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Abstract

In this paper, we investigate some generalization of Pell and Pell-Lucas
numbers, which is called (s, t)-Pell and (s, t)-Pell-Lucas numbers, and we
define the 2× 2 matrix W, which satisfy the relation W 2 = 2sW + tI. After
that, we establish some identities of (s, t)-Pell and (s, t)-Pell-Lucas numbers
and some sum formulas for (s, t)-Pell and (s, t)-Pell-Lucas numbers by using
this matrix.
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ber; (s, t)-Pell number; (s, t)-Pell-Lucas number.

MSC: 11B37; 15A15.

1. Introduction

For over several years, there are many recursive sequences that have been studied in
the literatures. The famous examples of these sequences are Fibonacci, Lucas, Pell
and Pell-Lucas, because they are extensively used in various research areas such as
Engineering, Architecture, Nature and Art (for examples see: [2, 3, 4, 5, 6, 7]). For
n ≥ 2, the classical Fibonacci {Fn}, Lucas {Ln}, Pell {Pn} and Pell-Lucas {Qn}
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sequences are defined by Fn = Fn−1+Fn−2, Ln = Ln−1+Ln−2, Pn = 2Pn−1+Pn−2,
and Qn = 2Qn−1 +Qn−2, with the initial conditions F0 = 0, F1 = 1, L0 = 2, L1 =
1, P0 = 0, P1 = 1 and Q0 = Q1 = 2, respectively. For more detialed information
about Fibonacci, Lucas, Pell, Pell-Lucas sequences can be found in [2, 3].

Recently, Fibonacci, Lucas, Pell and Pell-Lucas were generalized and studied
by many authors in the different ways to derive many identities. In 2012, Gulec
and Taskara [1] introduced a new generalization of Pell and Pell-Lucas sequence
which is called (s, t)-Pell and (s, t)-Pell-Lucas sequences as in the definition 1.1 and
by considering these sequences, they introduced the matrix sequences which have
elements of (s, t)-Pell and (s, t)-Pell-Lucas sequences. Further, they obtained some
properties of (s, t)-Pell and (s, t)-Pell-Lucas matrices sequences by using elementary
matrix algebra.

Definition 1.1. [1] Let s, t be any real number with s2 + t > 0, s > 0 and t 6= 0.
Then the (s, t)-Pell sequences {Pn(s, t)}n∈N and the (s, t)-Pell-Lucas sequences
{Qn(s, t)}n∈N are defined respectively by

Pn(s, t) = 2sPn−1(s, t) + tPn−2(s, t), forn ≥ 2, (1.1)
Qn(s, t) = 2sQn−1(s, t) + tQn−2(s, t), forn ≥ 2, (1.2)

with initial conditions P0(s, t) = 0, P1(s, t) = 1 and Q0(s, t) = 2, Q1(s, t) = 2s.

In particular, if s = 1
2 , t = 1, then the classical Fibonacci and Lucas sequence

are obtained, and if s = t = 1, then the classical Pell and Pell-Lucas sequences are
obtained. From the definition 1.1, we have that the characteristic equation of (1.1)
and (1.2) are in the form

x2 = 2sx+ t (1.3)

and the root of equation (1.3) are α = s+
√
s2 + t and β = s−

√
s2 + t. Note that

α+ β = 2s, α− β = 2
√
s2 + t and αβ = −t. Moreover, it can be seen that [1]

Qn(s, t) = 2sPn(s, t) + 2tPn−1(s, t), for alln ≥ 0. (1.4)

In this paper, we introduce the 2 × 2 matrix W which satisfy the relation
W 2 = 2sW+tI. After that, we establish some identities of (s, t)-Pell and (s, t)-Pell-
Lucas numbers and some sum formulas for (s, t)-Pell and (s, t)-Pell-Lucas numbers
by using this matrix. Now, we first define (s, t)-Pell and (s, t)-Pell-Lucas numbers
for negative subscript as follows:

P−n(s, t) =
−Pn(s, t)

(−t)n , and Q−n(s, t) =
Qn(s, t)

(−t)n , (1.5)

for all n ≥ 1. In the rest of this paper, for convenience we will use the symbol Pn

and Qn instead of Pn(s, t) and Qn(s, t) respectively.

2. Main results

We begin this section with the following Lemma.
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Lemma 2.1. If X is a square matrix with X2 = 2sX + tI, then

Xn = PnX + tPn−1I for all n ∈ N.

Proof. If n = 0, then the proof is obvious. It can be shown by induction that
Xn = PnX+tPn−1I for all n ∈ N. Now, we will show thatX−n = P−nX+tP−n−1I
for all n ∈ N. Let Y = 2sI −X = −tX−1. Then we have

Y 2 = (2sI −X)2 = 2s(2sI −X) + tI = 2sY + tI.

It implies that Y n = PnY + tPn−1I. That is (−tX−1)n = Pn(2sI −X) + tPn−1I.
Thus

(−t)nX−n = 2sPnI − PnX + tPn−1I

= −PnX + (2sPn + tPn−1)I

= −PnX + Pn+1I.

Therefore, X−n = − Pn

(−t)nX + Pn+1

(−t)n I = P−nX + tP−(n+1)I = P−nX + tP−n−1I.
This complete the proof.

By using Lemma 2.1, we obtain the Binet’s formula for (s, t)-Pell and (s, t)-
Pell-Lucas numbers.

Corollary 2.2 (Binet’s formula). The nth (s, t)-Pell and (s, t)-Pell-Lucas number
are given by

Pn =
αn − βn

α− β and Qn = αn + βn, for all n ∈ Z,

where α = s +
√
s2 + t and β = s −

√
s2 + t are the roots of the characteristic

equation (1.3).

Proof. Take X =

[
α 0
0 β

]
, then X2 = 2sX + tI. By Lemma 2.1, we have

Xn = PnX + tPn−1I. It follows that
[
αn 0
0 βn

]
=

[
αPn + tPn−1 0

0 βPn + tPn−1

]
.

Thus, αn = αPn + tPn−1 and βn = βPn + tPn−1, which implies that

Pn =
αn − βn

α− β and Qn = αn + βn, for all n ∈ Z.

Let us define the 2× 2 matrix W as follows:

W =

[
s 2(s2 + t)
1
2 s

]
. (2.1)

Then it easy to see that W 2 = 2sW + tI. From this fact and Lemma 2.1, we get
the following Lemma.
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Lemma 2.3. Let W be a matrix as in (2.1). Then Wn =

[
1
2Qn 2(s2 + t)Pn

1
2Pn

1
2Qn

]

for all n ∈ Z.

Proof. Since W 2 = 2sW + tI, the proof follows from Lemma 2.1 and using Qn =
2sPn + 2tPn−1.

Now, by using the matrix W, we obtain some identities of (s, t)-Pell and (s,t)-
Pell-Lucas numbers.

Lemma 2.4. Let m, n be any integers. Then the following results hold.

(i) Q2
n − 4(s2 + t)P2

n = 4(−t)n,

(ii) 2Qm+n = QmQn + 4(s2 + t)PmPn,

(iii) 2Pm+n = PmQn +QmPn,

(iv) 2(−t)nQm−n = QmQn − 4(s2 + t)PmPn,

(v) 2(−t)nPm−n = PmQn −QmPn,

(vi) QmQn = Qm+n + (−t)nQm−n,

(vii) PmQn = Pm+n + (−t)nPm−n.

Proof. Since det(Wn) = (det(W ))n = (−t)n and det(Wn) = 1
4Q2

n − (s2 + t)P2
n,

we get that Q2
n − 4(s2 + t)P2

n = 4(−t)n and then (i) immediately seen. Since
Wm+n =WmWn, we obtain

[
1
2Qm+n 2(s2 + t)Pm+n

1
2Pm+n

1
2Qm+n

]

=

[
1
4

(
QmQn + 4(s2 + t)PmPn

)
(s2 + t)(QmPn + PmQn)

1
4 (PmQn +QmPn)

1
4

(
4(s2 + t)PmPn +QmQn

)
]
.

Thus, identities (ii) and (iii) are easily seen. Next, we note that Wm−n =
Wm(W−n) =Wm(Wn)−1. Thus, we get that
[

1
2Qm−n 2(s2 + t)Pm−n
1
2Pm−n 1

2Qm−n

]

=
1

(−t)n

[
1
4

(
QmQn − 4(s2 + t)PmPn

)
(s2 + t)(−QmPn + PmQn)

1
4 (PmQn −QmPn)

1
4

(
− 4(s2 + t)PmPn +QmQn

)
]
.

Therefore, the identities (iv) and (v) can be derived directly. The proof of (vi) and
(vii) goes on in the same fashion as above by using the property
Wm+n + (−t)nWm−n =Wm(Wn + (−t)nW−n).
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Next, we give the following Lemma for using in the next Theorems.

Lemma 2.5. Let W be a matrix as in (2.1). Then

H =W + tW−1 =

[
0 4(s2 + t)
1 0

]
.

Proof. Since det(W ) = −t, we get that W−1 = − 1
t

[
s −2(s2 + t)
− 1

2 s

]
. Thus,

H =

[
0 4(s2 + t)
1 0

]
.

Finally, by using matricesW and H, we obtain some sum formulas for (s, t)-Pell
and (s, t)-Pell-Lucas numbers.

Theorem 2.6. Let n ∈ N and m, k ∈ Z with (−t)m −Qm 6= −1. Then

n∑

j=0

Qmj+k =
Qk −Qmn+m+k + (−t)m

(
Qmn+k −Qk−m

)

1 + (−t)m −Qm

and
n∑

j=0

Pmj+k =
Pk − Pmn+m+k + (−t)m

(
Pmn+k − Pk−m

)

1 + (−t)m −Qm

Proof. It is know that

I − (Wm)n+1 = (I −Wm)
n∑

j=0

(Wm)j .

By Lemma 2.4 (i), we have

det(I −Wm) = (1− 1

2
Qm)2 − (s2 + t)P2

m = 1 + (−t)m −Qm.

Since det(I −Wm) 6= 0, we can write

(I −Wm)−1
(
I − (Wm)n+1

)
W k =

n∑

j=0

Wmj+k

=




1

2

n∑

j=0

Qmj+k 2(s2 + t)
n∑

j=0

Pmj+k

1

2

n∑

j=0

Pmj+k
1

2

n∑

j=0

Qmj+k



. (2.2)

Since

(I −Wm)−1 =
1

1 + (−t)m −Qm

[
1− 1

2Qm 2(s2 + t)Pm

1
2Pm 1− 1

2Qm

]
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=
1

1 + (−t)m −Qm

(
(1− 1

2
Qm)I +

1

2
PmH

)
,

we have

(I −Wm)−1
(
I − (Wm)n+1

)
W k

=

(
(1− 1

2Qm)I + 1
2PmH

)
(W k −Wmn+m+k)

1 + (−t)m −Qm

=

(
(1− 1

2Qm)(W k −Wmn+m+k) + 1
2PmH(W k −Wmn+m+k)

)

1 + (−t)m −Qm

= (1− 1

2
Qm)




1
2 (Qk −Qmn+m+k)

1 + (−t)m −Qm

2(s2 + t)(Pk − Pmn+m+k)

1 + (−t)m −Qm

1
2 (Pk − Pmn+m+k)

1 + (−t)m −Qm

1
2 (Qk −Qmn+m+k)

1 + (−t)m −Qm




+
1

2
Pm




2(s2 + t)(Pk − Pmn+m+k)

1 + (−t)m −Qm

2(s2 + t)(Qk −Qmn+m+k)

1 + (−t)m −Qm

1
2 (Qk −Qmn+m+k)

1 + (−t)m −Qm

2(s2 + t)(Pk − Pmn+m+k)

1 + (−t)m −Qm


 (2.3)

Using (2.2) and (2.3), we obtain

n∑

j=0

Qmj+k

=

(
(1− 1

2Qm)(Qk −Qmn+m+k) + 2(s2 + t)Pm(Pk − Pmn+m+k)
)

1 + (−t)m −Qm
. (2.4)

By Lemma 2.4 (iv), (2.4) becomes

n∑

j=0

Qmj+k =
Qk −Qmn+m+k + (−t)m

(
Qmn+k −Qk−m

)

1 + (−t)m −Qm
.

On the other hand, using (2.2) and (2.3) we get

n∑

j=0

Pmj+k =

(
(1− 1

2Qm)(Pk − Pmn+m+k) +
1
2Pm(Qk −Qmn+m+k)

)

1 + (−t)m −Qm
. (2.5)

By Lemma 2.4 (v), (2.5) becomes

n∑

j=0

Pmj+k =
Pk − Pmn+m+k + (−t)m

(
Pmn+k − Pk−m

)

1 + (−t)m −Qm
.
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Theorem 2.7. Let n ∈ N and m, k ∈ Z with (−t)m+Qm 6= −1. If n is even, then
n∑

j=0

(−1)jQmj+k =
Qk +Qmn+m+k + (−t)m

(
Qmn+k +Qk−m

)

1 + (−t)m +Qm

and
n∑

j=0

(−1)jPmj+k =
Pk + Pmn+m+k + (−t)m

(
Pmn+k + Pk−m

)

1 + (−t)m +Qm

Proof. Let n is an even natural number. Then we have

I + (Wm)n+1 = (I +Wm)

n∑

j=0

(−1)j(Wm)j .

By Lemma 2.4 (i), we have

det(I +Wm) = (1 +
1

2
Qm)2 − (s2 + t)P2

m = 1 +Qm + (−t)m.

Since det(I +Wm) 6= 0, we can write

(I +Wm)−1
(
I + (Wm)n+1

)
W k

=

n∑

j=0

(−1)jWmj+k

=




1

2

n∑

j=0

(−1)jQmj+k 2(s2 + t)

n∑

j=0

(−1)jPmj+k

1

2

n∑

j=0

(−1)jPmj+k
1

2

n∑

j=0

(−1)jQmj+k



. (2.6)

Since

(I +Wm)−1 =
1

1 +Qm + (−t)m




1 + 1
2Qm −2(s2 + t)Pm

− 1
2Pm 1 + 1

2Qm




=
1

1 +Qm + (−t)m
(
(1 +

1

2
Qm)I − 1

2
PmH

)
,

we have

(I +Wm)−1
(
I + (Wm)n+1

)
W k

=

(
(1 + 1

2Qm)I − 1
2PmH

)
(W k +Wmn+m+k)

1 +Qm + (−t)m

=

(
(1 + 1

2Qm)(W k +Wmn+m+k)− 1
2PmH(W k +Wmn+m+k)

)

1 +Qm + (−t)m
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= (1 +
1

2
Qm)




1
2 (Qk +Qmn+m+k)

1 +Qm + (−t)m
2(s2 + t)(Pk + Pmn+m+k)

1 +Qm + (−t)m
1
2 (Pk + Pmn+m+k)

1 +Qm + (−t)m
1
2 (Qk +Qmn+m+k)

1 +Qm + (−t)m




− 1

2
Pm




2(s2 + t)(Pk + Pmn+m+k)

1 +Qm + (−t)m
2(s2 + t)(Qk +Qmn+m+k)

1 +Qm + (−t)m
1
2 (Qk +Qmn+m+k)

1 +Qm + (−t)m
2(s2 + t)(Pk + Pmn+m+k)

1 +Qm + (−t)m


 . (2.7)

Using (2.6) and (2.7), we obtain

n∑

j=0

(−1)jQmj+k

=

(
(1 + 1

2Qm)(Qk +Qmn+m+k)− 2(s2 + t)Pm(Pk + Pmn+m+k)
)

1 +Qm + (−t)m . (2.8)

By Lemma 2.4 (iv), (2.8) becomes

n∑

j=0

(−1)jQmj+k =
Qk +Qmn+m+k + (−t)m

(
Qk−m +Qmn+k

)

1 + (−t)m +Qm
.

Similarly it can be easily seen that
n∑

j=0

(−1)jPmj+k =
Pk + Pmn+m+k + (−t)m

(
Pk−m + Pmn+k

)

1 + (−t)m +Qm
.

Theorem 2.8. Let n ∈ N and m, k ∈ Z with (−t)m +Qm 6= −1. If n is odd, then

n∑

j=0

(−1)jQmj+k =
Qk −Qmn+m+k + (−t)m

(
Qk−m −Qmn+k

)

1 + (−t)m +Qm

and
n∑

j=0

(−1)jPmj+k =
Pk − Pmn+m+k + (−t)m

(
Pk−m − Pmn+k

)

1 + (−t)m +Qm

Proof. Let n is an odd natural number. Then we get

n∑

j=0

(−1)jQmj+k =

n−1∑

j=0

(−1)jQmj+k −Qmn+k.

Since n is an odd natural number then n− 1 is even. By Thorem 2.7, we have

n−1∑

j=0

(−1)jQmj+k =
Qk +Qmn+k + (−t)m

(
Qmn+k−m +Qk−m

)

1 + (−t)m +Qm
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and
n∑

j=0

(−1)jQmj+k

=
Qk + (−t)m

(
Qmn+k−m +Qk−m

)
− (−t)mQmn+k −Qmn+kQm

1 + (−t)m +Qm
. (2.9)

Using Lemma 2.4 (vi) in (2.9), we get

n∑

j=0

(−1)jQmj+k =
Qk −Qmn+m+k + (−t)m

(
Qk−m −Qmn+k

)

1 + (−t)m +Qm
.

In a similar way, it can be seen that

n∑

j=0

(−1)jPmj+k =

n−1∑

j=0

(−1)jPmj+k − Pmn+k.

By Theorem 2.7, it follows that

n∑

j=0

(−1)jPmj+k

=
Pk + (−t)m

(
Pmn+k−m + Pk−m

)
− (−t)mPmn+k − Pmn+kQm

1 + (−t)m +Qm
. (2.10)

Using Lemma 2.4 (vii) in (2.10), we obtain

n∑

j=0

(−1)jPmj+k =
Pk − Pmn+m+k + (−t)m

(
Pk−m − Pmn+k

)

1 + (−t)m +Qm
.
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