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Abstract

Consider the pexiderized digital filtering functional equation

f1(x+t, y+t)+f2(x−t, y)+f3(x, y−t) = f4(x−t, y−t)+f5(x+t, y)+f6(x, y+t).

We determine three kinds of solutions, namely, biadditive, symmetric and
skew-symmetric solution functions, subject to different sets of conditions on
the functions involved.
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1. Introduction

Throughout let G be an abelian group which is 2-solvable, i.e., the equation 2u = v
is solvable. A function A : G×G→ C is said to be

• symmetric if A(x, y) = A(y, x);

• skew-symmetric if A(x, y) = −A(y, x);

• additive if A(x+ y) = A(x) +A(y):

• biadditive if it is additive in each of its variables.

Some well-known facts that we shall use implicitly are

• symmetric, skew-symmetric and biadditive properties are preserved under
addition;

• if A(x, y) is skew-symmetric, then A(x, x) = 0;

• if A(x, y) is biadditive, then A(x, 0) = 0 = A(0, y), A(−x, y) = −A(x, y) =
A(x,−y) and A

(
x+y
2 , x−y2

)
is skew-symmetric.

In [4] the following functional equation related to digital filtering (see Proposition
1.2 below) is solved

f(x+ t, y+ t) + f(x− t, y) + f(x, y− t) = f(x− t, y− t) + f(x, y+ t) + f(x+ t, y),

where f : G × G → C and x, y, t ∈ G. Here we consider its pexiderized version,
which is

f1(x+ t, y + t) + f2(x− t, y) + f3(x, y − t)
= f4(x− t, y − t) + f5(x+ t, y) + f6(x, y + t) (x, y, t ∈ G),

(PDF)

where f1, f2, f3, f4, f5, f6 : G×G→ C. Since solving (PDF) generally seems quite
difficult, we are content here to exhibit three kinds of solution functions of (PDF),
namely, biadditive, symmetric and skew-symmetric solution functions. The case
of biadditive functions is most satisfactory as complete shapes of solutions can
be determined, while the remaining two cases are harder and we are forced to
impose some more restrictions, which arise from certain symmetry of the functions
involved. subject to three different sets of conditions on the functions involved. We
will also appeal to the following results in [3], [4] and [1].

Proposition 1.1. [3] If f : G→ C satisfies

f(x+ t, y + t) = f(x+ t, y) + f(x, y + t)− f(x, y) (x, y, t ∈ G),

then
f(x, y) = φ(x) + ψ(y) +A(x, y)

for arbitrary mappings φ, ψ : G→ C and arbitrary skew-symmetric biadditive map
A : G×G→ C.
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Proposition 1.2. [4] The function f : G×G→ C satisfies the functional equation

f(x+ t, y + t) + f(x− t, y) + f(x, y − t) = f(x− t, y − t) + f(x, y + t) + f(x+ t, y)

for all x, y, t in G if and only if

f(x, y) = B(x, y) + φ(x) + ψ(y) + χ(x− y)

holds for all x, y in G, where B : G×G→ C is biadditive and φ, ψ, χ : G→ C are
arbitrary functions.

Proposition 1.3. [1] If f1, f2, f3, f4 : G×G→ C satisfy the functional equation

f1(x+ t, y+ s) + f2(x− t, y− s) = f3(x+ s, y− t) + f4(x− s, y+ t) (x, y, s, t ∈ G),

then f1, f2, f3 and f4 are given by

f1 = w + h, f2 = w − h, f3 = w + k, f4 = w − k

where w : G×G→ C is an arbitrary solution of the functional equation

w(x+ t, y + s) +w(x− t, y − s) = w(x+ s, y − t) +w(x− s, y + t) (x, y, s, t ∈ G)

and h, k : G×G→ C are arbitrary solutions of the system of difference functional
equations

∆3
y,tg(x, y) = 0, ∆3

x,tg(x, y) = 0 (x, y, t ∈ G),

where the two partial difference operators are defined by

∆x,tg(x, y) = g(x+ t, y)− g(x, y), ∆y,tg(x, y) = g(x, y + t)− g(x, y).

2. Auxiliary results

It is convenient to introduce translation operators Xt and Y t for t ∈ G, which are
defined by

Xtf(x, y) = f(x+ t, y), Y tf(x, y) = f(x, y + t).

In particular, X0 = Y 0 = 1 denote the identity operator.

Lemma 2.1. Let f1, f2, f3, f4, f5, f6 : G × G → C, and for i, j ∈ {1, . . . , 6} with
i 6= j, put

S(i,j)(x, y) =
1

2
{fi(x, y) + fj(x, y)} , D(i,j)(x, y) =

1

2
{fi(x, y)− fj(x, y)} .

Assume that f1, f2, f3, f4, f5, f6 satisfy (PDF).
A) Then

XtY tf1 +X−tf2 + Y −tf3 = X−tY −tf4 +Xtf5 + Y tf6 (2.1)
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(
XtY t −X−tY −t

)
S(1,4) +

(
X−t −Xt

)
S(2,5) +

(
Y −t − Y t

)
S(3,6) = 0 (2.2)

(
XtY t +X−tY −t

)
D(1,4) +

(
X−t +Xt

)
D(2,5) +

(
Y −t + Y t

)
D(3,6) = 0. (2.3)

B) If, in addition, f1, f2, f3, f4, f5, f6 are symmetric or skew-symmetric functions,
then

(X−t − Y −t)D(2,3) =
(
Xt − Y t

)
D(5,6) (2.4)

XtY t(2f1) + (X−t + Y −t)S(2,3) = X−tY −t(2f4) + (Xt + Y t)S(5,6) (2.5)

XtY tS(1,4) +X−tS(2,6) + Y −tS(3,5) = X−tY −tS(1,4) +XtS(3,5) + Y tS(2,6). (2.6)

Proof. A) Writing (PDF) in the operator form, we get

XtY tf1(x, y) +X−tf2(x, y) + Y −tf3(x, y)

= X−tY −tf4(x, y) +Xtf5(x, y) + Y tf6(x, y),

which is (2.1). Replacing t by −t, we get

X−tY −tf1(x, y) +Xtf2(x, y) + Y tf3(x, y)

= XtY tf4(x, y) +X−tf5(x, y) + Y −tf6(x, y).

The relations (2.2) and (2.3) follow from subtracting, respectively adding, the last
two equations and rearranging terms.
B) Using the fact that f1, f2, f3, f4, f5, f6 are symmetric or skew-symmetric, (2.1)
becomes

XtY tf1 + Y −tf2 +X−tf3 = X−tY −tf4 + Y tf5 +Xtf6. (2.7)

Replacing t by −t, we get

XtY tf4 + Y −tf5 +X−tf6 = X−tY −tf1 + Y tf2 +Xtf3. (2.8)

The relations (2.4) and (2.5) follow from subtracting, respectively, adding (2.7) and
(2.1). The relation (2.6) comes from adding (2.8) and (2.1).

3. Bi-additive solutions

In this section, biadditive solutions of (PDF) are completely determined.

Theorem 3.1. If f1, f2, f3, f4, f5, f6 are biadditive functions satisfying (PDF),
then

f1(x, y) = B(x, y)− C(x, y)−D(x, y),

f2(x, y) = B(x, y) + C(x, y),

f3(x, y) = B(x, y) +D(x, y),
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f4(x, y) = B(x, y) + C(x, y) +D(x, y),

f5(x, y) = B(x, y)− C(x, y),

f6(x, y) = B(x, y)−D(x, y),

where B,C,D : G×G→ C are arbitrary biadditive functions satisfying

C(t, t) +D(t, t) = 0 (t ∈ G).

Proof. Rewriting (2.2), we get

S(1,4)(x+ t, y + t)− S(1,4)(x− t, y − t) + S(2,5)(x− t, y)− S(2,5)(x+ t, y)

+ S(3,6)(x, y − t)− S(3,6)(x, y + t) = 0.

Since S(1,4), S(2,5), S(3,6) are biadditive, simplifying we get

S(1,4)(t, y)− S(2,5)(t, y) = −S(1,4)(x, t) + S(3,6)(x, t). (3.1)

Replacing t by x, we have

S(1,4)(x, y)− S(2,5)(x, y) = −S(1,4)(x, x) + S(3,6)(x, x) =: S1(x).

Substituting y = 0, we get S1(x) = 0, and so

S(1,4)(x, y) = S(2,5)(x, y). (3.2)

Similarly, replacing t by y in (3.1) and substituting x = 0, we get

S(1,4)(x, y) = S(3,6)(x, y). (3.3)

From (3.2) and (3.3), we set

S(2,5)(x, y) = S(1,4)(x, y) = S(3,6)(x, y) =: B(x, y). (3.4)

On the other hand, rewriting (2.3), we get

D(1,4)(x+ t, y + t) +D(1,4)(x− t, y − t) +D(2,5)(x− t, y) +D(2,5)(x+ t, y)

+D(3,6)(x, y − t) +D(3,6)(x, y + t) = 0.

Since D(1,4), D(2,5), D(3,6) are biadditive, simplifying we get

D(1,4)(x, y) +D(1,4)(t, t) +D(2,5)(x, y) +D(3,6)(x, y) = 0.

Setting y = 0, we have
D(1,4)(t, t) = 0, (3.5)

and so
D(1,4)(x, y) +D(2,5)(x, y) +D(3,6)(x, y) = 0.
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Putting

D(2,5)(x, y) =: C(x, y) (3.6)

D(3,6)(x, y) =: D(x, y) (3.7)

we arrive at
D(1,4)(x, y) = −C(x, y)−D(x, y). (3.8)

From (3.5), we have C(t, t) + D(t, t) = 0. The desired result follows from solving
(3.4),(3.6),(3.7) and (3.8) for f1, . . . , f6.

4. Symmetric solutions

In this section, we consider solutions of (PDF) which are symmetric functions.
This case is much more complicated than the previous one and so we start with
several lemmas.

Lemma 4.1. Let B : G×G→ C be biadditive and let φ, ψ, χ : G→ C be arbitrary
functions. If

f(x, y) = B(x, y) + φ(x) + ψ(y) + χ(x− y) (4.1)

is symmetric, then

f(x, y) = B(x, y) + {φ+ ψ(x) + ψ(y)}+ {χ(−x)− χ(x) + χ(x− y)} ,

where the biadditive function B(x, y) is symmetric, φ is a complex constant, and
χ(−x)− χ(x) is an additive function of x.

Proof. Since f(x, y) is symmetric, equating f(x, y) = f(y, x), we get

B(x, y) + φ(x) + ψ(y) + χ(x− y) = B(y, x) + φ(y) + ψ(x) + χ(y − x). (4.2)

Substituting y = 0, using B(x, 0) = 0 = B(0, x), putting φ = φ(0) − ψ(0) and
simplifying, we have

φ(x) = φ+ ψ(x) + χ(−x)− χ(x).

Replacing this φ(x) in (4.2) and simplifying we get

B(x, y) + χ(−x)− χ(x) + χ(x− y) = B(y, x) + χ(−y)− χ(y) + χ(y − x). (4.3)

Substituting y = x− z and using biadditivity, we get

B(z, x) + χ(−x)− χ(x) + χ(z) = B(x, z) + χ(z − x)− χ(x− z) + χ(−z).

Replacing z by y, we get

B(y, x) + χ(−x)− χ(x) + χ(y) = B(x, y) + χ(y − x)− χ(x− y) + χ(−y). (4.4)

82 C. Hengkrawit, V. Laohakosol, K. Naenudorn



Subtracting (4.4) from (4.3), we deduce that B(x, y) = B(y, x), i.e., B is symmetric.
Adding (4.3) and (4.4), and rearranging we deduce that

{χ(−x)− χ(x)}+ {χ(x− y)− χ(y − x)} = χ(−y)− χ(y),

i.e., χ(−x) − χ(x) is an additive function of x. Incorporating all the information
obtained, the result follows.

Lemma 4.2. Let the notation be as in Lemma 2.1. If f1, f2, f3, f4, f5, f6 are sym-
metric (or skew-symmetric) functions satisfying (PDF), then

−1

2
{f2(x, y)− f3(x, y)} =: −D(2,3)(x, y) = w(x, y) + k(x, y) (4.5)

1

2
{f5(x, y)− f6(x, y)} =: D(5,6)(x, y) = w(x, y)− k(x, y). (4.6)

where the functions w and k are as described in Proposition 1.3.

Proof. Rewriting (2.4), we get

D(5,6)(x+ t, y)−D(2,3)(x− t, y) = D(5,6)(x, y + t)−D(2,3)(x, y − t).

Using Proposition 1.3 with s = 0, f1 = D(5,6) = f4, f2 = −D(2,3) = f3, we have

w + h = f1 = D(5,6) = f4 = w − k, w − h = f2 = −D(2,3) = f3 = w + k,

i.e., h = −k, and the result follows.

Lemma 4.3. Let f1, f2, f3, f4, f5, f6 : G×G→ C, and let

K(x, y) := f2 + f5 − f3 − f6, H(x, y) := f2 − f5 − f3 + f6.

If f1, f2, f3, f4, f5, f6 are symmetric functions satisfying (PDF), then

K(x, y) = αK(x+ y) + β (4.7)

H(x, y) = αH(x+ y) +
1

2
{βH(x− y) + βH(y − x)} , (4.8)

where αK , αH , βH : G→ C are arbitrary functions, and β is a complex constant.

Proof. Using symmetry in (2.2), we get
(
XtY t −X−tY −t

)
S(1,4) +

(
Y −t − Y t

)
S(2,5) +

(
X−t −Xt

)
S(3,6) = 0. (4.9)

Subtracting (4.9) from (2.2) and rearranging, we get
(
X−t −Xt

)
K(x, y) =

(
Y −t − Y t

)
K(x, y). (4.10)

Operating both sides of (4.10) by X−t −Xt and using (4.10) again, we get
(
X−2t − 2 +X2t

)
K(x, y) =

(
Y −t − Y t

) (
X−t −Xt

)
K(x, y)
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=
(
Y −2t − 2 + Y 2t

)
K(x, y).

Simplifying and replacing 2t by t, we have
(
X−t +Xt

)
K(x, y) =

(
Y −t + Y t

)
K(x, y). (4.11)

Defining the function K1 : G×G→ C by

K1(x, y) := K

(
x+ y

2
,
x− y

2

)
, or equivalently, K(x, y) = K1(x+ y, x− y)

and rewriting (4.11) in terms of K1, we get

K1(x+ y − t, x− y − t) +K1(x+ y + t, x− y + t)

= K1(x+ y − t, x− y + t) +K1(x+ y + t, x− y − t).

Putting u = x+ y − t, v = x− y − t, this last equation becomes

K1(u, v) +K1(u+ 2t, v + 2t) = K1(u, v + 2t) +K1(u+ 2t, v).

Replacing 2t by t and rearranging, we get

K1(u+ t, v + t) = K1(u+ t, v) +K1(u, v + t)−K1(u, v),

which is the McKiernan’s functional equation mentioned in Proposition 1.1, whose
solution is of the form

K1(x, y) = αK(x) + βK(y) +AK(x, y),

with the functions αK , βK , AK as stated above. Reverting back to K, we get

K(x, y) = αK(x+ y) + βK(x− y) +AK(x+ y, x− y).

Since AK is skew-symmetric and biadditive, the shape of K reduces to

K(x, y) = αK(x+ y) + βK(x− y)− 2AK(x, y). (4.12)

Since K is symmetric, equating K(x, y) = K(y, x), we get

βK(x− y)− βK(y − x) = 4AK(x, y). (4.13)

Substituting y = 0, we get βK(x)−βK(−x) = 0, i.e., βK is an even function. From
(4.10) and (4.11), we see at once that XtK(x, y) = Y tK(x, y). Using this and
(4.12), we get

αK(x+ y + t) + βK(x− y + t)− 2AK(x+ t, y)

= αK(x+ y + t) + βK(x− y − t)− 2AK(x, y + t).
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Since AK is biadditive and skew-symmetric, this last relation simplifies to

βK(x− y + t)− βK(x− y − t) = 2AK(t, x+ y).

Putting x = y, and using the fact that βK is an even function, we have AK(x, y) =
0, and so βK(x− y+ t)− βK(x− y− t) = 0. Taking x− y− t = 0, we deduce that
βK(x, y) = β, a constant. The shape of K follows by collecting all the information
found.

The determination of H proceeds analogously. Using symmetry in (2.3), we get
(
XtY t +X−tY −t

)
D(1,4) +

(
Y −t + Y t

)
D(2,5) +

(
X−t +Xt

)
D(3,6) = 0. (4.14)

Subtracting (4.14) from (2.3) and rearranging, we get
(
X−t +Xt

)
H(x, y) =

(
Y −t + Y t

)
H(x, y). (4.15)

Defining the function H1 : G×G→ C by

H1(x, y) := H

(
x+ y

2
,
x− y

2

)
, or equivalently, H(x, y) = H1(x+ y, x− y)

and rewriting (4.15) in terms of H1, we get

H1(x+ y − t, x− y − t) +H1(x+ y + t, x− y + t)

= H1(x+ y − t, x− y + t) +H1(x+ y + t, x− y − t).

Putting u = x+ y− t, v = x− y− t, then replacing 2t by t and rearranging, we get

H1(u+ t, v + t) = H1(u+ t, v) +H1(u, v + t)−H1(u, v),

which is the McKiernan’s functional equation mentioned in Proposition 1.1, whose
solution is of the form

H1(x, y) = αH(x) + βH(y) +AH(x, y),

with the functions αH , βH , AH as stated above. Reverting back to H, we get

H(x, y) = αH(x+ y) + βH(x− y) +AH(x+ y, x− y).

As in the previous case, using the fact that AH is skew-symmetric and biadditive,
the shape of H reduces to

H(x, y) = αH(x+ y) + βH(x− y)− 2AH(x, y).

Since H is symmetric, equating H(x, y) = H(y, x), we get βH(x−y)−βH(y−x) =
4AH(x, y). Incorporating all these details, the shape of H follows.
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Remark 4.1. R1) Setting t = 0 in (4.14), and simplifying, we get

(f1 − f4) + (f2 − f5) + (f3 − f6) = 0.

R2) From Lemma 4.3 and Lemma 4.2, we have

αK(x+ y) + β

= K = f2 + f5 − f3 − f6 = −4k(x, y) (4.16)

αH(x+ y) +
1

2
{βH(x− y) + βH(y − x)}

= H = f2 − f5 − f3 + f6 = −4w(x, y). (4.17)

Throughout the rest of this section, we shall deal only with the case where f1 =
f4, which, by remark R1), gives rise to

f2 − f5 + f3 − f6 = 0.

Combining with (4.16) and (4.17), we get

f2 − f6 = −2k, f3 − f6 = 2w (4.18)

Theorem 4.4. Assume f1, f2, f3, f4, f5, f6 : G × G → C are symmetric functions
satisfying (PDF).
I. If

f1 = f4 =
1

2
(f2 + f3) ,

then there are biadditive, symmetric function B(x, y) : G × G → C, two constants
φ, β1, arbitrary functions ψ, α1, α2, β2 and χ : G → C with χ(x)− χ(−x) being an
additive function in x such that

f1(x, y) = f4(x, y) = B(x, y) + {ψ(x) + ψ(y) + φ}+ {χ(−x)− χ(x) + χ(x− y)}
f2(x, y) = f1(x, y) + {α1(x+ y) + β1}+ {α2(x+ y) + β2(x− y) + β2(y − x)}
f3(x, y) = f1(x, y)− {α1(x+ y) + β1} − {α2(x+ y) + β2(x− y) + β2(y − x)}
f5(x, y) = f1(x, y) + {α1(x+ y) + β1} − {α2(x+ y) + β2(x− y) + β2(y − x)}
f6(x, y) = f1(x, y)− {α1(x+ y) + β1}+ {α2(x+ y) + β2(x− y) + β2(y − x)} .

II. If

f1 = f4 =
1

2
(f2 + f6) =

1

2
(f3 + f5) ,

then there are biadditive, symmetric function B(x, y) : G × G → C, two constants
φ, β1, arbitrary functions ψ, α1 and χ : G→ C with χ(x)−χ(−x) being an additive
function in x such that

f1(x, y) = f4(x, y) = B(x, y) + {ψ(x) + ψ(y) + φ}+ {χ(−x)− χ(x) + χ(x− y)}
f2(x, y) = f5(x, y) = f1(x, y) + {α1(x+ y) + β1}
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f3(x, y) = f6(x, y) = f1(x, y)− {α1(x+ y) + β1} .

III. If

f1 = f4 =
1

2
(f2 + f5) =

1

2
(f3 + f6) ,

then there are biadditive, symmetric function B(x, y) : G × G → C, a constant φ,
arbitrary functions ψ, α2, β2 and χ : G → C with χ(x) − χ(−x) being an additive
function in x such that

f1(x, y) = f4(x, y) = B(x, y) + {ψ(x) + ψ(y) + φ}+ {χ(−x)− χ(x) + χ(x− y)}
f2(x, y) = f6(x, y) = f1(x, y) + {α2(x+ y) + β2(x− y) + β2(y − x)}
f3(x, y) = f5(x, y) = f1(x, y)− {α2(x+ y) + β2(x− y) + β2(y − x)} .

IV. If
f1 = f4 = f6 and K(x, x)−H(x, x) = c

where c is a constant, then there are biadditive, symmetric function B(x, y) : G ×
G → C, two constants φ, β1, arbitrary functions ψ, α1, α2, β2, χ : G → C with
α1(x) − α2(x) being a constant and χ(x) − χ(−x) being an additive function in x
such that

f1(x, y) = f4(x, y) = f6(x, y) = B(x, y) + {ψ(x) + ψ(y) + φ}
+ {χ(−x)− χ(x) + χ(x− y)}

f2(x, y) = f1(x, y) + {α1(x+ y) + β1}
f3(x, y) = f1(x, y)− {α2(x+ y) + β2(x− y) + β2(y − x)}
f5(x, y) = f1(x, y) + {α1(x+ y) + β1} − {α2(x+ y) + β2(x− y) + β2(y − x)} .

Proof. I. Using f1 = f4, f2 + f3 = f5 + f6, substituting g = 2f1 = 2f4 = f2 + f3 =
f5 + f6 in (2.5) and simplifying, we get

g(x+ t, y + t) + g(x− t, y) + g(x, y − t)
= g(x− t, y − t) + g(x, y + t) + g(x+ t, y),

which is the Sahoo-Székelyhidi’s functional equation mentioned in Proposition 1.2,
and its solution is of the form

g(x, y) = B1(x, y) + φ1(x) + ψ1(y) + χ1(x− y),

where B1 : G×G→ C is biadditive and φ1, ψ1, χ1 : G→ C are arbitrary functions.
Since g is symmetric, applying Lemma 4.1, we deduce that

g(x, y) = B1(x, y)+{φ1 + ψ1(x) + ψ1(y)}+{χ1(−x)− χ1(x) + χ1(x− y)} , (4.19)

where φ1 is a constant and χ1(−x) − χ1(x) is an additive function of x, and by
putting

B =
B1

2
, φ =

φ1
2
, ψ =

ψ1

2
, χ =

χ1

2
,
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this gives the shapes of f1 and f4. Using (4.5), (4.16) and (4.17), we get

2f3 = (f2 + f3) + (−f2 + f3) = g + 2(w + k)

= g(x, y)− 1

4

{
αH(x+ y) +

1

4
(βH(x− y) + βH(y − x))

}

− 1

4
{αK(x+ y) + β}

and the shape of f3 follows by putting α1 = 1
4αK , β1 = 1

4β, α2 = 1
4αH , β2 = 1

8βH .
The shapes of other solution functions follow similarly noting from above and (4.6)
that

f2 = g − f3, f5 + f6 = g, f5 − f6 = 2(w − k),

and then using (4.16) and (4.17).
II. The proof proceeds much the same as that of part I. Using f1 = f4, f2 +

f3 = f5 + f6, substituting g = 2f1 = 2f4 = f2 + f6 = f3 + f5 in (2.6) and
simplifying, we see that g satisfies the the Sahoo-Székelyhidi’s functional equation.
Using symmetry, we deduce that it must be of the form (4.19). Thus,

2f1 = 2f4 = f2 + f6 = f3 + f5 = g

= B(x, y) + {φ+ ψ(x) + ψ(y)}+ {χ(−x)− χ(x) + χ(x− y)} .

The shapes of the solution functions follow by using (4.18), (4.16) and (4.17).
III. Using f1 = f4, f2 + f3 = f5 + f6, substituting g = 2f1 = 2f4 = f2 + f5 =

f3 + f6 in (2.6) and simplifying, we see that g satisfies the Sahoo-Székelyhidi’s
functional equation. Using symmetry, we deduce that its solution must be of the
form (4.19). Thus,

2f1 = 2f4 = f2 + f5 = f3 + f6 = g

= B(x, y) + {φ+ ψ(x) + ψ(y)}+ {χ(−x)− χ(x) + χ(x− y)} .

The shapes of the solution functions follow by using (4.18), (4.16) and (4.17).
IV. Solving for f2, f3, f5 in terms of f6 in (4.18) and (4.16), we get

f2 = f6 − 2k, f3 = f6 + 2w, f5 = f6 + 2(w − k).

Substituting these functions in (PDF), using (4.16) and (4.17), we get

f1(x+ t, y + t) + f6(x− t, y) +
1

2
αK(x+ y − t) + f6(x, y − t)− 1

2
αH(x+ y − t)

= f4(x− t, y − t) + f6(x+ t, y)− 1

2
αH(x+ y + t)

+
1

2
αK(x+ y + t) + f6(x, y + t). (4.20)

From Lemma 4.3, the condition K(x, x)−H(x, x) = c leads to

αK(2x) + β − (αH(2x) + βH(0)) = c,
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i.e., the function αK − αH is constant. Using this information and the hypotheses
f1 = f4 = f6, the equation (4.20) becomes the Sahoo-Székelyhidi’s functional
equation. Using symmetry, we deduce that its solution must be of the form (4.19).
Thus,

f1 = f4 = f6 = B(x, y) + {φ+ ψ(x) + ψ(y)}+ {χ(−x)− χ(x) + χ(x− y)} .

The shapes of the solution functions follow by using (4.18), (4.16) and (4.17).

5. Skew-symmetric solutions

In this section, we consider solutions of (PDF) which are skew-symmetric functions.

Lemma 5.1. Let B : G×G→ C be biadditive and let φ, ψ, χ : G→ C be arbitrary
functions. If

f(x, y) = B(x, y) + φ(x) + ψ(y) + χ(x− y) (5.1)

is skew-symmetric, then

f(x, y) = B(x, y)−B(x, x)− ψ(x) + ψ(y) + χ(x− y)− Φ,

where Φ = χ(0) is a constant and

χ(x) + χ(−x) = 2Φ +B(x, x).

Proof. Since f(x, y) is skew-symmetric, equating f(x, y) = −f(y, x), we get

B(x, y) + φ(x) + ψ(y) + χ(x− y) = −B(y, x)− φ(y)− ψ(x)− χ(y − x). (5.2)

Substituting y = 0, using B(x, 0) = 0 = B(0, x), putting Φ = −φ(0) − ψ(0) and
simplifying, we have

φ(x) = Φ− ψ(x)− χ(−x)− χ(x). (5.3)

Replacing this φ(x) in (5.2) and simplifying we get

B(x, y)−χ(−x)−χ(x)+χ(x−y)+2Φ = −B(y, x)+χ(−y)+χ(y)−χ(y−x). (5.4)

Taking x = 0, and simplifying, we get

Φ = χ(0).

Substituting y = x− z and using biadditivity, we get

2B(x, x)−B(x, z)−χ(−x)−χ(x)+χ(z)+2Φ = B(z, x)+χ(z−x)+χ(x−z)−χ(−z).

Replacing z by y, we get

2B(x, x)−B(x, y)− χ(−x)− χ(x) + χ(y) + 2Φ
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= B(y, x) + χ(y − x) + χ(x− y)− χ(−y). (5.5)

Combining (5.5) with (5.4) and simplifying, we deduce that

χ(x) + χ(−x) = 2Φ +B(x, x). (5.6)

From (5.6) and (5.3), we get

φ(x) = −Φ− ψ(x)−B(x, x). (5.7)

Incorporating all the information obtained, the result follows.

Lemma 5.2. Let f1, f2, f3, f4, f5, f6 : G×G→ C, and let

K(x, y) := f2 + f5 − f3 − f6, H(x, y) := f2 − f5 − f3 + f6.

If f1, f2, f3, f4, f5, f6 are skew-symmetric functions satisfying (PDF), then

K(x, y) = 0, H(x, y) = −βH(0) + βH(x− y)− 2AH(x, y), (5.8)

where αK , βH : G → C are arbitrary functions, β a complex constant, AH a biad-
ditive, skew-symmetric function, and βH(t) + βH(−t) = 2βH(0).

Proof. Using skew-symmetry in (2.2), we get
(
XtY t −X−tY −t

)
S(1,4) +

(
Y −t − Y t

)
S(2,5) +

(
X−t −Xt

)
S(3,6) = 0. (5.9)

Subtracting (5.9) from (2.2) and rearranging, we get
(
X−t −Xt

)
K(x, y) =

(
Y −t − Y t

)
K(x, y). (5.10)

Operating both sides of (5.10) by X−t −Xt and using (5.10) again, we get
(
X−2t − 2 +X2t

)
K(x, y) =

(
Y −t − Y t

) (
X−t −Xt

)
K(x, y)

=
(
Y −2t − 2 + Y 2t

)
K(x, y).

Simplifying and replacing 2t by t, we have
(
X−t +Xt

)
K(x, y) =

(
Y −t + Y t

)
K(x, y). (5.11)

Defining the function K1 : G×G→ C by

K1(x, y) := K

(
x+ y

2
,
x− y

2

)
, or equivalently, K(x, y) = K1(x+ y, x− y)

and rewriting (5.11) in terms of K1, we get

K1(x+ y − t, x− y − t) +K1(x+ y + t, x− y + t)

= K1(x+ y − t, x− y + t) +K1(x+ y + t, x− y − t).
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Putting u = x+ y − t, v = x− y − t, this last equation becomes

K1(u, v) +K1(u+ 2t, v + 2t) = K1(u, v + 2t) +K1(u+ 2t, v).

Replacing 2t by t and rearranging, we get

K1(u+ t, v + t) = K1(u+ t, v) +K1(u, v + t)−K1(u, v),

which is the McKiernan’s functional equation mentioned in Proposition 1.1, whose
solution is of the form

K1(x, y) = αK(x) + βK(y) +AK(x, y).

Reverting back to K, we get

K(x, y) = αK(x+ y) + βK(x− y) +AK(x+ y, x− y).

Since AK is skew-symmetric and biadditive, the shape of K reduces to

K(x, y) = αK(x+ y) + βK(x− y)− 2AK(x, y). (5.12)

Since K is skew-symmetric, solving K(x, y) = −K(y, x), we get

2αK(x+ y) + βK(x− y) + βK(y − x) = 0. (5.13)

Substituting x = y, we get αK(x) = −βK(0), a constant, and so (5.13) yields

βK(t) + βK(−t) = 2βK(0). (5.14)

From (5.10) and (5.11), we see at once that XtK(x, y) = Y tK(x, y). Using this
and (5.12), we get

αK(x+ y + t) + βK(x− y + t)− 2AK(x+ t, y)

= αK(x+ y + t) + βK(x− y − t)− 2AK(x, y + t).

Since AK is biadditive and skew-symmetric, this last relation simplifies to

βK(x− y + t)− βK(x− y − t) = 2AK(t, x+ y).

Putting x = y, we get βK(t)−βK(−t) = 2AK(t, 2x), and adding to (5.14), we have

βK(t) = βK(0) +AK(t, 2x).

Putting x = 0, we see that βK(t) = βK(0) =: β, a constant, yielding AK(x, y) = 0,
and so K(x, y) = αK(x+ y) + β. Since K is skew-symmetric, equating K(x, y) =
−K(y, x), we deduce that 0 = αK(x+ y) + β = K(x, y).

The determination of H proceeds analogously. Using skew-symmetry in (2.3),
we get
(
XtY t +X−tY −t

)
D(1,4) +

(
Y −t + Y t

)
D(2,5) +

(
X−t +Xt

)
D(3,6) = 0. (5.15)
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Subtracting (5.15) from (2.3) and rearranging, we get
(
X−t +Xt

)
H(x, y) =

(
Y −t + Y t

)
H(x, y). (5.16)

Defining the function H1 : G×G→ C by

H1(x, y) := H

(
x+ y

2
,
x− y

2

)
, or equivalently, H(x, y) = H1(x+ y, x− y)

and rewriting (5.16) in terms of H1, we get

H1(x+ y − t, x− y − t) +H1(x+ y + t, x− y + t)

= H1(x+ y − t, x− y + t) +H1(x+ y + t, x− y − t).

Putting u = x+ y− t, v = x− y− t, then replacing 2t by t and rearranging, we get

H1(u+ t, v + t) = H1(u+ t, v) +H1(u, v + t)−H1(u, v),

which is the McKiernan’s functional equation mentioned in Proposition 1.1, whose
solution is of the form

H1(x, y) = αH(x) + βH(y) +AH(x, y),

with the functions αH , βH , AH as stated above. Reverting back to H, we get

H(x, y) = αH(x+ y) + βH(x− y) +AH(x+ y, x− y).

As in the previous case, using the fact that AH is skew-symmetric and biadditive,
the shape of H reduces to

H(x, y) = αH(x+ y) + βH(x− y)− 2AH(x, y).

Since H is skew-symmetric, solving H(x, y) = −H(y, x), we get

2αH(x+ y) + βH(x− y) + βH(y − x) = 0.

Substituting x = y, we get αH(x) = −βH(0), a constant and so

βH(t) + βH(−t) = 2βH(0). (5.17)

Incorporating all these details, the shape of H follows.

Remark 5.1. R1) Setting t = 0 in (5.15), and simplifying, we get

(f1 − f4) + (f2 − f5) + (f3 − f6) = 0.

R2) From Lemma 5.2 and Lemma 4.2, we have

0 = K = f2 + f5 − f3 − f6 = −4k(x, y) (5.18)
−βH(0) + βH(x− y)− 2AH(x, y) = H = f2 − f5 − f3 + f6 = −4w(x, y). (5.19)
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Throughout the rest of this section, we shall deal only with the case where f1 =
f4, which, by remark R1), gives rise to

f2 − f5 + f3 − f6 = 0.

Combining with (5.18) and (5.19), we get

f2 − f6 = −2k, f3 − f6 = 2w (5.20)

Theorem 5.3. Assume f1, f2, f3, f4, f5, f6 : G×G→ C are skew-symmetric func-
tions satisfying (PDF).
I. If

f1 = f4 =
1

2
(f2 + f3) ,

then there are biadditive function B(x, y) : G × G → C and biadditive, skew-
symmetric function A(x, y) : G×G→ C, two constants α2, Φ, arbitrary functions
ψ, χ, β2 : G→ C with β2(t) + β2(−t) = 2β2(0) such that

f1(x, y) = f4(x, y) = B(x, y)− ψ(x) + ψ(y) + χ(x− y)− Φ−B(x, x)

f2(x, y) = f6(x, y) = f1(x, y) + {α2 + β2(x− y)−A(x, y)}
f3(x, y) = f5(x, y) = f1(x, y)− {α2 + β2(x− y)−A(x, y)} .

II. If

f1 = f4 =
1

2
(f2 + f6) =

1

2
(f3 + f5) ,

then there are biadditive function B(x, y) : G × G → C , a constant Φ, arbitrary
functions ψ, χ : G→ C such that

f1(x, y) = f2(x, y) = f3(x, y) = f4(x, y) = f5(x, y) = f6(x, y)

= B(x, y)− ψ(x) + ψ(y) + χ(x− y)− Φ−B(x, x).

III. If

f1 = f4 =
1

2
(f2 + f5) =

1

2
(f3 + f6) ,

then there are biadditive function B(x, y) : G × G → C and biadditive, skew-
symmetric function A(x, y) : G×G→ C, two constants α2, Φ, arbitrary functions
ψ, χ, β2 : G→ C with β2(t) + β2(−t) = 2β2(0) such that

f1(x, y) = f4(x, y) = B(x, y)− ψ(x) + ψ(y) + χ(x− y)− Φ−B(x, x)

f2(x, y) = f6(x, y) = f1(x, y) + {α2 + β2(x− y)−A(x, y)}
f3(x, y) = f5(x, y) = f1(x, y)− {α2 + β2(x− y)−A(x, y)} .

IV. Assume f1 = f6 and

f1(a, b) + f6(c, d) + f6(e, f) = f1(a′, b′) + f6(c′, d′) + f6(e′, f ′) (5.21)
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whenever a+ b+ c+ d+ e+ f = a′+ b′+ c′+ d′+ e′+ f ′. Then there are biadditive
function B(x, y) : G × G → C, a constant Φ, arbitrary functions ψ, χ, β2 : G → C
with β2(t) + β2(−t) = 2β2(0) such that

f1(x, y) = f2(x, y) = f4(x, y) = f6(x, y)

= B(x, y)− ψ(x) + ψ(y) + χ(x− y)− Φ−B(x, x)

f3(x, y) = f5(x, y) = f1(x, y) + β2(0)− β2(x− y).

Proof. I. Using f1 = f4, f2 + f3 = f5 + f6, substituting g = 2f1 = 2f4 = f2 + f3 =
f5 + f6 in (2.5) and simplifying, we get

g(x+ t, y + t) + g(x− t, y) + g(x, y − t)
= g(x− t, y − t) + g(x, y + t) + g(x+ t, y),

which is the Sahoo-Székelyhidi’s functional equation mentioned in Proposition 1.2,
and its solution is of the form

g(x, y) = B1(x, y) + φ1(x) + ψ1(y) + χ1(x− y),

where B1 : G×G→ C is biadditive and φ1, ψ1, χ1 : G→ C are arbitrary functions.
Since g is skew-symmetric, applying Lemma 5.1, we deduce that

g(x, y) = B1(x, y)− ψ1(x) + ψ1(y) + χ1(x− y)− Φ1 −B1(x, x), (5.22)

where
Φ1 = χ1(0), χ1(x) + χ1(−x) = 2Φ1 +B1(x, x).

Putting
B = B1/2, ψ = ψ1/2, χ = χ1/2, Φ = Φ1/2,

this gives the shapes of f1 and f4. Using (4.5), (5.18) and (5.19), we get

2f3 = (f2 + f3) + (−f2 + f3) = g + 2(w + k)

= g(x, y)− 1

4
{−βH(0) + βH(x− y)}+

1

2
AH(x, y)− 0

and the shape of f3 follows by putting α2 = − 1
4βH(0), β2 = 1

4βH , A = 1
2AH . The

shapes of other solution functions follow similarly noting from above and (4.6) that

f2 = g − f3, f5 + f6 = g, f5 − f6 = 2(w − k),

and then using (5.18) and (5.19).
II. The proof proceeds much the same as that of part I. Using f1 = f4, f2+f3 =

f5 +f6, substituting g = 2f1 = 2f4 = f2 +f6 = f3 +f5 in (2.6) and simplifying, we
see that g satisfies the the Sahoo-Székelyhidi’s functional equation. Using skew-
symmetry, we deduce that it must be of the form (5.22). Thus,

2f1 = 2f4 = f2 + f6 = f3 + f5 = g
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= B1(x, y)− ψ1(x) + ψ1(y) + χ1(x− y)− Φ1 −B1(x, x).

The shapes of the solution functions follow by using (5.20), (4.16) and (5.19).
III. Using f1 = f4, f2 + f3 = f5 + f6, substituting g = 2f1 = 2f4 = f2 + f5 =

f3 + f6 in (2.6) and simplifying, we see that g satisfies the Sahoo-Székelyhidi’s
functional equation. Using skew-symmetry, we deduce that its solution must be of
the form (5.22). Thus,

2f1 = 2f4 = f2 + f5 = f3 + f6 = g

= B1(x, y)− ψ1(x) + ψ1(y) + χ1(x− y)− Φ1 −B1(x, x).

The shapes of the solution functions follow by using (5.20), (5.18) and (5.19).
IV. Solving for f2, f3, f5 in terms of f6 in (5.20) and (5.18), we get

f2 = f6 − 2k, f3 = f6 + 2w, f5 = f6 + 2(w − k).

Substituting these functions in (PDF), using (5.18) and (5.19), we get

f1(x+ t, y + t) + f6(x− t, y) + f6(x, y − t)−AH(x, t)

= f4(x− t, y − t) + f6(x+ t, y) + f6(x, y + t) +AH(t, y). (5.23)

Substituting t = 0 in (5.23), we get

f1(x, y) + f6(x, y) + f6(x, y)

= f4(x, y) + f6(x, y) + f6(x, y),

and so f1(x, y) = f4(x, y). Substituting x = 0 in (5.23), we get

f1(t, y + t) + f6(−t, y) + f6(0, y − t)
= f4(−t, y − t) + f6(t, y) + f6(0, y + t) +AH(t, y).

Appealing to (5.21), we get AH(x, y) = 0. Substituting AH(x, y) = 0 in (5.23), we
get

f1(x+ t, y + t) + f6(x− t, y) + f6(x, y − t)
= f4(x− t, y − t) + f6(x+ t, y) + f6(x, y + t).

Using f1 = f4 = f6, this last relation is the Sahoo-Székelyhidi’s functional equation,
and so its solution is the form

f1 = f4 = f6 = B(x, y)− ψ(x) + ψ(y) + χ(x− y)− Φ−B(x, x).

Using (5.20), (5.18) and (5.19), we get

f2 = f6 = B(x, y)− ψ(x) + ψ(y) + χ(x− y)− Φ−B(x, x)

f3 = f6 + 2w = f6 +
1

2
βH(0)− 1

2
βH(x− y).

Putting β2 = βH/2 and observing from (5.17) that β2(t) + β2(−t) = −2α2, the
shape of f3 follows. The remaining functions are f5 = f2 − f6 + f3 = f3.
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