary 2.10. Using Theorem 2.9 the convolution of Fibonacci and P-Lucas
numbers is:

c(n) =

n∑

k=0

Fkpn−k = pn − 2Fn−1.

Corollary 2.11. Using Theorem 2.9 the convolution of Fibonacci and J-Lucas
numbers is:

c(n) =

n∑

k=0

Fkjn−k = jn+1 − Ln+1.

Remark 2.12. This our convolution has the same form as of Griffiths and Bramham
in [1].

Corollary 2.13. Using Theorem 2.9 the convolution of Fibonacci and M-Lucas
numbers is:

c(n) =
n∑

k=0

Fkmn−k =Mn+1 − Fn+1.

Remark 2.14. For the sequence a(n) (A228078 in [2]), where a(n + 1) is the sum
of n-th row of the Fibonacci-Pascal triangle in A228074, we get that

c(n) = a(n+ 1).

Corollary 2.15. Using Theorem 2.9 the convolution of Pell and Lucas numbers
is:

c(n) =
n∑

k=0

PkLn−k = Pn + pn − Ln.

Corollary 2.16. Using Theorem 2.9 the convolution of Pell and J-Lucas numbers
is:

c(n) =
n∑

k=0

Pkjn−k =
8Pn+1 + pn+1 − 2jn+2

4
.

Corollary 2.17. Using Theorem 2.9 the convolution of Pell and M-Lucas numbers
is:

c(n) =
n∑

k=0

Pkmn−k =
4Pn+2 + pn+1 − 2mn+2

4
.

Corollary 2.18. Using Theorem 2.9 the convolution of Jacobsthal and Lucas num-
bers is:

c(n) =
n∑

k=0

JkLn−k = jn+1 − Ln+1.

Remark 2.19. The convolution of Lucas and Jacobsthal numbers was also investi-
gated by Griffiths and Bramham in [1], the two formulas are the same ones.
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Corollary 2.20. Using Theorem 2.9 the convolution of Jacobsthal and P-Lucas
numbers is:

c(n) =
n∑

k=0

Jkpn−k = 2(Pn+1 − Jn+1).

Corollary 2.21. Using Theorem 2.9 the convolution of Mersenne and Lucas num-
bers is:

c(n) =
n∑

k=0

MkLn−k = 3mn+1 − Ln+4 − 2.

Corollary 2.22. Using Theorem 2.9 the convolution of Mersenne and P-Lucas
numbers is:

c(n) =

n∑

k=0

Mkpn−k =
3pn+1 + pn −Mn+3 − 1

2
.

In the following theorem, we deal with the convolution of two different R-Lucas
sequences.

Theorem 2.23. The convolution of Gn(2, A1, A1, B1) and Hn(2, A2, A2, B2) is

c(n) =

n∑

k=0

GkHn−k =

=
αn+1(2α−A1)(2α−A2)

a − βn+1(2β−A1)(2β−A2)
b

α− β

+
γn+1(2γ−A1)(2γ−A2)

c − δn+1(2δ−A1)(2δ−A2)
d

γ − δ .

For the well-known sequences, listed in Table 1, we can get special convolution
formulas:

Corollary 2.24. Using Theorem 2.23 the convolution of Lucas and P-Lucas num-
bers is:

c(n) =
n∑

k=0

Lkpn−k = 2Fn+1 − 6Fn + 2Pn+1 + 6Pn.

Corollary 2.25. Using Theorem 2.23 the convolution of Lucas and J-Lucas num-
bers is:

c(n) =

n∑

k=0

Lkjn−k = 9Jn+1 − 5Fn+1.

Corollary 2.26. Using Theorem 2.23 the convolution of Lucas and M-Lucas num-
bers is:

c(n) =
n∑

k=0

Lkmn−k = 3Mn+1 − Ln+1 + 2.
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Corollary 2.27. Using Theorem 2.23 the convolution of P-Lucas and J-Lucas
numbers is:

c(n) =

n∑

k=0

pkjn−k = 2Pn+2 + pn+1 − 2jn+1.

Corollary 2.28. Using Theorem 2.23 the convolution of P-Lucas and M-Lucas
numbers is:

c(n) =
n∑

k=0

pkmn−k = 2Pn+2 + 4Pn+1 −Mn+2 − 1.

3. Proofs

In the following proofs, we use the method of partial-fraction decomposition, the
generating functions of second order linear recursive sequences and the idea used
by Griffiths and Bramham in [1], that is c(n) is the coefficient of xn in

g(x)h(x) =
∞∑

n=0

Gnx
n ·

∞∑

n=0

Hnx
n =

∞∑

n=0

c(n)xn,

where g(x), h(x) are the generating functions of sequences {Gn}∞n=0 and {Hn}∞n=0,
respectively.

Proof of Theorem 2.1. Using (1.4), the generating functions of the sequences
Gn(0, 1, A1, B1) and Hn(0, 1, A2, B2) are

g(x) =
x

1−A1x−B1x2
=

x

(1− αx)(1− βx)

and
h(x) =

x

1−A2x−B2x2
=

x

(1− γx)(1− δx) ,

where α, β and γ, δ are the roots of the characteristic polynomial of {Gn}∞n=0 and
{Hn}∞n=0, respectively. The generating functions can be written as (by the method
of partial-fraction decomposition)

g(x) =
1

α− β

(
1

1− αx −
1

1− βx

)

and

h(x) =
1

γ − δ

(
1

1− γx −
1

1− δx

)
.

From this it follows that

g(x)h(x)(α− β)(γ − δ)
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=

(
1

1− αx −
1

1− βx

)(
1

1− γx −
1

1− δx

)

=
1

(1− αx)(1− γx) −
1

(1− αx)(1− δx) −
1

(1− βx)(1− γx) +
1

(1− βx)(1− δx)

=

α
α−γ

1− αx −
γ

α−γ
1− γx −

α
α−δ

1− αx +
δ

α−δ
1− δx −

β
β−γ

1− βx +

γ
β−γ

1− γx +

β
β−δ

1− βx −
δ

β−δ
1− δx

=

α(γ−δ)
(A1−A2)α+B1−B2

1− αx −
β(γ−δ)

(A1−A2)β+B1−B2

1− βx +

γ(α−β)
(A2−A1)γ+B2−B1

1− γx −
δ(α−β)

(A2−A1)δ+B2−B1

1− δx .

Now using that c(n) is the coefficient of xn in g(x)h(x) and e.g.,

1

1− αx =
∞∑

n=0

(αx)n (0 < |αx| < 1),

we get

c(n) =
1

α− β

(
αn+1

(A1 −A2)α+B1 −B2
− βn+1

(A1 −A2)β +B1 −B2

)

+
1

γ − δ

(
γn+1

(A2 −A1)γ +B2 −B1
− δn+1

(A2 −A1)δ +B2 −B1

)
.

We remark that the corollaries can be obtained from Table 1 if we use the values
of A1, B1, A2, B2 and the Binet formula (1.2), e.g., the proof of Corollary 2.2:

Proof of Corollary 2.2. Now Gn = Fn(0, 1, 1, 1) and Hn = Pn(0, 1, 2, 1).

α, β =
1±
√
5

2
, γ, δ = 1±

√
2.

By (2.1), we get that

a = −α,
b = −β,
c = γ,

d = δ.

Applying Theorem 2.1 and (1.2), we get the result

c(n) =
αn+1

a − βn+1

b

α− β +
γn+1

c − δn+1

d

γ − δ =
−αn + βn

α− β +
γn − δn
γ − δ = Pn − Fn.

Proof of Theorem 2.9. Using (1.4), the generating functions of the sequences
Gn(0, 1, A1, B1) and Hn(2, A2, A2, B2) are

g(x) =
x

1−A1x−B1x2
=

x

(1− αx)(1− βx)
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and
h(x) =

2−A2x

1−A2x−B2x2
=

2−A2x

(1− γx)(1− δx) ,

where α, β and γ, δ are the roots of the characteristic polynomial of {Gn}∞n=0

and {Hn}∞n=0, respectively. The generating functions could be written as (by the
method of partial-fraction decomposition)

g(x) =
1

α− β

(
1

1− αx −
1

1− βx

)

and
h(x) =

1

γ − δ

(
2γ −A2

1− γx −
2δ −A2

1− δx

)
.

From this it follows that

g(x)h(x)(α− β)(γ − δ)

=

(
1

1− αx −
1

1− βx

)(
2γ −A2

1− γx −
2δ −A2

1− δx

)

=
2γ −A2

(1− αx)(1− γx) −
2δ −A2

(1− αx)(1− δx) −
2γ −A2

(1− βx)(1− γx) +
2δ −A2

(1− βx)(1− δx)

=

α(2δ−A2)
α−γ

1− αx −
γ(2δ−A2)
α−γ

1− γx −
α(2δ−A2)
α−δ

1− αx +

δ(2δ−A2)
α−δ

1− δx

−
β(2δ−A2)
β−γ

1− βx +

γ(2δ−A2)
β−γ

1− γx +

β(2δ−A2)
β−δ

1− βx −
δ(2δ−A2)
β−δ

1− δx

=

α(γ−δ)(2α−A2)
(A1−A2)α+B1−B2

1− αx −
β(γ−δ)(2β−A2)

(A1−A2)β+B1−B2

1− βx +

γ(α−β)(2γ−A2)
(A2−A1)γ+B2−B1

1− γx −
δ(α−β)(2δ−A2)

(A2−A1)δ+B2−B1

1− δx .

Now using that c(n) is the coefficient of xn in g(x)h(x) and e.g.,

1

1− αx =

∞∑

n=0

(αx)n (0 < |αx| < 1),

we get

c(n) =
1

α− β

(
αn+1(2α−A2)

(A1 −A2)α+B1 −B2
− βn+1(2β −A2)

(A1 −A2)β +B1 −B2

)

+
1

γ − δ

(
γn+1(2γ −A2)

(A2 −A1)γ +B2 −B1
− δn+1(2δ −A2)

(A2 −A1)δ +B2 −B1

)
.

We remark that the corollaries can be obtained from Table 1 if we use the
values of A1, B1, A2, B2 and the Binet formulas ((1.2) or (1.3)), e.g., the proof of
Corollary 2.10:
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Proof of Corollary 2.10. Now Gn = Fn(0, 1, 1, 1) and Hn = pn(2, 2, 2, 1).

α, β =
1±
√
5

2
, γ, δ = 1±

√
2.

By (2.1), we get that

a = −α,
b = −β,
c = γ,

d = δ.

Applying Theorem 2.9, (1.2) and (1.3), we get the result

c(n) =
αn+1(2α−A2)

a − βn+1(2β−A2)
b

α− β +
γn+1(2γ−A2)

c − δn+1(2δ−A2)
d

γ − δ

=
αn(1−

√
5)− βn(1 +

√
5)

α− β +
γn2
√
2 + δn2

√
2

γ − δ

=
αn−1(−2)− βn−1(−2)

α− β + γn + δn = pn − 2Fn−1.

Proof of Theorem 2.23. Using (1.4), the generating functions of the sequences
Gn(2, A1, A1, B1) and Hn(2, A2, A2, B2) are

g(x) =
2−A1x

1−A1x−B1x2
=

2−A1x

(1− αx)(1− βx)

and
h(x) =

2−A2x

1−A2x−B2x2
=

2−A2x

(1− γx)(1− δx) ,

where α, β and γ, δ are the roots of the characteristic polynomial of {Gn}∞n=0

and {Hn}∞n=0, respectively. The generating functions could be written as (by the
method of partial-fraction decomposition)

g(x) =
1

α− β

(
2α−A1

1− αx −
2β −A1

1− βx

)

and
h(x) =

1

γ − δ

(
2γ −A2

1− γx −
2δ −A2

1− δx

)
.

From this it follows that

g(x)h(x)(α− β)(γ − δ)

=

(
2α−A1

1− αx −
2β −A1

1− βx

)(
2γ −A2

1− γx −
2δ −A2

1− δx

)
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=
(2α−A1)(2γ −A2)

(1− αx)(1− γx) −
(2α−A1)(2δ −A2)

(1− αx)(1− δx)

− (2β −A1)(2γ −A2)

(1− βx)(1− γx) +
(2β −A1)(2δ −A2)

(1− βx)(1− δx)

=

α(2α−A1)(2γ−A2)
α−γ

1− αx −
γ(2α−A1)(2γ−A2)

α−γ
1− γx −

α(2α−A1)(2δ−A2)
α−δ

1− αx +

δ(2α−A1)(2δ−A2)
α−δ

1− δx

−
β(2β−A1)(2γ−A2)

β−γ
1− βx +

γ(2β−A1)(2γ−A2)
β−γ

1− γx +

β(2β−A1)(2δ−A2)
β−δ

1− βx −
δ(2β−A1)(2δ−A2)

β−δ
1− δx

=

α(γ−δ)(2α−A1)(2α−A2)
(A1−A2)α+B1−B2

1− αx −
β(γ−δ)(2β−A1)(2β−A2)

(A1−A2)β+B1−B2

1− βx

+

γ(α−β)(2γ−A1)(2γ−A2)
(A2−A1)γ+B2−B1

1− γx −
δ(α−β)(2δ−A1)(2δ−A2)

(A2−A1)δ+B2−B1

1− δx .

Now using that c(n) is the coefficient of xn in g(x)h(x) and e.g.,

1

1− αx =
∞∑

n=0

(αx)n (0 < |αx| < 1),

we get

c(n) =
1

α− β

(
αn+1(2α−A1)(2α−A2)

(A1 −A2)α+B1 −B2
− βn+1(2β −A1)(2β −A2)

(A1 −A2)β +B1 −B2

)

+
1

γ − δ

(
γn+1(2γ −A1)(2γ −A2)

(A2 −A1)γ +B2 −B1
− δn+1(2δ −A1)(2δ −A2)

(A2 −A1)δ +B2 −B1

)
.

We remark that the corollaries can be obtained from Table 1 if we use the values
of A1, B1, A2, B2 and the Binet formula (1.2), e.g., the proof of Corollary 2.24:

Proof of Corollary 2.24. Now Gn = Ln(2, 1, 1, 1) and Hn = pn(2, 2, 2, 1).

α, β =
1±
√
5

2
, γ, δ = 1±

√
2.

By (2.1), we get that

a = −α,
b = −β,
c = γ,

d = δ.

Applying Theorem 2.1, (1.1) and (1.2), we get the result

c(n) =
αn+1(2α−A1)(2α−A2)

a − βn+1(2β−A1)(2β−A2)
b

α− β
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+
γn+1(2γ−A1)(2γ−A2)

c − δn+1(2δ−A1)(2δ−A2)
d

γ − δ

=
−αn(4α2 − 6α+ 2) + βn(4β2 − 6β + 2)

α− β

+
γn(4γ2 − 6γ + 2)− δn(4δ2 − 6δ + 2)

γ − δ

=
−αn(−2α+ 6) + βn(−2β + 6)

α− β

+
γn(2γ + 6)− δn(2δ + 6)

γ − δ = 2Fn+1 − 6Fn + 2Pn+1 + 6Pn.

4. Concluding remarks

In this paper, we have dealt the case, when there are no common roots of the
characteristic polynomials and we have shown formulas for the convolution of R-
sequences and R-Lucas sequences. In the future, we would like to continue working
on the cases, when there are one or two common roots.
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