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Abstract

We study analogues of the Miki, Matiyasevich, and Euler identities for the
Apostol-Bernoulli numbers and obtain the analogues of the Miki and Euler
identities for the Apostol-Genocchi numbers.

Keywords: Apostol-Bernoulli numbers; Apostol-Genocchi numbers; Miki ide-
ntity; Matiyasevich identity; Euler identity

MSC: 05A19; 11B68

1. Introduction

The Apostol-Bernoulli numbers are defined in [2] as

t "
v ZBn(A)a. (1.1)

n=0
Note that at A = 1 this generating function becomes

oo

=Y By
et —1 _n:0 "nl’

where B,, is the classical nth Bernoulli number. Moreover, By = By(A) = 0 while
By =1 (see [9]). The Genocchi numbers are defined by the generating function
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which are closely related to the classical Bernoulli numbers and the special values
of the Euler polynomials. It is known that G,, = 2(1 —2")B,, and G,, = nE,_1(0),
where E,(0) is a value of the Euler polynomials evaluated at 0 (sometimes are
called the Euler numbers) [4, 10, 11]. Likewise the Apostol-Bernoulli numbers, the
Apostol-Genocchi numbers are defined by their generating function as

)\et +1 Zgn n! (1.2)

with Go = Go(N\) =0

Over the years, different identities were obtained for the Bernoulli numbers
(for instance, see [3, 4, 6, 7, 10, 12, 16, 17]). The Euler identity for the Bernoulli
numbers is given by (see [6, 15])

n—2

3 (:) BiBp_i = —(n+1)B,, (n > 4). (1.3)

k=2

Its analogue for convolution of Bernoulli and Euler numbers was obtained in [10]
using the p-adic integrals. The similar convolution was obtained for the generalized
Apostol-Bernoulli polynomials in [13]. In 1978, Miki [15] found a special identity
involving two different types of convolution between Bernoulli numbers:

I
kn
where H, =1+ % +...+ % is the nth harmonic number. Different kinds of proofs
of this identity were represented in [1, 5, 8]. Gessel [8] generalized the Miki identity
for the Bernoulli polynomials. Another generalization of the Miki identity for the

Bernoulli and Euler polynomials was obtained in [16]. In 1997, Matiyasevich [1, 14]
found an identity involving two types of convolution between Bernoulli numbers

n—2

. Bi B,,_ B
Lk_kzz(@k ok _oH, 2 (nz4),  (14)

kn—=k n

n—2

+2
(n+2) ZBan o — 22(" >Ban w =n(n+1)B,. (1.5)

The analogues of the Euler, Miki and Matiyasevich identities for the Genocchi
numbers were obtained in [1]. In this paper, we represent the analogues of these
identities for the Apostol-Bernoulli and the Apostol-Genocchi numbers.

2. The analogues for the Apostol-Bernoulli numbers

In our work, we use the generating functions method to obtain new analogues of
the known identities for the Apostol-Bernoulli numbers (see [1, 9]). It is easy to
show that

1 1 1 1 1
1 . 2.1
Xet —1 peb—1 )\ue“+b—1<+/\ea—1+ueb—1> (2.1)
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Let us take a = ot and b = x(1 — ¢) and multiply both sides of the identity (2.1)
by t(1 — t)2?

tx (1-t)x
detr — 1 Me(lft)a: —1

Ct(1—t) 1 1
- Aﬂet:p#(lft)z + detz — 1 + ﬂe(lft)a: -1

B x tx (1-t)x
= s 1 (t(l i+ (1—-1) ot —1 +t,ue(1—t)f — 1> . (2.2)

By using (1.1) and the Cauchy product, we get on the LH side of (2.2)

tx 1—t t"x 1_ n,.n
det® — 1 Me(( (Z B > (Z B t) )
= Z [Z( ) (N B, () (1 —t)"—’“] %T (2.3)

n=0 Lk=0

and on the RH side of (2.2) we obtain

tw (1—-t)z )

X
(=04 (=) e G0

Apet —1

- mon
(t(l—t)x—i— l—tZB —+tZB 1_t

n=0

v

oo :L‘n
n=1 :

By comparing the coefficients of - Z7 on left (2.3) and right (2.4) hand sides, we
get

Z() ~ 1) BBk (11)

= (1 = 08,100 + (1= Y () BB 1)

k=0
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Hz( )@= 0 BB, () (25)

It follows from (1.1) that B, (1) = B,,. It is well known that By = 1, but from (1.1)
we get By = 0. Therefore, we concentrate the members, containing the Oth index
(the cases k = 0 and k& = n), out of the sums. The sum on the left hand side of
(2.5) can be rewritten as

2 (Z) (1= )" BN B (1)

= )
- (k) (1~ 1By () B (1)
(L= " Bo(NBa () + "Ba(NBo 1) (2.6)
n—1
( ) YR B (A Bai (1) + (1 — £)"610Bo (1) + BN
k=1

where ¢, 4 is the Kronecker symbol. On the right hand side of (2.5) we have that
the first sum can be rewritten as

n

-6 (Z) " B (M) B (V)

k=0

(1—1t) i( )t” FBe(A)Br_r(N)
k=1
+ (1= 0)t"Bo (M) Bn(A) + (1 — £)Bn(An) Bo(A) (2.7)

n—1

—1-ny (Z) P F B ) B (N) + (1= D881 2, Bu(N) + (1 — ), () a,
k=1

and the second sum can be rewritten as

ty (Z) (1= )" *B(At) Bk (1)

k=0
=3 () a0t BomB.
+ t(l - t)nBO(A,u)Bn(/u) + tBn(/\ﬂ)BO (,U) (28)
n—1
=t kZ:l (Z) (1= 8)" *BrAi) B (1) + (1 = )61, 3B (1) + B, (M) b1,

By substituting the detailed expressions (2.6)—(2.8) back into (2.5), we get

n—1

5 ()01 = 0 BBl + (1= 008 0) + 175, ()0
k=1
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=nt(l —6)By_1(Au) + (1 — t)Bp(Au)d1 x

faenY (1)L B-a ) + (L 0510,8,01
k=

+tZ (Z) (1= )" BuAw)Bu-i(p) +t(1 = )10 Bu(n)  (29)
+ tBn()‘/“L)(SL#

By dividing both sides of (2.9) by #(1 — t), we obtain

= (1) k1 —k—1 (11—t !
Z <k>t (1=0)" B(N)Br—k (1) + féul?n(u) + mlgn(}\)‘sl,u
k=1
n—1 n
— By O+ > ( k)t”—’f—lsk(xu)zs”m 18w Ba (V) (2.10)
k=1

n—1
1
+ 5 Ba (Ao + (Z) (1= 0" BBk () + (L= )" 810, Bu (1)
k=1

1
+ mBn(AN)(sl,w

We rewrite the (2.10) as

n—1

> ()= BB )
k=1

=nBy_1(A\u) + i <Z> 17 E 1 By (M) Bk (\)

+nz_:< ) (1= )" 1 Br(A\) B i (1) + A?, (2.11)
where
A7 = H(Ba ) = (1= " B s + (" Ba(3)
B ()0 + o (BaO) — B o (212)

By integrating (2.11) between 0 and 1 with respect to ¢ and using the formulae

1
plq!
(1 —t)idt = — >
/( ) rETEEyL p,q >0,
0
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1 1

11—+l — (1 —¢)ptt 1—tP

dt =2 [ ——dt =2H, >1

/ t(1—t) /1—t o P=5
0

we obtain

/1n_1 (Z) = )" B () Bk ()t
0

which is equivalent to

O

Hh
= =

n—1

o (o
k=1

= (n Bk (1) / 5
+ B 22t [ gsgy, (2.13)
kzzl (k) A — 0/

By dividing both sides of (2.13) by n and performing elementary transformations
of the binomial coefficients of (2.13), we can state the following result.

Theorem 2.1. For alln > 2,

n—1
:Bnl(Au)JrZ(Z:DB’“(kA“)B (71‘:6”’“ /Aédt (2.14)

where A? is given by (2.12).
We have to consider different possible cases for A and p values.

Example 2.2. Let A =1, p = 1. It follows from (2.12) that

1_tn—1
By + "'+ (1 -t)""HB, + —— Bn (2.15)

1—(1—t)!
t

A =
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Therefore, the integrating of (2.15) between 0 and 1 with respect to t gives

1

1 1 1
1—t"—(1—t
/A :/ T )" Bndt+/t”—1Bndt+/(1—t)"—andt
0 0 0

= 2H,B,. (2.16)

By substituting (2.16) back into (2.14) and replacing all B by B consistently with
the case condition, we get

“ By - B, B,
Z? Z( 1>kn—k Bn +2Hn 5

k=

Note that for even n > 4, all summands, containing odd-indexed Bernoulli numbers,
equal zero. Thus, the sums must be limited from k = 2 up to n—2 over even indexes
only. Moreover, the term B, _; on the RH side disappears from the same reason.
Now we have

n—2 n—2
By B, — — 1\ By B, — B
> R (30 g
2 k n— 1) kn—-k n
In order to obtain the Miki identity (1.4), let us consider the sum
n—2

n—1 k Bn_k 2 1 n
22( ) k n—k_nzn—k(k>3k3nk'

k=2

n—2

Finally, using 2 Z L (V)BkBy— = n Z ( )%i’f; (see [1]), we obtain the
known Miki 1dent1ty (1.4) (see [1, 8, 15]).

Corollary 2.3. Let u# 1. For all n > 2, the following identities are valid

Z ! By Bn k( Z (n - 1> () Bn,k;_[:’z,k(u)

= Bn—l(,u) + Hn—l Bn,n(llu) ) (217)

n—1 1 n—1 1
k. n—k *EZ (k)Bk n—k = Bn-1. (2.18)
k=1 k=0
Moreover, if X\, b, \p # 1, then
= Bi(X) Buk () i) n—1 u) Bu—i(\) + Bai ()
Pt k Pt n—k

= B,_1().  (2.19)
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Proof. In the case A = 1, u # 1, we have from (2.12) that A% = %Bn(u).
The integrating between 0 and 1 with respect to ¢ gives

1 1
1—(1—¢)n !
/ At — / %Bn(u)dt — Hy 1 Bo(p). (2.20)
0 0
By substituting (2.20) into (2.14), we obtain
5 B Buklry)
n—k
k=1

n—1
= Bp-1(Ap) + Z <n - 1) k) BN + Bor(k) + %anBn(M)-

n—=k
=1

By taking into account that A = 1 and B, (1) = By, we get the identity (2.17).
In order to prove (2.18), we suppose that A = i # 1. Then, from (2.12), we

obtain that A% = t"flb’n(%) +(1- t)"*an(%L)‘ By integrating of A% between 0
and 1 with respect to t, we get

1 1

1
Bn 1 +Bn
/A5dt:/t" 'B.( dt+/ )" B, () dt :M. (2.21)
0

n
0 0

By substituting (2.21) into (2.14), we obtain

) Bo (1) S (7~ 1) Bl Buk()
&:B"l(”)*z:(k—l) ok

k=1

., Z <n - 1> Bi (M) Bn 7(;1) LBy +Bn(%).

k n?

By substituting A = i into the last equation and using the facts that B,(1) = B,
and By = 1, we obtain (2.18).
Equation (2.19) follows from the fact that A% = 0 for X, u, A # 1. O

By integrating both sides of (2.9) from 0 to 1 with respect to ¢ and multiplying
by (n 4+ 1)(n + 2), we obtain the following result, which is an analogue of the
Matiyasevich identity (1.5).

Theorem 2.4. For alln > 2,

(n+2) Z_: Bio(N) B (1) — i: (” ‘]: 2) Br(A) (B k(N) + B (1))
k= k=1

_ —(” D02 e o (2.22)

(n—l)( +2)

* 2

(Br(1)01,5 + Br(A)d1,1) + (Bu(A) + Bn (1)1, 2u-
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Example 2.5. Let A = 1, p = 1. Then, by using the fact that B,(1) = B, we
obtain

n—1

n—|—2 ZBan k— 22<n+2>Ban k

—n(n+1)B, + MU E2)

Bph_1. (2.23)
Finally, by assuming that n is even and n > 4, we get that all terms, containing
odd indexed Bernoulli numbers, equal zero. Under this condition the (n — 1)st
Bernoulli number on the RH side disappears, and the summation limits are from
2 till n — 2. Thus, we obtain (1.5) (see also [1]).

Corollary 2.6. Let p# 1. Then, for all n > 2, the following identities are valid:

(02 3 Bubinoa) = 3 (") Bulo) (B + Bus0)
k=1 k=1
- Wm_l(m + u;"msn(m, (2.29)
= 1 = n—|—2 1
~n(n+1)(n+2)
*TB” 1+ By (M)+B (1) (2.25)
Moreover, if A\, u, A\t # 1, then
(n+2) S BB i)~ Y < )Bk M) Bo () + B (40))
k=1 k=1
_nmt Ve, (2.26)

6

Proof. By substituting A = 1 into (2.22) and using the facts that B,(1) = B, and
01, = 01,5, = 0, we obtain (2.24). By substituting A = i into (2.22) and using
the fact that 6; x = 61, = 0, we obtain (2.25). Equation (2.26) follows from (2.22)
by using the fact that d; x = d1,,, = 61,0, = 0. O

By dividing (2.9) by ¢ and substituting ¢t = 0, we obtain the following analogue
of the Euler identity (1.3).

Theorem 2.7 (The Euler identity analogue). For alln > 2,

2 () BB 0) = WA B 0) = 1B ) = B2 B )

= (n = 1D)Bu()d1,x — Bn(AN)d1,u — Ba(p)d1,au- (2:27)



106 O. Herscovici, T. Mansour

Proof. By dividing (2.9) by ¢, we obtain

S (3) et - o s ast + S 080 + 0B, )
= n—1 n
== 08,100+ (1= 0 3 () B OB
k=1
+ (1 - t>tn—1517)\#8n()\) + u%?t)Bn(Au)éL,\ (228)

n—1
+ "Y1 = " B (M) B (1)
’; (k) k(AW k(M
+ (1 — t)”él,,\MBn(u) + Bn(/\/,é)(SLM.

Consider now the difference %51,,\8,1(#) — LB, (Ap)d1,x. It is obviously that

1-H)" 1-1¢
), 01,ABn (1) = == Ba(Au)di
1-t)" 1—t
= O B~ B
Y (1Y — 1+t
= 61 Bn ()= - (2.29)
=612 Bn(p) | — Z (n) (-t)yil —(n—-1)
i=2 M
By substituting ¢t = 0 into (2.28) and using (2.29), we obtain (2.27). O

Example 2.8. Let A =1, p = 1. Then, by using the fact that By = 1, we get

n—1
3 (Z) BB, _» = —nB, —nB,_1.
k=0

Note that for n > 4, the odd Bernoulli numbers equal to zero and, thus, only one
of the members on the right hand side will stay. Therefore, by assuming that n > 4
and n is even, we obtain the Euler identity (1.3) (see also [1, 6]).

Corollary 2.9. For alln > 2 and p # 1, the following identities are valid:

n—1
3 (Z) Be(i)Ba (1) = —(n — DBu() = nBu1(),  (2:30)
k=1

2 <k> Ban—k(;) = TLBl(,u)Bn—l(;) + an_lBl(;). (2.31)
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Moreover, if A\, u, \p # 1, then

5 () BV -40) = B2 (0) = 1+ By ()1 ().

k=1

Identity (2.30) is obtained by substituting A = 1 into (2.27), and Identity (2.31)
is obtained in case Au = 1. Note that here we use the fact that By (u) = %1 and,

therefore, By (1/u) = —(B1(p) + 1). g

3. Identities for the Apostol-Genocchi numbers

Following the same technique we used in the previous section, we will obtain the
analogues of the Miki and Euler identities for the Apostol-Genocchi numbers. It is
easy to show that

1 1 R S 5.)
et +1 peb+1  Apertt —1 det +1  pebt+1)/° '

Let us take a = at and b = (1 — ¢)z and multiply both sides of the (3.1) by
4t(1 — t)a®. We get

2tz 2(1 —t)x
\et® +1 ,ue(lft)m +1
x 2tz 2(1 - t)x
=2 —(2t(1 —t)xa — (1 — ¢ —
Aper — 1 < ( Jo = ( ))\et’c +1 pel—tz 1)
By using (1.1) and (1.2), we get

(St n)(zgn (e
_2ZB,,>\;L—T
-<2t<1—t>x—<1—t>ign<x—tZgn 1””")
n=0 '

Therefore, by applying the Cauchy product and extracting the coefficients of %T,L,
we obtain

n

") G\ G ()t (1 — 1)
kz—o(k> k kM

=4t(1 —t)nBp_1(Au) —2(1 — 1) Z (:) B, (A)Grn—r (A" F

k=0
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2152( )Bk MGk () (1 — )", (3.2)

Now we divide (3.2) by t(1 — ¢) and then integrate with respect to ¢ from 0 to 1.
By using the facts that By = 0, By = 1, and Gy = Gy = 0, we obtain the following
statement, that is an analogue of the Miki identity (1.4) for the Apostol-Genocchi
numbers.

Theorem 3.1. For alln > 2,

n—1 n—1

= 4B, 1(M0) — 5 (Gu(N) + Gu1) B

Example 3.2. Let A= pu = 1. Then

= Gy Gy — 1\ By Gy 4G,
SO E SUSE S

kn—k kn—k n?
k=1

Let us suppose now that n > 4 and n is even. Then, the facts that both odd
indexed Bernoulli and Genocchi numbers equal zero imply

n—2
Gk v G 4G,
+4 = — )
I I S (L S
k=2
Multiplying both sides of this equation by n and using ﬁ = % +
n (n—1 n :
F(21) = () yield
n—2
Gan k n\ BrGn—k 4G,
2 = — )
Y Gty () e

By dividing both sides by 2 and replacing the indexes k by n — k and vice versa, we
obtain the following analogue of the Miki identity (1.4) for the Genocchi numbers

nszan k 22( )Gan k :_2in.

k=2

1

% and

Note that this coincides with [1, Proposition 4.1] for the numbers B/, which are

defined as G,, = 2B;,.

n?

Corollary 3.3. Let u #1. Forn > 2,

yen Gn—k(1) k(1) Grng +Gnr(n)
Z n— +2Z( _1> n— —4Bn—1(,u)a
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3
|

1Q(ﬁ)gn n—1\ By Gn—r(3) + Gnr(n)
k g +2Z< ) . n—=k

>
Il

1

— 4B, - (gn< )+ 0a0).

Moreover, if A\, u, \p # 1, then

e

In order to obtain the analogues of the Euler identity, we divide (3.2) by ¢(1—t)
and subsitute ¢t = 0.

Vsl o (1) BN Gt sl)

Theorem 3.4. For alln > 2,

> () B30 = 8102 = o)~ OB G, 1)

Example 3.5. Let A = = 1. Then, since G; = 1, we obtain

n—1

n n
E BrGn— =nBp_1 — zGp_1 — Gy
2 (k) kG k n 1 QG 1 G

By using the fact that all odd indexed Bernoulli and Genocchi numbers starting
from n = 3 disappear, we obtain for all even n > 4, ZZ;S (Z)Ban,k = —G,,
where the summation is over even indexed numbers (see also [1]).

Here are some identities of the Euler type for the Apostol-Genocchi numbers
following from Theorem 3.4.

Corollary 3.6. Let A # 1. Forn > 2,

|
—_

n

2 b)
k=1
n-1 . B nG1(\)Gn-1
2 (1) BNGa & = 1B (02— Grl) - "2,
n—2 n 1 ngl(A)gn—l(l)
2 <k>Bkgnk()\) = _f/\'

Moreover, if A\, u, \p # 1, then

kz_l B (M) G- (1) = nBr_1(A)(2 — G1 (X)) — w
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Here we used the facts that By = 1 and 2 — G1(\) = G1(5). Another series of
the identities of the Miki and the Euler types for the Apostol-Genocchi numbers
can be obtained in the same manner, when the following, easily proved, equation

1 1 1 14 1 1
Xet —1 peb+1  Apestd + 1 Ae¢ — 1 peb +1

is taken as a basis for the generating function approach. The following result may
be proved in the same way as Theorem 3.1. Let us take a = 2t and b = (1 — t)x
and multiply both sides of the two last identities by 4¢(1 — t)z2. We get

5 tx 21 —t)x
detz — 1 Me(lft)w +1

2x tx 2(1 —t)x
=— | 2t(1 — ¢ 2(1—t —1 . 3.3
)\,LL@ZE + 1 ( ( )fL' + ( )Aetz o 1 ﬂe(lit)z + 1) ( )

Again, we use (1. 1) and (1.2) and apply the Cauchy product in order to extract
the coefficients of Z; on both sides of (3.3). Thus, we obtain

22( ) NG i ()R (1 — ) F

=2t(1 —t)nGp_1(Ap) +2(1 — ¢ i( )gk M) B (M)t F

—tZ( )gk A) G () (1 — £)"F. (3.4)

Now we divide both equations by ¢(1 — ¢) and then integrate with respect to ¢
from 0 to 1. By using the facts that By = 0, By = 1, and Gy = Gy = 0, we
obtain the following statement, that is another analogue of the Miki identity for
the Apostol-Genocchi numbers.

Theorem 3.7. For alln > 2,

1 gn 11 Bo-ik(A\) — 1G,_k(w)
g %( k E( ) kﬂ) k o k\H

(1)

=Gn_1 ()\,U) +

Example 3.8. Let A = pu = 1. Then, for all n > 2,

- n—1 1
B -1 B,_r—:G,_ n
Z(n )GkW:Gn1+iHn1-
k=1

H,_161,x. (3.5)

k k—1) k n—k
It is known that the Genocchi and Bernoulli numbers are related as

G, =2(1-2"B,
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(see [1]). By substituting this identity into the difference B,,_j, — % 5Grn—k under the
second summation, we obtain

Bk Gn k ity n—1 Gk By — (]. — Qnik)Bn,k . Gn
o) - = Gt S

k=1

Note that for n > 3, the odd-indexed Bernoulli and Genocchi numbers disappear,
therefore, let us assume now that n is even and n > 4. Thus, we have

— Bk Gn k 2 n—1 Gk 2n7an,k Gn
- k2 Tnek _Zhp, .
kn—k k; k—1)k n—k n !

k=2

Using the binomial identity (Zj) =" k) leads to

g&Gn_k_"f n—1\Gp 2" *B,_  Ga
—kn—k Z\n—k)k n-k & n=b

We replace k by n — k under the second summation. Finally, using the notation
G, = 2B)],, proposed in [1], and dividing both sides by 2 lead to the statement
(4.2) of [1, Proposition 4.1]

- EB; k_’§<n_1)2k3k3,;k B,

— — 1in-1.
P kn Pt k k n—k n

Corollary 3.9. Let p # 1. For alln > 2,

n—1 — 1
Bk gn k n—1 ) ankr - §gn7k<ﬂ)
k n—k Z ( > n—k

k=1
G (1)
n

=Gn1(p) + H,_.

Due to the asymmetry of A and p in the (3.5), we get the following corollary of
the Theorem 3.7.

Corollary 3.10. Let A # 1. For alln > 2,

n—1 _ .
Bk(/\ n—1\ Ge(\) Back(A) — 5Gpi B
g Z< ) n—k = Gn-1(),
k=1 k=1
n-l 1 n—1 1 L
Bi(\) Gn—r(5) B n—1\ Gr, Bu_r(A) — 1Gu_i(3) B
= K n—k kZ:l k—1) k n—=k =Gn1. (3.6)

Moreover, if A\, u, A\t # 1, then
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By dividing (3.2) and (3.4) by ¢ and then substituting ¢ = 0, we obtain the
following analogue of the Euler identity.

Theorem 3.11. For all n > 2,

Z < >Qk A)Gn—r (1) = 2nGn_1(Ap) +2(n — 1)Gr (Ap)d1 A (3.7)

+20B1(A) (Gn1 (M) — G (1)
Example 3.12. Let A = = 1. Then

n—1
> (Z) CrGrr = 2nG_1 +2(n — 1)G,.

k=1

By using the fact that all odd indexed Bernoulli and Genocchi numbers start-
ing from n = 3 disappear, we obtain a more familiar form for all even n > 4,

s (Z) GrGpn—1 = 2(n — 1)G,,, where the summation is over even indexed num-
bers (see also [1]).

Corollary 3.13. Let A\ # 1 and n > 2. Then the following identities are valid

Z_j (Z) Ge(N)Gn—r(N) = 2nGr_1 (M) + 2(n — 1)Gn (N, (3.8)
k=1
3 (Z) GeN) Gt = 20601 (N) + 201 (N)(Gno1(\) = Gut)s (39)
k=1
“n 1 1

A

Moreover, if A\, u, \p # 1, then

n—1
n
5 () 9k NG440 = 2061 () + 208, 1) Gos ) = G110,
k=1
(3.11)
Proof. Replacing A and p in (3.7), and substituting p = 1 lead to

5 (o

= 206,100 + 200~ DG, ) + 20 (5 ) G113 = G (V).

The last summand equals zero, and we obtain the identiy (3.8). By substituting
1 =1 into (3.7) we obtain (3.9). Substituting u = § into (2.14) and using the fact
that 1+ By(A) = —Bi(3) lead to (3.10). The second summand on the RH of the
(3.7) disappears since A 7é 1, and we obtain (3.11). O
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Remark 3.14. As it was mentioned above, the classical Bernoulli and Genocchi
numbers are connected via the following relationship G,, = 2(1 — 2")B,. It is
easy to see that also the Apostol-Bernoulli and Apostol-Genocchi numbers satisfy
Gn(A) = —2B,,(—)\). Moreover, the Apostol-Bernoulli numbers satisfy Ba,(\) =
Bgn(%> and Bap1(A) = _82n+1(%) for A # 1. In the same manner, the Apostol-
Genocchi numbers satisfy Ga, (A) = ggn(§) and Gopi1(A) = —g2n+1(§) for n > 0.
These relationships allow to obtain new identities from those considered in the
current paper.
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