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Abstract
We study analogues of the Miki, Matiyasevich, and Euler identities for the

Apostol-Bernoulli numbers and obtain the analogues of the Miki and Euler
identities for the Apostol-Genocchi numbers.
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1. Introduction

The Apostol-Bernoulli numbers are defined in [2] as

t

λet − 1
=

∞∑

n=0

Bn(λ)
tn

n!
. (1.1)

Note that at λ = 1 this generating function becomes

t

et − 1
=
∞∑

n=0

Bn
tn

n!
,

where Bn is the classical nth Bernoulli number. Moreover, B0 = B0(λ) = 0 while
B0 = 1 (see [9]). The Genocchi numbers are defined by the generating function

2t

et + 1
=
∞∑

n=0

Gn
tn

n!
,
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which are closely related to the classical Bernoulli numbers and the special values
of the Euler polynomials. It is known that Gn = 2(1− 2n)Bn and Gn = nEn−1(0),
where En(0) is a value of the Euler polynomials evaluated at 0 (sometimes are
called the Euler numbers) [4, 10, 11]. Likewise the Apostol-Bernoulli numbers, the
Apostol-Genocchi numbers are defined by their generating function as

2t

λet + 1
=
∞∑

n=0

Gn(λ)
tn

n!
(1.2)

with G0 = G0(λ) = 0.
Over the years, different identities were obtained for the Bernoulli numbers

(for instance, see [3, 4, 6, 7, 10, 12, 16, 17]). The Euler identity for the Bernoulli
numbers is given by (see [6, 15])

n−2∑

k=2

(
n

k

)
BkBn−k = −(n+ 1)Bn, (n ≥ 4). (1.3)

Its analogue for convolution of Bernoulli and Euler numbers was obtained in [10]
using the p-adic integrals. The similar convolution was obtained for the generalized
Apostol-Bernoulli polynomials in [13]. In 1978, Miki [15] found a special identity
involving two different types of convolution between Bernoulli numbers:

n−2∑

k=2

Bk
k

Bn−k
n− k −

n−2∑

k=2

(
n

k

)
Bk
k

Bn−k
n− k = 2Hn

Bn
n
, (n ≥ 4), (1.4)

where Hn = 1+ 1
2 + . . .+ 1

n is the nth harmonic number. Different kinds of proofs
of this identity were represented in [1, 5, 8]. Gessel [8] generalized the Miki identity
for the Bernoulli polynomials. Another generalization of the Miki identity for the
Bernoulli and Euler polynomials was obtained in [16]. In 1997, Matiyasevich [1, 14]
found an identity involving two types of convolution between Bernoulli numbers

(n+ 2)
n−2∑

k=2

BkBn−k − 2
n−2∑

k=2

(
n+ 2

k

)
BkBn−k = n(n+ 1)Bn. (1.5)

The analogues of the Euler, Miki and Matiyasevich identities for the Genocchi
numbers were obtained in [1]. In this paper, we represent the analogues of these
identities for the Apostol-Bernoulli and the Apostol-Genocchi numbers.

2. The analogues for the Apostol-Bernoulli numbers

In our work, we use the generating functions method to obtain new analogues of
the known identities for the Apostol-Bernoulli numbers (see [1, 9]). It is easy to
show that

1

λea − 1
· 1

µeb − 1
=

1

λµea+b − 1

(
1 +

1

λea − 1
+

1

µeb − 1

)
. (2.1)
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Let us take a = xt and b = x(1 − t) and multiply both sides of the identity (2.1)
by t(1− t)x2.

tx

λetx − 1

(1− t)x
µe(1−t)x − 1

=
t(1− t)x2
λµetx+(1−t)x

(
1 +

1

λetx − 1
+

1

µe(1−t)x − 1

)

=
x

λµex − 1

(
t(1− t)x+ (1− t) tx

λetx − 1
+ t

(1− t)x
µe(1−t)x − 1

)
. (2.2)

By using (1.1) and the Cauchy product, we get on the LH side of (2.2)

tx

λetx − 1

(1− t)x
µe(1−t)x − 1

=

( ∞∑

n=0

Bn(λ)
tnxn

n!

)( ∞∑

n=0

Bn(µ)
(1− t)nxn

n!

)

=

∞∑

n=0

[
n∑

k=0

(
n

k

)
Bk(λ)tkBn−k(µ)(1− t)n−k

]
xn

n!
, (2.3)

and on the RH side of (2.2) we obtain

x

λµex − 1

(
t(1− t)x+ (1− t) tx

λetx − 1
+ t

(1− t)x
µe(1−t)x − 1

)

=
∞∑

n=0

Bn(λµ)
xn

n!
·

·
(
t(1− t)x+ (1− t)

∞∑

n=0

Bn(λ)
tnxn

n!
+ t

∞∑

n=0

Bn(µ)
(1− t)nxn

n!

)

= t(1− t)
∞∑

n=1

Bn−1(λµ)n
xn

n!

+ (1− t)
∞∑

n=0

[
n∑

k=0

(
n

k

)
Bk(λµ)Bn−k(λ)tn−k

]
xn

n!

+ t
∞∑

n=0

[
n∑

k=0

(
n

k

)
Bk(λµ)Bn−k(µ)(1− t)n−k

]
xn

n!
. (2.4)

By comparing the coefficients of x
n

n! on left (2.3) and right (2.4) hand sides, we
get

n∑

k=0

(
n

k

)
tk(1− t)n−kBk(λ)Bn−k(µ)

= nt(1− t)Bn−1(λµ) + (1− t)
n∑

k=0

(
n

k

)
tn−kBk(λµ)Bn−k(λ)
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+ t
n∑

k=0

(
n

k

)
(1− t)n−kBk(λµ)Bn−k(µ). (2.5)

It follows from (1.1) that Bn(1) = Bn. It is well known that B0 = 1, but from (1.1)
we get B0 = 0. Therefore, we concentrate the members, containing the 0th index
(the cases k = 0 and k = n), out of the sums. The sum on the left hand side of
(2.5) can be rewritten as

n∑

k=0

(
n

k

)
tk(1− t)n−kBk(λ)Bn−k(µ)

=

n−1∑

k=1

(
n

k

)
tk(1− t)n−kBk(λ)Bn−k(µ)

+ (1− t)nB0(λ)Bn(µ) + tnBn(λ)B0(µ) (2.6)

=
n−1∑

k=1

(
n

k

)
tk(1− t)n−kBk(λ)Bn−k(µ) + (1− t)nδ1,λBn(µ) + tnBn(λ)δ1,µ,

where δp,q is the Kronecker symbol. On the right hand side of (2.5) we have that
the first sum can be rewritten as

(1− t)
n∑

k=0

(
n

k

)
tn−kBk(λµ)Bn−k(λ)

= (1− t)
n−1∑

k=1

(
n

k

)
tn−kBk(λµ)Bn−k(λ)

+ (1− t)tnB0(λµ)Bn(λ) + (1− t)Bn(λµ)B0(λ) (2.7)

= (1− t)
n−1∑

k=1

(
n

k

)
tn−kBk(λµ)Bn−k(λ) + (1− t)tnδ1,λµBn(λ) + (1− t)Bn(λµ)δ1,λ,

and the second sum can be rewritten as

t
n∑

k=0

(
n

k

)
(1− t)n−kBk(λµ)Bn−k(µ)

= t

n−1∑

k=1

(
n

k

)
(1− t)n−kBk(λµ)Bn−k(µ)

+ t(1− t)nB0(λµ)Bn(µ) + tBn(λµ)B0(µ) (2.8)

= t

n−1∑

k=1

(
n

k

)
(1− t)n−kBk(λµ)Bn−k(µ) + t(1− t)nδ1,λµBn(µ) + tBn(λµ)δ1,µ.

By substituting the detailed expressions (2.6)–(2.8) back into (2.5), we get
n−1∑

k=1

(
n

k

)
tk(1− t)n−kBk(λ)Bn−k(µ) + (1− t)nδ1,λBn(µ) + tnBn(λ)δ1,µ
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= nt(1− t)Bn−1(λµ) + (1− t)Bn(λµ)δ1,λ

+ (1− t)
n−1∑

k=1

(
n

k

)
tn−kBk(λµ)Bn−k(λ) + (1− t)tnδ1,λµBn(λ)

+ t
n−1∑

k=1

(
n

k

)
(1− t)n−kBk(λµ)Bn−k(µ) + t(1− t)nδ1,λµBn(µ) (2.9)

+ tBn(λµ)δ1,µ.

By dividing both sides of (2.9) by t(1− t), we obtain

n−1∑

k=1

(
n

k

)
tk−1(1− t)n−k−1Bk(λ)Bn−k(µ) +

(1− t)n−1
t

δ1,λBn(µ) +
tn−1

1− tBn(λ)δ1,µ

= nBn−1(λµ) +
n−1∑

k=1

(
n

k

)
tn−k−1Bk(λµ)Bn−k(λ) + tn−1δ1,λµBn(λ) (2.10)

+
1

t
Bn(λµ)δ1,λ +

n−1∑

k=1

(
n

k

)
(1− t)n−k−1Bk(λµ)Bn−k(µ) + (1− t)n−1δ1,λµBn(µ)

+
1

1− tBn(λµ)δ1,µ.

We rewrite the (2.10) as

n−1∑

k=1

(
n

k

)
tk−1(1− t)n−k−1Bk(λ)Bn−k(µ)

= nBn−1(λµ) +
n−1∑

k=1

(
n

k

)
tn−k−1Bk(λµ)Bn−k(λ)

+

n−1∑

k=1

(
n

k

)
(1− t)n−k−1Bk(λµ)Bn−k(µ) +Aδ, (2.11)

where

Aδ =
1

t
(Bn(λµ)− (1− t)n−1Bn(µ))δ1,λ + (tn−1Bn(λ)

+ (1− t)n−1Bn(µ))δ1,λµ +
1

1− t (Bn(λµ)− t
n−1Bn(λ))δ1,µ. (2.12)

By integrating (2.11) between 0 and 1 with respect to t and using the formulae

1∫

0

tp(1− t)qdt = p!q!

(p+ q + 1)!
, p, q ≥ 0,
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1∫

0

1− tp+1 − (1− t)p+1

t(1− t) dt = 2

1∫

0

1− tp
1− t dt = 2Hp, p ≥ 1,

we obtain
1∫

0

n−1∑

k=1

(
n

k

)
tk−1(1− t)n−k−1Bk(λ)Bn−k(µ)dt

=

1∫

0

nBn−1(λµ)dt+
1∫

0

n−1∑

k=1

(
n

k

)
tn−k−1Bk(λµ)Bn−k(λ)dt

+

1∫

0

n−1∑

k=1

(
n

k

)
(1− t)n−k−1Bk(λµ)Bn−k(µ)dt+

1∫

0

Aδdt,

which is equivalent to

n−1∑

k=1

(
n

k

)
(k − 1)!(n− k − 1)!

(n− 1)!
Bk(λ)Bn−k(µ)

= nBn−1(λµ) +
n−1∑

k=1

(
n

k

)
Bk(λµ)

Bn−k(λ)
n− k

+
n−1∑

k=1

(
n

k

)
Bk(λµ)

Bn−k(µ)
n− k +

1∫

0

Aδdt. (2.13)

By dividing both sides of (2.13) by n and performing elementary transformations
of the binomial coefficients of (2.13), we can state the following result.

Theorem 2.1. For all n ≥ 2,

n−1∑

k=1

Bk(λ)
k

Bn−k(µ)
n− k

= Bn−1(λµ) +
n−1∑

k=1

(
n− 1

k − 1

)Bk(λµ)
k

Bn−k(λ) + Bn−k(µ)
n− k +

1

n

1∫

0

Aδdt, (2.14)

where Aδ is given by (2.12).

We have to consider different possible cases for λ and µ values.

Example 2.2. Let λ = 1, µ = 1. It follows from (2.12) that

Aδ =
1− (1− t)n−1

t
Bn + (tn−1 + (1− t)n−1)Bn +

1− tn−1
1− t Bn. (2.15)
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Therefore, the integrating of (2.15) between 0 and 1 with respect to t gives

1∫

0

Aδdt =

1∫

0

1− tn − (1− t)n
t(1− t) Bndt+

1∫

0

tn−1Bndt+

1∫

0

(1− t)n−1Bndt

= 2HnBn. (2.16)

By substituting (2.16) back into (2.14) and replacing all B by B consistently with
the case condition, we get

n−1∑

k=1

Bk
k

Bn−k
n− k − 2

n−1∑

k=1

(
n− 1

k − 1

)
Bk
k

Bn−k
n− k = Bn−1 + 2Hn

Bn
n
.

Note that for even n ≥ 4, all summands, containing odd-indexed Bernoulli numbers,
equal zero. Thus, the sums must be limited from k = 2 up to n−2 over even indexes
only. Moreover, the term Bn−1 on the RH side disappears from the same reason.
Now we have

n−2∑

k=2

Bk
k

Bn−k
n− k − 2

n−2∑

k=2

(
n− 1

k − 1

)
Bk
k

Bn−k
n− k = 2Hn

Bn
n
.

In order to obtain the Miki identity (1.4), let us consider the sum

2
n−2∑

k=2

(
n− 1

k − 1

)
Bk
k

Bn−k
n− k =

2

n

n−2∑

k=2

1

n− k

(
n

k

)
BkBn−k.

Finally, using 2
n−2∑
k=2

1
n−k

(
n
k

)
BkBn−k = n

n−2∑
k=2

(
n
k

)
Bk

k
Bn−k

n−k (see [1]), we obtain the

known Miki identity (1.4) (see [1, 8, 15]).

Corollary 2.3. Let µ 6= 1. For all n ≥ 2, the following identities are valid

n−1∑

k=1

Bk
k

Bn−k(µ)
n− k −

n−1∑

k=1

(
n− 1

k − 1

)Bk(µ)
k

Bn−k + Bn−k(µ)
n− k

= Bn−1(µ) +Hn−1
Bn(µ)
n

, (2.17)

n−1∑

k=1

Bk( 1µ )
k

Bn−k(µ)
n− k − 1

n

n−1∑

k=0

(
n

k

)
Bk
Bn−k( 1µ ) + Bn−k(µ)

n− k = Bn−1. (2.18)

Moreover, if λ, µ, λµ 6= 1, then

n−1∑

k=1

Bk(λ)
k

Bn−k(µ)
n− k −

n−1∑

k=1

(
n− 1

k − 1

)Bk(λµ)
k

Bn−k(λ) + Bn−k(µ)
n− k

= Bn−1(λµ). (2.19)
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Proof. In the case λ = 1, µ 6= 1, we have from (2.12) that Aδ = 1−(1−t)n−1

t Bn(µ).
The integrating between 0 and 1 with respect to t gives

1∫

0

Aδdt =

1∫

0

1− (1− t)n−1
t

Bn(µ)dt = Hn−1Bn(µ). (2.20)

By substituting (2.20) into (2.14), we obtain
n−1∑

k=1

Bk(λ)
k

Bn−k(µ)
n− k

= Bn−1(λµ) +
n−1∑

k=1

(
n− 1

k − 1

)Bk(λµ)
k

Bn−k(λ) + Bn−k(µ)
n− k +

1

n
Hn−1Bn(µ).

By taking into account that λ = 1 and Bp(1) = Bp, we get the identity (2.17).
In order to prove (2.18), we suppose that λ = 1

µ 6= 1. Then, from (2.12), we
obtain that Aδ = tn−1Bn( 1µ ) + (1 − t)n−1Bn( 1µ ). By integrating of Aδ between 0
and 1 with respect to t, we get

1∫

0

Aδdt =

1∫

0

tn−1Bn(
1

µ
)dt+

1∫

0

(1− t)n−1Bn(µ)dt =
Bn( 1µ ) + Bn(µ)

n
. (2.21)

By substituting (2.21) into (2.14), we obtain
n−1∑

k=1

Bk(λ)
k

Bn−k(µ)
n− k = Bn−1(λµ) +

n−1∑

k=1

(
n− 1

k − 1

)Bk(λµ)
k

Bn−k(λ)
n− k

+
n−1∑

k=1

(
n− 1

k − 1

)Bk(λµ)
k

Bn−k(µ)
n− k +

Bn(λ) + Bn( 1λ )
n2

.

By substituting λ = 1
µ into the last equation and using the facts that Bp(1) = Bp

and B0 = 1, we obtain (2.18).
Equation (2.19) follows from the fact that Aδ = 0 for λ, µ, λµ 6= 1.

By integrating both sides of (2.9) from 0 to 1 with respect to t and multiplying
by (n + 1)(n + 2), we obtain the following result, which is an analogue of the
Matiyasevich identity (1.5).

Theorem 2.4. For all n ≥ 2,

(n+ 2)
n−1∑

k=1

Bk(λ)Bn−k(µ)−
n−1∑

k=1

(
n+ 2

k

)
Bk(λµ) (Bn−k(λ) + Bn−k(µ))

=
n(n+ 1)(n+ 2)

6
Bn−1(λµ) (2.22)

+
(n− 1)(n+ 2)

2
(Bn(µ)δ1,λ + Bn(λ)δ1,µ) + (Bn(λ) + Bn(µ))δ1,λµ.
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Example 2.5. Let λ = 1, µ = 1. Then, by using the fact that Bp(1) = Bp, we
obtain

(n+ 2)
n−1∑

k=1

BkBn−k − 2
n−1∑

k=1

(
n+ 2

k

)
BkBn−k

= n(n+ 1)Bn +
n(n+ 1)(n+ 2)

6
Bn−1. (2.23)

Finally, by assuming that n is even and n ≥ 4, we get that all terms, containing
odd indexed Bernoulli numbers, equal zero. Under this condition the (n − 1)st
Bernoulli number on the RH side disappears, and the summation limits are from
2 till n− 2. Thus, we obtain (1.5) (see also [1]).

Corollary 2.6. Let µ 6= 1. Then, for all n ≥ 2, the following identities are valid:

(n+ 2)
n−1∑

k=1

BkBn−k(µ)−
n−1∑

k=1

(
n+ 2

k

)
Bk(µ) (Bn−k + Bn−k(µ))

=
n(n+ 1)(n+ 2)

6
Bn−1(µ) +

(n− 1)(n+ 2)

2
Bn(µ), (2.24)

(n+ 2)
n−1∑

k=1

Bk(
1

µ
)Bn−k(µ)−

n−1∑

k=1

(
n+ 2

k

)
Bk

(
Bn−k(

1

µ
) + Bn−k(µ)

)

=
n(n+ 1)(n+ 2)

6
Bn−1 + Bn(

1

µ
) + Bn(µ). (2.25)

Moreover, if λ, µ, λµ 6= 1, then

(n+ 2)
n−1∑

k=1

Bk(λ)Bn−k(µ)−
n−1∑

k=1

(
n+ 2

k

)
Bk(λµ) (Bn−k(λ) + Bn−k(µ))

=
n(n+ 1)(n+ 2)

6
Bn−1(µ). (2.26)

Proof. By substituting λ = 1 into (2.22) and using the facts that Bp(1) = Bp and
δ1,µ = δ1,λµ = 0, we obtain (2.24). By substituting λ = 1

µ into (2.22) and using
the fact that δ1,λ = δ1,µ = 0, we obtain (2.25). Equation (2.26) follows from (2.22)
by using the fact that δ1,λ = δ1,µ = δ1,λµ = 0.

By dividing (2.9) by t and substituting t = 0, we obtain the following analogue
of the Euler identity (1.3).

Theorem 2.7 (The Euler identity analogue). For all n ≥ 2,

n−1∑

k=1

(
n

k

)
Bk(λµ)Bn−k(µ) = nB1(λ)Bn−1(µ)− nBn−1(λµ)− nBn−1(λµ)B1(λ)

− (n− 1)Bn(µ)δ1,λ − Bn(λ)δ1,µ − Bn(µ)δ1,λµ. (2.27)
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Proof. By dividing (2.9) by t, we obtain

n−1∑

k=1

(
n

k

)
tk−1(1− t)n−kBk(λ)Bn−k(µ) +

(1− t)n
t

δ1,λBn(µ) + tn−1Bn(λ)δ1,µ

= n(1− t)Bn−1(λµ) + (1− t)
n−1∑

k=1

(
n

k

)
tn−k−1Bk(λµ)Bn−k(λ)

+ (1− t)tn−1δ1,λµBn(λ) +
(1− t)
t
Bn(λµ)δ1,λ (2.28)

+
n−1∑

k=1

(
n

k

)
(1− t)n−kBk(λµ)Bn−k(µ)

+ (1− t)nδ1,λµBn(µ) + Bn(λµ)δ1,µ.

Consider now the difference (1−t)n
t δ1,λBn(µ)− 1−t

t Bn(λµ)δ1,λ. It is obviously that

(1− t)n
t

δ1,λBn(µ)−
1− t
t
Bn(λµ)δ1,λ

=
(1− t)n

t
δ1,λBn(µ)−

1− t
t
Bn(µ)δ1,λ

= δ1,λBn(µ)

n∑
j=0

(
n
j

)
(−t)j − 1 + t

t
(2.29)

= δ1,λBn(µ)


−

n∑

j=2

(
n

j

)
(−t)j−1 − (n− 1)


 .

By substituting t = 0 into (2.28) and using (2.29), we obtain (2.27).

Example 2.8. Let λ = 1, µ = 1. Then, by using the fact that B0 = 1, we get

n−1∑

k=0

(
n

k

)
BkBn−k = −nBn − nBn−1.

Note that for n ≥ 4, the odd Bernoulli numbers equal to zero and, thus, only one
of the members on the right hand side will stay. Therefore, by assuming that n ≥ 4
and n is even, we obtain the Euler identity (1.3) (see also [1, 6]).

Corollary 2.9. For all n ≥ 2 and µ 6= 1, the following identities are valid:

n−1∑

k=1

(
n

k

)
Bk(µ)Bn−k(µ) = −(n− 1)Bn(µ)− nBn−1(µ), (2.30)

n−1∑

k=0

(
n

k

)
BkBn−k(

1

µ
) = nB1(µ)Bn−1(

1

µ
) + nBn−1B1(

1

µ
). (2.31)
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Moreover, if λ, µ, λµ 6= 1, then

n−1∑

k=1

(
n

k

)
Bk(λµ)Bn−k(µ) = nB1(λ)Bn−1(µ)− n(1 + B1(λ))Bn−1(λµ).

Identity (2.30) is obtained by substituting λ = 1 into (2.27), and Identity (2.31)
is obtained in case λµ = 1. Note that here we use the fact that B1(µ) = 1

µ−1 and,
therefore, B1(1/µ) = −(B1(µ) + 1).

3. Identities for the Apostol-Genocchi numbers

Following the same technique we used in the previous section, we will obtain the
analogues of the Miki and Euler identities for the Apostol-Genocchi numbers. It is
easy to show that

1

λea + 1
· 1

µeb + 1
=

1

λµea+b − 1

(
1− 1

λea + 1
− 1

µeb + 1

)
. (3.1)

Let us take a = xt and b = (1 − t)x and multiply both sides of the (3.1) by
4t(1− t)x2. We get

2tx

λetx + 1
· 2(1− t)x
µe(1−t)x + 1

= 2 · x

λµex − 1

(
2t(1− t)x− (1− t) 2tx

λetx + 1
− t 2(1− t)x

µe(1−t)x + 1

)
,

By using (1.1) and (1.2), we get
( ∞∑

n=0

Gn(λ)
tnxn

n!

)( ∞∑

n=0

Gn(µ)
(1− t)nxn

n!

)

= 2
∞∑

n=0

Bn(λµ)
xn

n!
·

·
(
2t(1− t)x− (1− t)

∞∑

n=0

Gn(λ)
tnxn

n!
− t

∞∑

n=0

Gn(µ)
(1− t)nxn

n!

)
.

Therefore, by applying the Cauchy product and extracting the coefficients of xn

n! ,
we obtain

n∑

k=0

(
n

k

)
Gk(λ)Gn−k(µ)tk(1− t)n−k

= 4t(1− t)nBn−1(λµ)− 2(1− t)
n∑

k=0

(
n

k

)
Bk(λµ)Gn−k(λ)tn−k
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− 2t
n∑

k=0

(
n

k

)
Bk(λµ)Gn−k(µ)(1− t)n−k. (3.2)

Now we divide (3.2) by t(1 − t) and then integrate with respect to t from 0 to 1.
By using the facts that B0 = 0, B0 = 1, and G0 = G0 = 0, we obtain the following
statement, that is an analogue of the Miki identity (1.4) for the Apostol-Genocchi
numbers.

Theorem 3.1. For all n ≥ 2,

n−1∑

k=1

Gk(λ)
k

Gn−k(µ)
n− k + 2

n−1∑

k=1

(
n− 1

k − 1

)Bk(λµ)
k

Gn−k(λ) + Gn−k(µ)
n− k

= 4Bn−1(λµ)−
2

n2
(Gn(λ) + Gn(µ)) δ1,λµ.

Example 3.2. Let λ = µ = 1. Then

n−1∑

k=1

Gk
k

Gn−k
n− k + 4

n−1∑

k=1

(
n− 1

k − 1

)
Bk
k

Gn−k
n− k = 4Bn−1 −

4Gn
n2

.

Let us suppose now that n ≥ 4 and n is even. Then, the facts that both odd
indexed Bernoulli and Genocchi numbers equal zero imply

n−2∑

k=2

Gk
k

Gn−k
n− k + 4

n−2∑

k=2

(
n− 1

k − 1

)
Bk
k

Gn−k
n− k = −4Gn

n2
.

Multiplying both sides of this equation by n and using n
k(n−k) = 1

k + 1
n−k and

n
k

(
n−1
k−1
)
=
(
n
k

)
yield

2
n−2∑

k=2

GkGn−k
n− k + 4

n−2∑

k=2

(
n

k

)
BkGn−k
n− k = −4Gn

n
.

By dividing both sides by 2 and replacing the indexes k by n−k and vice versa, we
obtain the following analogue of the Miki identity (1.4) for the Genocchi numbers

n−2∑

k=2

GkGn−k
k

+ 2
n−2∑

k=2

(
n

k

)
GkBn−k

k
= −2Gn

n
.

Note that this coincides with [1, Proposition 4.1] for the numbers B′n, which are
defined as Gn = 2B′n.

Corollary 3.3. Let µ 6= 1. For n ≥ 2,

n−1∑

k=1

Gk
k

Gn−k(µ)
n− k + 2

n−1∑

k=1

(
n− 1

k − 1

)Bk(µ)
k

Gn−k + Gn−k(µ)
n− k = 4Bn−1(µ),
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n−1∑

k=1

Gk( 1µ )
k

Gn−k(µ)
n− k + 2

n−1∑

k=1

(
n− 1

k − 1

)
Bk
k

Gn−k( 1µ ) + Gn−k(µ)
n− k

= 4Bn−1 −
2

n2

(
Gn(

1

µ
) + Gn(µ)

)
.

Moreover, if λ, µ, λµ 6= 1, then

n−1∑

k=1

Gk(λ)
k

Gn−k(µ)
n− k + 2

n−1∑

k=1

(
n− 1

k − 1

)Bk(λµ)
k

Gn−k(λ) + Gn−k(µ)
n− k = 4Bn−1(λµ).

In order to obtain the analogues of the Euler identity, we divide (3.2) by t(1− t)
and subsitute t = 0.

Theorem 3.4. For all n ≥ 2,

n−1∑

k=1

(
n

k

)
Bk(λµ)Gn−k(µ) = nBn−1(λµ)(2− G1(λ))−

nG1(λ)Gn−1(µ)
2

− Gn(µ)δ1,λµ.

Example 3.5. Let λ = µ = 1. Then, since G1 = 1, we obtain

n−1∑

k=1

(
n

k

)
BkGn−k = nBn−1 −

n

2
Gn−1 −Gn.

By using the fact that all odd indexed Bernoulli and Genocchi numbers starting
from n = 3 disappear, we obtain for all even n ≥ 4,

∑n−2
k=2

(
n
k

)
BkGn−k = −Gn,

where the summation is over even indexed numbers (see also [1]).

Here are some identities of the Euler type for the Apostol-Genocchi numbers
following from Theorem 3.4.

Corollary 3.6. Let λ 6= 1. For n ≥ 2,

n−1∑

k=1

(
n

k

)
Bk(λ)Gn−k(λ) = nBn−1(λ)−

nGn−1(λ)
2

,

n−1∑

k=1

(
n

k

)
Bk(λ)Gn−k = nBn−1(λ)(2− G1(λ))−

nG1(λ)Gn−1
2

,

n−2∑

k=0

(
n

k

)
BkGn−k(

1

λ
) = −nG1(λ)Gn−1(

1
λ )

2
.

Moreover, if λ, µ, λµ 6= 1, then

n−1∑

k=1

Bk(λµ)Gn−k(µ) = nBn−1(λµ)(2− G1(λ))−
nG1(λ)Gn−1(µ)

2
.
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Here we used the facts that B0 = 1 and 2 − G1(λ) = G1( 1λ ). Another series of
the identities of the Miki and the Euler types for the Apostol-Genocchi numbers
can be obtained in the same manner, when the following, easily proved, equation

1

λea − 1
· 1

µeb + 1
=

1

λµea+b + 1

(
1 +

1

λea − 1
− 1

µeb + 1

)

is taken as a basis for the generating function approach. The following result may
be proved in the same way as Theorem 3.1. Let us take a = xt and b = (1 − t)x
and multiply both sides of the two last identities by 4t(1− t)x2. We get

2 · tx

λetx − 1
· 2(1− t)x
µe(1−t)x + 1

=
2x

λµex + 1

(
2t(1− t)x+ 2(1− t) tx

λetx − 1
− t 2(1− t)x

µe(1−t)x + 1

)
. (3.3)

Again, we use (1.1) and (1.2) and apply the Cauchy product in order to extract
the coefficients of x

n

n! on both sides of (3.3). Thus, we obtain

2

n∑

k=0

(
n

k

)
Bk(λ)Gn−k(µ)tk(1− t)n−k

= 2t(1− t)nGn−1(λµ) + 2(1− t)
n∑

k=0

(
n

k

)
Gk(λµ)Bn−k(λ)tn−k

− t
n∑

k=0

(
n

k

)
Gk(λµ)Gn−k(µ)(1− t)n−k. (3.4)

Now we divide both equations by t(1 − t) and then integrate with respect to t
from 0 to 1. By using the facts that B0 = 0, B0 = 1, and G0 = G0 = 0, we
obtain the following statement, that is another analogue of the Miki identity for
the Apostol-Genocchi numbers.

Theorem 3.7. For all n ≥ 2,

n−1∑

k=1

Bk(λ)
k

Gn−k(µ)
n− k −

n−1∑

k=1

(
n− 1

k − 1

)Gk(λµ)
k

Bn−k(λ)− 1
2Gn−k(µ)

n− k

= Gn−1(λµ) +
Gn(µ)
n

Hn−1δ1,λ. (3.5)

Example 3.8. Let λ = µ = 1. Then, for all n ≥ 2,

n−1∑

k=1

Bk
k

Gn−k
n− k −

n−1∑

k=1

(
n− 1

k − 1

)
Gk
k

Bn−k − 1
2Gn−k

n− k = Gn−1 +
Gn
n
Hn−1.

It is known that the Genocchi and Bernoulli numbers are related as

Gn = 2(1− 2n)Bn
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(see [1]). By substituting this identity into the difference Bn−k− 1
2Gn−k under the

second summation, we obtain

n−1∑

k=1

Bk
k

Gn−k
n− k −

n−1∑

k=1

(
n− 1

k − 1

)
Gk
k

Bn−k − (1− 2n−k)Bn−k
n− k = Gn−1 +

Gn
n
Hn−1.

Note that for n ≥ 3, the odd-indexed Bernoulli and Genocchi numbers disappear,
therefore, let us assume now that n is even and n ≥ 4. Thus, we have

n−2∑

k=2

Bk
k

Gn−k
n− k −

n−2∑

k=2

(
n− 1

k − 1

)
Gk
k

2n−kBn−k
n− k =

Gn
n
Hn−1.

Using the binomial identity
(
n−1
k−1
)
=
(
n−1
n−k
)
leads to

n−2∑

k=2

Bk
k

Gn−k
n− k −

n−2∑

k=2

(
n− 1

n− k

)
Gk
k

2n−kBn−k
n− k =

Gn
n
Hn−1.

We replace k by n − k under the second summation. Finally, using the notation
Gn = 2B′n, proposed in [1], and dividing both sides by 2 lead to the statement
(4.2) of [1, Proposition 4.1]

n−2∑

k=2

Bk
k

B′n−k
n− k −

n−2∑

k=2

(
n− 1

k

)
2kBk
k

B′n−k
n− k =

B′n
n
Hn−1.

Corollary 3.9. Let µ 6= 1. For all n ≥ 2,

n−1∑

k=1

Bk
k

Gn−k(µ)
n− k −

n−1∑

k=1

(
n− 1

k − 1

)Gk(µ)
k

Bn−k − 1
2Gn−k(µ)

n− k

= Gn−1(µ) +
Gn(µ)
n

Hn−1.

Due to the asymmetry of λ and µ in the (3.5), we get the following corollary of
the Theorem 3.7.

Corollary 3.10. Let λ 6= 1. For all n ≥ 2,

n−1∑

k=1

Bk(λ)
k

Gn−k
n− k −

n−1∑

k=1

(
n− 1

k − 1

)Gk(λ)
k

Bn−k(λ)− 1
2Gn−k

n− k = Gn−1(λ),

n−1∑

k=1

Bk(λ)
k

Gn−k( 1λ )
n− k −

n−1∑

k=1

(
n− 1

k − 1

)
Gk
k

Bn−k(λ)− 1
2Gn−k( 1λ )

n− k = Gn−1. (3.6)

Moreover, if λ, µ, λµ 6= 1, then

n−1∑

k=1

Bk(λ)
k

Gn−k(µ)
n− k −

n−1∑

k=1

(
n− 1

k − 1

)Gk(λµ)
k

Bn−k(λ)− 1
2Gn−k(µ)

n− k = G(λµ).
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By dividing (3.2) and (3.4) by t and then substituting t = 0, we obtain the
following analogue of the Euler identity.

Theorem 3.11. For all n ≥ 2,
n−1∑

k=1

(
n

k

)
Gk(λµ)Gn−k(µ) = 2nGn−1(λµ) + 2(n− 1)Gn(λµ)δ1,λ (3.7)

+ 2nB1(λ) (Gn−1(λµ)− Gn−1(µ)) .
Example 3.12. Let λ = µ = 1. Then

n−1∑

k=1

(
n

k

)
GkGn−k = 2nGn−1 + 2(n− 1)Gn.

By using the fact that all odd indexed Bernoulli and Genocchi numbers start-
ing from n = 3 disappear, we obtain a more familiar form for all even n ≥ 4,∑n−2
k=2

(
n
k

)
GkGn−k = 2(n− 1)Gn, where the summation is over even indexed num-

bers (see also [1]).

Corollary 3.13. Let λ 6= 1 and n ≥ 2. Then the following identities are valid
n−1∑

k=1

(
n

k

)
Gk(λ)Gn−k(λ) = 2nGn−1(λ) + 2(n− 1)Gn(λ), (3.8)

n−1∑

k=1

(
n

k

)
Gk(λ)Gn−k = 2nGn−1(λ) + 2nBn−1(λ)(Gn−1(λ)−Gn−1), (3.9)

n−1∑

k=1

(
n

k

)
GkGn−k(

1

λ
) = 2nGn−1 + 2nB1(

1

λ
)

(
Gn−1(

1

λ
)−Gn−1

)
. (3.10)

Moreover, if λ, µ, λµ 6= 1, then
n−1∑

k=1

(
n

k

)
Gk(λµ)Gn−k(µ) = 2nGn−1(λµ) + 2nBn−1(λ)(Gn−1(λµ)− Gn−1(µ)).

(3.11)

Proof. Replacing λ and µ in (3.7), and substituting µ = 1 lead to

n−1∑

k=1

(
n

k

)
Gk(λ)Gn−k(λ)

= 2nGn−1(λ) + 2(n− 1)Gn(λ) + 2n

(
−1

2

)
(Gn−1(λ)− Gn−1(λ)) .

The last summand equals zero, and we obtain the identiy (3.8). By substituting
µ = 1 into (3.7) we obtain (3.9). Substituting µ = 1

λ into (2.14) and using the fact
that 1 + B1(λ) = −B1( 1λ ) lead to (3.10). The second summand on the RH of the
(3.7) disappears since λ 6= 1, and we obtain (3.11).

112 O. Herscovici, T. Mansour



Remark 3.14. As it was mentioned above, the classical Bernoulli and Genocchi
numbers are connected via the following relationship Gn = 2(1 − 2n)Bn. It is
easy to see that also the Apostol-Bernoulli and Apostol-Genocchi numbers satisfy
Gn(λ) = −2Bn(−λ). Moreover, the Apostol-Bernoulli numbers satisfy B2n(λ) =
B2n( 1λ ) and B2n+1(λ) = −B2n+1(

1
λ ) for λ 6= 1. In the same manner, the Apostol-

Genocchi numbers satisfy G2n(λ) = G2n( 1λ ) and G2n+1(λ) = −G2n+1(
1
λ ) for n > 0.

These relationships allow to obtain new identities from those considered in the
current paper.
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