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Abstract

Recently, a new generalization of Pascal’s triangle, the so-called hyper-
bolic Pascal triangles were introduced. The mathematical background goes
back to the regular mosaics in the hyperbolic plane. In this article, we investi-
gate the paths in the hyperbolic Pascal triangle corresponding to the regular
mosaic {4, 5}, in which the binary recursive sequences fn = αfn−1±fn−2 are
represented (α ∈ N+).

Keywords: Pascal triangle, hyperbolic Pascal triangle, binary recurrences.

MSC: 11B37, 05A10.

1. Introduction

In the hyperbolic plane there are an infinite number of types of regular mosaics (see,
for example [4]), they are assigned by Schläfli’s symbol {p, q}, where the positive
integers p and q satisfy (p − 2)(q − 2) > 4. Each regular mosaic induces a so-
called hyperbolic Pascal triangle (see [1]), following and generalizing the connection
between the classical Pascal’s triangle and the Euclidean regular square mosaic
{4, 4}. For more details see [1], but here we also collect some necessary information.

Annales Mathematicae et Informaticae
46 (2016) pp. 165–173
http://ami.ektf.hu

165



There are several approaches to generalize Pascal’s arithmetic triangle (see, for
instance [3]). The hyperbolic Pascal triangle based on the mosaic {p, q} can be
figured as a digraph, where the vertices and the edges are the vertices and the
edges of a well defined part of the lattice {p, q}, respectively, further each vertex
possesses a value, say label, giving the number of different shortest paths from
the fixed base vertex. Figure 1 illustrates the hyperbolic Pascal triangle linked to
{p, q} = {4, 5}. Generally, for {4, q}, the quadrilateral shape cells surrounded by
appropriate edges are corresponding to the squares in the mosaic. The base vertex
has two edges (both are outgoing), the leftmost and the rightmost vertices have
three (one ingoing and two outgoing), the others have q edges (either two ingoing
and q− 2 outgoing (type A) or one ingoing and q− 1 outgoing (type B)). In other
words, apart from the winger elements, vertices of type A have two ascendants
and q− 2 descendants, vertices of type B do one ascendant and q− 1 descendants.
In the figures, we denote the A-type vertices by red circle and B-type vertices by
cyan diamond, further the wingers by white diamond. The vertices having distance
n from the base vertex are located in row n. The general method of drawing is
the following. Going along the vertices of the nth row, according to type of the
elements (winger, A, B), we draw appropriate number of edges downward (2, q−2,
q−1, respectively). Neighbor edges of two neighbor vertices of the nth row meet in
the (n + 1)th row, constructing a vertex of type A. The other descendants of row
n in row n+ 1 have type B, except the two wingers. In the sequel, )nk ( denotes the
kth element in row n, which is either the sum of the labels of its two ascendants or
coincide the label of its unique ascendant. For instance, if {p, q} = {4, 5}, then

)4
6

( = 5 = 2 + 3 = )3
2

( + )3
3

( and )4
5

( = 2 = )3
2

(

hold (see Figure 1). We note, that the hyperbolic Pascal triangle has the property
of vertical symmetry.

Figure 1: Hyperbolic Pascal triangle linked to {4, 5} up to row 6
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2. Recurrence sequences linked to {4, 5}
Let {p, q} = {4, 5} be fixed, further we let HPT45 denote the hyperbolic Pascal
triangle corresponding to the mosaic {4, 5}. It was showed in [1] that all the binary
recurrence sequences (fi)i≥0 which are defined by

fi = ηfi−1 + fi−2, (n ≥ 2), (2.1)

where η and f0 < f1 are positive integers, appear in HPT45.
In the following we describe paths corresponding to further positive integer

binary recurrence sequences. We remark that although we restrict ourselves to
HPT45, the methods and the results have been worked out can be fitted to other
hyperbolic Pascal triangles with p = 4, q ≥ 6.

Taking a vertex of type A in row n, it has exactly two descendants of type A
in the row n+ 1. In order to reach and distinguish them, we denote the left-down
step and right-down step (along the appropriate edge of the graph) by L and R,
respectively. For the sake of brevity, the sequence of `+ r consecutive steps

LL · · ·L︸ ︷︷ ︸
`

RR · · ·R︸ ︷︷ ︸
r

will be denoted by L`Rr. Till the end of this work, such a path is always considered
on vertices of type A. Generally, we are interested in the labels of these vertices,
therefore sometimes we call them elements (as the elements or terms of a sequence),
but if it is necessary we determine the location of the element, too.

This paper will use the next theorem (Theorem 5 in [1]), which states that any
two positive integers can be found next to each other somewhere in HPT45.

Theorem 2.1. Given u, v ∈ N+, then there exist n, k ∈ N+ such that u = )nk ( and
v = ) n

k+1 (.

Using Theorem 2.1, Corollary 2.2 provides an immediate consequence of the
properties of HPT45.

Corollary 2.2. If u = )nk ( < v = ) n
k+1 ( holds for some positive integers u and v,

then ) n
k+2 ( = v − u, moreover the type of ) n

k+1 ( is A, while the types of )nk ( and ) n
k+2 (

are not A (i.e., either B or winger).

Remark 2.3. Clearly, by the symmetry we also have the construction u = )nk ( > v =

) n
k+1 ( and ) n

k−1 ( = u− v. Further, the type of )nk ( is A.

2.1. Recurrence sequences and paths

Let (fi)i≥0 be a recurrence sequence defined by

fi = αfi−1 − fi−2, (i ≥ 2), (2.2)
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where α ∈ N+, α ≥ 2, and f0 < f1 are positive integers with gcd(f0, f1) = 1. If
α = 2 then (fi)i≥0 is an arithmetic progression given by fi = fi−1 + (f1 − f0).

From Theorem 2.1 and Corollary 2.2 we know that in case of any positive
integers f0 < f1, there exist an element inHPT45 with value f1, and with neighbors
in the same row valued by f0 and f1−f0. In Theorem 2.4 we give a path in HPT45
(analogously to Theorem 6 in [1]) contains all the elements of (2.2).

Theorem 2.4. There exists a path in HPT45 crossing vertices of type A, such that
the vertices are labelled with the terms of (fi)i≥1 as follows. Assume that )nk ( = f1,
and ) n

k−1 ( = f1 − f0. Then the first element of the path is f1 and the pattern of the
steps from fi−1 to fi (i ≥ 2) is LRα−2.

Proof. According to Theorem 2.1, any f1 and f1−f0 can be neighbours in HPT45,
where type of f1 is A (and the type of f1 − f0 is not A).

If α = 2, then the statment is easy to show, since no R steps. Indeed, the
difference of an element type A, and its immediate left descendant having type A
is the constant f1 − f0.

Assume now α ≥ 3. By the construction rule of HPT45, we can follow the way
from any fi−1 to fi (i ≥ 2) in Figure 2, which justifies the theorem (the type of
the rectangle shaped elements is A). In the last row of the figure we use, among
others, the equality fi − fi−1 = (α− 1)fi−1 − fi−2.

fi−1 − fi−2

2fi−1 − fi−2

3fi−1 − fi−2

...

(α− 1)fi−1 − fi−2

fi = αfi−1 − fi−2

fi−1

fi−1

fi−1

...

fi−1

fi−1fi − fi−1

fi−2

Figure 2: Path LRα−2 between fi−1 and fi

Remark 2.5. Theorem 2.4 can be extended for the whole sequence (fi)i≥0 if and
only if (α− 1)f0 < f1 < αf0. Under these conditions one can follow the path back
from the bottom of Figure 2 to the top, from f1 to f0.
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The path showed on the right hand side of Figure 4 (cf. Figure 1) is an example
for the binary recurrence fi = 4fi−1 − fi−2 with f0 = 1, f1 = 2.

Theorem 2.4 finds a path to the sequence (2.2). Considering the opposite di-
rection, now we decribe the sequence corresponding to a given pattern of steps.
The expression “corner element” means a labelled vertex where the direction of the
sequence of steps changes. For example, the first corner element of the path L3R2

is the vertex reached after three left steps, the second corner element comes after
further two right steps, etc.

Theorem 2.6. Suppose that the A-type vertex )nk ( = U1 = u1 is a starting point
of the path L`Rr. We let Ui, and ui (i = 1, . . . ) denote the label of the corner
elements, and the label of every second corner elements of the path, respectively.
Then we have

ui = (`r + 2)ui−1 − ui−2, (i ≥ 3). (2.3)
Moreover, if ` = r, then

Ui = `Ui−1 + Ui−2, (i ≥ 3).

Obviously, ui = U2i−1 holds. The proof of Theorem 2.6 applies the following
lemma (see [1], Remark 1 linked to Lemma 4).

Lemma 2.7. Let x0, y0, further aj and bj (j = 1, 2) be complex numbers such that
a2b1 6= 0. Assume that for i ≥ i0 the terms of the sequences (xi) and (yi) satisfy

xi+1 = a1xi + b1yi,

yi+1 = a2xi + b2yi.

Then for both sequences

zi+2 = (a1 + b2)zi+1 + (−a1b2 + a2b1)zi

holds (i ≥ i0).
Proof of Theorem 2.6. Suppose that v1 is the left ascendant of u1. By Figure 3,
which demonstrates the path precisely from ui to ui+2 (i ≥ 1) along vertices type
A in HPT45, we gain the system of the recursive equations

ui+1 = (r + 1)ui + (`+ r(`− 1)) vi, (2.4)
vi+1 = rui + (`+ (r − 1)(`− 1)) vi.

Using Lemma 2.7 we receive that both ui and vi satisfy the equation

zi+2 = (`r + 2)zi+1 − zi.
If ` = r, then we simply obtain

Ui+1 = Ui + `Vi, (2.5)
Vi+1 = Ui + (`− 1)Vi.

Now Lemma 2.7 results that Ui and Vi satisfy the equation

Zi+2 = `Zi+1 + Zi.
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...

vi

ui

ui + vi

ui + 2vi

...

Vj = ui + (`− 1)vi

Uj = ui + `vi

Uj + Vj

Uj + 2Vj

...

vi+1 = Vj+1 = Uj + (r − 1)Vj

ui+1 = Uj+1 = Uj + rVj

ui+1 + vi+1

ui+1 + 2vi+1

...

Vj+2 = ui+1 + (`− 1)vi+1

Uj+2 = ui+1 + `vi+1

Uj+2 + Vj+2

Uj+2 + 2Vj+2

...

vi+2 = Vj+3 = Uj+2 + (r − 1)Vj+2

ui+2 = Uj+3 = Uj+2 + rVj+2

Figure 3: Path L`Rr from ui to ui+2
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Remark 2.8. Let )nk ( = f1 be the initial element, and consider the path L`Rr. Since
every second corner element of the path satisfies the recurrence equation (2.2)
with α = `r + 2, the number of different paths belonging to different patterns
but corresponding to the linear recurrence (fi)

∞
i=1 is the number of the divisors of

`r = α− 2.
Figure 4 gives an example for the case when α − 2 = 2 = 2 · 1 = 1 · 2 and

u1 = f1 = 2, u2 = f2 = 7. Clearly, the patters are L2R and LR2.

Figure 4: f0 = 1, f1 = 2, fi = 4fi−1 − fi−2

Now we describe the intermediate sequences located in the path given by
v1, )nk ( = u1 and by L`Rr. The labels of the elements having distance (` + r)t

(t ∈ N) from the base element )nk ( are given by suitable sequences {wi}.
Theorem 2.9. Put wi = ui +mvi, where 0 ≤ m < `, or let wi = U2i +mV2i =
(m + 1)ui + (` +m(` − 1))vi, where 0 ≤ m < r. Then the terms of the sequence
(wi) satisfy

wi = (`r + 2)wi−1 − wi−2, (i ≥ 3).

Proof. Consider again Figure 3 to show the statement for the first type of sequences.
One can observe the labels of the path described by wi = ui+mvi, where 0 ≤ m < `
and i ≥ 1. From (2.3) we see

wi+2 = ui+2 +mvi+2 = (`r + 2)(ui+1 + kvi+1)− (ui +mvi)
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= (`r + 2)wi+1 − wi.

The second part of the proof is analoguous. In Figure 3 the equation j = 2i holds,
but generally it does not.

Corollary 2.10. In case of ` = r, Wj = Uj+mVj (0 ≤ m < `) satisfy the equation

Wj = `Wj−1 +Wj−2, (j ≥ 3). (2.6)

In Figure 5, according to Corollary 2.10 we give two examples for the represen-
tation of elements of recurrence sequence fi = 3fi−1 + fi−2. The pattern of both
paths is R3L3, moreover, u1 = 3, v1 = 2, m = 2 and u1 = 4, v1 = 3, m = 1,
respectively.

Figure 5: f0 = 1, f1 = 2, fi = 3fi−1 + fi−2

Theorem 2.11. Consider the sequence (2.2). If `r = α− 2, and

m =
fj+1 − (r + 1)fj
`+ r(`− 1)

is an integer for some j ≥ 1, further m < fj holds, then the elements fi (i ≥ j)
can be represented in HPT45 by every second corner elements of a paths given by
the the pattern L`Rr, and by u1 = fj and v1 = m.
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Proof. Let u1 = fj and u2 = fj+1. Then equation (2.4) yields v1 = (fj+1 − (r +
1)fj)/(`+ r(`− 1)). Since the integers v1 and u1 are neigbours in a suitable row of
HPT45, therefore there is a path with the pattern L`Rr from v1 and u1 such that
every second corner elements are fi+1 (i ≥ j).

Figure 4 gives examples on the paths of fi = 4fi−1 − fi−2 with initial elements
u1 = f2 = 7 and u2 = f3 = 26, moreover v1 = 4 and v1 = 5, respectively, where
α− 2 = 2 = 2 · 1 = 1 · 2 = lr, and the patters are L2R and LR2.

Theorem 2.12. Consider now the sequence (2.1). If `2 = η− 2, and m = (fj+1−
fj)/` is an integer, further m < fj, then the elements fi (i ≥ j ≥ 1) can be
represented in HPT45 by every corner elements of the paths given by the pattern
L`Rr, and by u1 = fj and v1 = m.

Proof. The proof is similar to the proof of Theorem 2.11. Using (2.5), from u1 = fj
and u2 = fj+1 we gain v1 = (fj+1 − fj)/`.
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