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Abstract

Let [k] = {1, 2, . . . , k} be an alphabet over k letters. A word ω of length n
over alphabet [k] is an element of [k]n and is also called a k-ary word of length
n. We say that ω contains an `-peak, if it exists an i such that 2 ≤ i ≤ n− `
where ωi = ωi+1 = · · · = ωi+`−1 and ωi−1 < ωi and ωi+`−1 > ωi+`. A
partition Π of set [n] of size k is a collection {B1, B2, . . . , Bk} of non empty
disjoint subsets of [n], called blocks, whose union equals [n]. In this paper, we
find an explicit formula for the generating function for the number of words
of length n over alphabet [k] according to the number of `-peaks in terms of
Chebyshev polynomials of the second kind. As a consequence of the results
obtained for words, we finally find the number of `-peaks in set partitions of
[n] with exactly k blocks.

Keywords: Set partitions, words, `-peak, Chebyshev polynomials of the sec-
ond kind
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1. Introduction

Words

Let [k] = {1, 2, . . . , k} be an alphabet over k letters. A word ω of length n over
alphabet [k] is an element of [k]n and is also called a word of length n on k letters
or a k-ary word of length n. The number of the words of length n over alphabet
[k] is kn. Similar statistics in patterns of subwords have been widely studied in
the literature (see [2]). For example, Kitaev, Mansour and Remmel [3] enumerated
the number of rises (respectively, levels and falls) which are subword patterns 12,

Annales Mathematicae et Informaticae
46 (2016) pp. 3–12
http://ami.ektf.hu

3



(respectively, 11 and 21) in words that have a prescribe first element. Heubach and
Mansour [2] enumerated the number of words of length n over alphabet [k] that
contain the subword pattern 111 and the subword pattern 112 exactly r times.
Burstein and Mansour [1] generalized the result to subword pattern of length `.
More recently, Mansour [4] enumerated the number of peaks (subword patterns
121, 132 or 231) and valleys (subword patterns 212, 213 or 312) in words of length
n over alphabet [k]. Our aim is to extend this result to patterns of arbitrary
length. We say that ω contains an `-peak, if exists 2 ≤ i ≤ n − ` such that
ωi = ωi+1 = · · · = ωi+`−1 and ωi−1 < ωi and ωi+`−1 > ωi+`. For example, the
word 1241342 = 12222133332 in [3]11 contains two 4-peaks, namely 122221 and
133332.

Set partitions

A partition Π of set [n] with exactly k blocks is a collection {B1, B2, . . . , Bk} of
non empty disjoint subsets of [n] whose union is equal to [n]. We assume that
blocks are listed in increasing order of their minimal elements, that is, minB1 <
minB2 < · · · < minBk. We denote the set of all partitions of [n] with exactly
k blocks to be Pn,k. The number of all partitions of [n] with k blocks is S(n, k),
these are the Stirling numbers of the second kind [9]. We denote the set of all
partitions of [n] to be Pn, namely Pn = ∪nk=0Pn,k. The number of all partitions
of [n] is Bn =

∑n
k=0 Sn,k, which is the n-th Bell number. Any partition Π can be

written as π1π2 · · ·πn, where i ∈ Bπi
for all i, and this form is called the canonical

sequential form. For example Π = {{12}, {3}, {4}} is a partition of [4], the canoni-
cal sequential form is π = 1123. Several authors have studied different statistics on
Pn (see [4]). For instance, Mansour and Munagi [6] found the generating function
for the number of partitions of [n] according to rises, descents and levels, they also
computed the total number of t-rises (respectively, t-descents and t-levels), this is
a increasing subword pattern of size t (respectively, decreasing subword pattern of
size t, fixed subword pattern of size t), see [5]. A lot of attention has been given
to the statistics on Pn,k (see [4]). For example, Shattuck [8] counted the rises,
descents and levels in the set partition of [n] with exactly k blocks. In addition,
Mansour [4] found an explicit formula for the generating functions for the number
of set partition of [n] with exactly k blocks according to the statistics `-rise (respec-
tively, `-descent and `-level). Mansour and Shattuck [7] found an explicit formula
for the generating function of set partitions of n with exactly [k] blocks according
to the number of peaks (valleys). Our aim is to extend this result for the set Pn,k
according to the number of `-peaks.

In this paper, we find the generating function of the words of length n over
alphabet [k] according to the number of `-peaks. We also compute the total number
of `-peaks in the words of length n over alphabet [k]. As a consequence of these
results, we find the number of `-peaks in set partitions of [n] with exactly k blocks.
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2. Words and partitions of a set according to multi
statistics `-peaks

Let Wk(x, q1, . . . , q`) be the generating function for the number of words of length
n over alphabet [k] according to the number of `-peaks, namely,

Wk(x, q1, . . . , q`) =
∑

n≥0
xn

∑

ω∈[k]n

∏̀

i=1

q
i−peak(ω)
i .

Lemma 2.1. The generating function Wk(x, q1, . . . , q`) satisfies the recurrence re-
lation

Wk(x, q1, . . . , q`)

=
A` − xB` +Wk−1(x, q1, . . . , q`)(B`+1 −A`)

(1− x)(1 +A`) + x`+1 −Wk−1(x, q1, . . . , q`)
(
(1− x)A` + x`+1

) ,

where A` =
∑`
i=1 x

iqi and B` = 1−x`

1−x .

Proof. It is obvious

Wk(x, q1, . . . , q`) = Wk−1(x, q1, . . . , q`) +W †k (x, q1, . . . , q`), (2.1)

where W †k (x, q1, . . . , q`) is the generating function for the number of words ω of
length n over alphabet [k] according to the number of `-peaks such that ω contains
at least one occurrence of the letter k. A word ω that contains a letter k can be
decomposed as either

(1) k;

(2) kω′, where ω′ is a non empty word over [k];

(3) ω′′kiω′′′, where ki denotes a word kk · · · k with exactly i letters, ω′′ is a non
empty word over [k − 1] and ω′′′ is a non empty word over [k] which starts
with a letter a 6= k, for 1 ≤ i ≤ `;

(4) ω′′ki, for 1 ≤ i ≤ `; or

(5) ω′′k`+1ω′′′′, where ω′′′′ is a word over [k].

The corresponding generating functions of these decomposition are

(1) x;

(2) x(Wk(x, q1, . . . , q`)− 1);

(3) qixi(Wk−1(x, q1, . . . , q`)− 1)(Wk(x, q1, . . . , q`)(1− x)− 1), for 1 ≤ i ≤ `;

(4) xi(Wk−1(x, q1, . . . , q`)− 1), for 1 ≤ i ≤ `; or
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(5) x`+1(Wk−1(x, q1, . . . , q`)− 1)Wk(x, q1, . . . , q`),

respectively. Hence, by (2.1), we obtain

Wk(x, q1, . . . , q`)

= Wk−1(x, q1, . . . , q`) + x+ x(Wk(x, q1, . . . , q`)− 1)

+
∑̀

i=1

qix
i(Wk−1(x, q1, . . . , q`)− 1)(Wk(x, q1, . . . , q`)(1− x)− 1)

+
∑̀

i=1

xi(Wk−1(x, q1, . . . , q`)− 1)

+ x`+1(Wk−1(x, q1, . . . , q`)− 1)Wk(x, q1, . . . , q`),

which equivalent to

Wk(x, q1, . . . , q`)

=
A` − xB` +Wk−1(x, q1, . . . , q`)(B`+1 −A`)

(1− x)(1 +A`) + x`+1 −Wk−1(x, q1, . . . , q`)

(
(1− x)A` + x`+1

) , (2.2)

where A` =
∑`
i=1 x

iqi and B` = 1−x`

1−x .

We plan to find an explicit formula for the generating function Pk(x, q1, . . . , q`)
for the number of partitions of n with exactly k blocks according to the number of
`-peaks.

Pk(x, q1, . . . , q`) =
∑

n≥0
xn

∑

π∈Pn,k

∏̀

i=1

qi−peak(π).

To do that we will use Lemma 2.1.

Theorem 2.2. For all k ≥ 1,

Pk(x, q1, . . . , q`)

=

k∏

j=1

(∑̀

i=1

xi(qi(Wj(x, q1, . . . , q`)(1− x)− 1) + 1) + x`+1Wj(x, q1, . . . , q`)

)
.

Proof. Any partition π of [n] with exactly k blocks can be decomposed either

(1) πkiπ′, πki, for 1 ≤ i ≤ `, where π is a set partition with exactly k− 1 blocks,
π′ is a non empty word over alphabet [k] which starts with a letter a < k; or

(2) πk`+1π′′, where π′′ is a word over alphabet [k].

The corresponding generating functions are
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(1)

qix
iPk−1(x, q1, . . . , q`)(Wk(x, q1, . . . , q`)

− xWk(x, q1, . . . , q`)− 1) + xiPk−1(x, q1, . . . , q`),

for 1 ≤ i ≤ `;
(2) x`+1Pk−1(x, q1, . . . , q`)Wk(x, q1, . . . , q`),

respectively. By summing all the last terms we obtain

Pk(x, q1, . . . , q`)

=
∑̀

i=1

qix
iPk−1(x, q1, . . . , q`)(Wk(x, q1, . . . , q`)− xWk(x, q1, . . . , q`)− 1)

+
∑̀

i=1

xiPk−1(x, q1, . . . , q`) + x`+1Pk−1(x, q1, . . . , q`)Wk(x, q1, . . . , q`)

= Pk−1(x, q1, . . . , q`)·

·
(∑̀

i=1

xi(qi(Wj(x, q1, . . . , q`)(1− x)− 1) + 1) + x`+1Wj(x, q1, . . . , q`)

)
.

Thus, by induction on k together with the initial condition P0(x, q) = 1, we com-
plete the proof.

Example 2.3. Using the recursion given in Theorem 2.2, we may obtain the
generating function for the number of partitions of [n] with exactly k blocks,

Pk(x, 1, . . . , 1) =
k∏

j=1

∑̀

i=1

xiWj(x, 1, . . . , 1)(1− x) + x`+1Wj(x, 1, . . . , 1)

=

k∏

j=1

(
x

1− x`
1− x

1

1− jx (1− x) + x`+1 1

1− jx

)

= xk
k∏

j=1

1

1− jx ,

which is in accord with the well-known the generating function for the number of
partitions of [n] with exactly k blocks.

Example 2.4. By substituting ` = 1 and q1 = q in Lemma 2.1, we get Wk(x, q)
the generating function for the number of words of length n over the alphabet [k]
according to the number of peaks (peak of length one), which gives the following
recursion

Wk(x, q) =
x(q − 1) + (1− x(q − 1))Wk−1(x, q)

1− x(1− q)(1− x)− x(x+ q(1− x))Wk−1(x, q)
.
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By using the same substitution in Theorem 2.2, we obtain the recurrence relation
for the generating function for the number of set partitions Pn,k according to the
number of peaks (peak of length one), which gives the following recursion

Pk(x, q) = xk
k∏

j=1

(1 + x(1− q)Wj(x, q) + q(Wj(x, q)− 1)),

where the two above results agree with the results of Mansour and Shattuck
(see [7]).

2.1. Counting `-peaks in words and partitions of a set
Let Wk(x, q) be the generating function for the number of words of length n over
alphabet [k] according to the number of `-peaks.

Wk(x, q) =
∑

n≥0
xn


 ∑

ω∈[k]n
q`−peak(ω)


 .

Corollary 2.5. The generating functionWk(x, q) for the number of words of length
n over alphabet [k] according to the number of `-peaks is

Wk(x, q) =
A+ (1−A)Wk−1(x, q)

a` − xWk−1(x, q)a`−1
(2.3)

where A = x`(q − 1) and a` = 1 + x`(q − 1)(1− x), which is equivalent to

Wk(x, q) =
x`(q − 1)(Uk−1(t)− Uk−2(t))

Uk(t)− Uk−1(t)− (1− x`(q − 1))(Uk−1(t)− Uk−2(t))
, (2.4)

where t = 1 + x`+1

2 (1− q) and Um is the m-th Chebyshev polynomial of the second
kind.

Proof. By substituting qi = 1 for i 6= `, and q` = q in (2.2) we obtain (2.3). Then,
by applying [Appendix D] [4] for (2.2), we obtain (2.4).

Now, our aim is to find the total number of `-peaks in all words of length n
over alphabet [k].

Lemma 2.6. For all k ≥ 1,

d

dq
Wk(x, q) |q=1=

x`+2

(1− kx)2

(
2

(
k

3

)
+

(
k

2

))
.

Proof. We compute the number of `-peaks in all the words of length n over alphabet
[k]. By differentiating (2.3) with respect to q, we obtain

Vk(x) =
d

dq
Wk(x, q) |q=1
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=
(x`(1−Wk−1(x, 1)) + Vk−1(x))(1− xWk−1(x, 1))

(1− xWk−1(x, 1))2

− Wk−1(x, 1)(x`(1− x)(1−Wk−1(x, 1))− xVk−1(x))

(1− xWk−1(x, 1))2
,

and using Wk(x, 1) = 1
1−kx (easy to prove by induction), we obtain

d

dq
Wk(x, q) |q=1=

x`+2

(1− kx)2

(
2

(
k

3

)
+

(
k

2

))
, (2.5)

as claimed.

By finding the coefficient of xn in (2.5) we get the following result

Corollary 2.7. The total number of `-peaks in all the words of length n over
alphabet [k] is given by

(n− 1− `)kn−2−`
(

2

(
k

3

)
+

(
k

2

))
.

We plan to find the explicit formula for the generating function Pk(x, q) for the
number of Pn,k according to the number of `-peaks.

Pk(x, q) =
∑

n≥0
xn


 ∑

π∈Pn,k

q`−peak(π)


 .

Corollary 2.8. For all k ≥ 1, the generating function Pk(x, q) is given by

xk
k∏

j=1

(
Wj(x, q)(1 + x`−1(x− 1)) + x`−1 + qx`−1(Wj(x, q)(1− x)− 1)

)
.

Proof. By substituting qi = 1 for i 6= `, and q` = q in Theorem (2.2).

Lemma 2.9. For all k ≥ 3,

d

dq
Pk(x, q) |q=1=

xk+`
(
k
2

)

(1− x) · · · (1− kx)
+

xk+`+2

(1− x) · · · (1− kx)

k∑

j=3

2
(
j
3

)
+
(
j
2

)

(1− jx)
.

Proof. By Corollary 2.8, we have

d

dq
Pk(x, q) |q=1= Pk(x, 1)

k∑

j=1

lim
q→1

(
d
dqLj(q)

Lj(q)

)
, (2.6)

where

Lj(q) = (Wj(x, q)(1 + x`−1(x− 1)) + x`−1 + qx`−1(Wj(x, q)(1− x)− 1).
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Note that

lim
q→1

d

dq
Lj(q) = lim

q→1

(
d

dq
Wj(x, q) + x`−1(Wj(x, q)(1− x)− 1)

)

=
x`
(
(j − 1)− (j − 1)jx+ (2

(
j
3

)
+
(
j
2

)
)x2
)

(1− jx)2
= x`

(
j − 1

1− jx +
(2
(
j
3

)
+
(
j
2

)
)x2

(1− jx)2

)
.

Hence, by using (2.6) we obtain

d

dq
Pk(x, q) |q=1=

xk+`

(1− x) · · · (1− kx)

k∑

j=1

(
j − 1 +

(2
(
j
3

)
+
(
j
2

)
)x2

(1− jx)

)

=
xk+`

(
k
2

)

(1− x) · · · (1− kx)
+

xk+`+2

(1− x) · · · (1− kx)

k∑

j=3

2
(
j
3

)
+
(
j
2

)

(1− jx)
,

as required.

By using the facts that Pk(x, 1) =
∑
n≥1 Sn,kx

n and
∑k
j=1 (j − 1)x` = x`

(
k
2

)
,

together with Lemma 2.9 we get the following corollary.

Corollary 2.10. The total number of the `-peaks in all set partitions Pn,k is given
by (

k

2

)
Sn−`,k +

n−k∑

i=`+2

Sn−i,k

k∑

j=3

ji−`−2
(

2

(
j

3

)
+

(
j

2

))
.

2.2. Applications
By substituting ` = 2 in Corollary 2.7, we obtain the following result

Corollary 2.11. The total number of the 2-peaks in all the words of length n over
alphabet [k] is given by

(n− 3)kn−4
(

2

(
k

3

)
+

(
k

2

))
.

By substituting ` = 2 in Corollary 2.10, this leads to

Corollary 2.12. The total number of the 2-peaks in all set partitions Pn,k is given
by (

k

2

)
Sn−2,k +

n−k∑

i=4

Sn−i,k

k∑

j=3

ji−4
(

2

(
j

3

)
+

(
j

2

))
.

By substituting q = 0 in (2.4), we obtain that the generating function for the
number of words of length n over alphabet [k] without `-peaks is given by

Wk(x, 0) =
−x`(Uk−1(t)− Uk−2(t))

Uk(t)− Uk−1(t)− (1 + x`)(Uk−1(t)− Uk−2(t))
, (2.7)
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where t = 1 + x`+1

2 and Um is m-th Chebyshev polynomial of the second kind. By
substituting q = 0 in Corollary 2.8, we get

Pk(x, 0) = xk
k∏

j=1

(
Wj(x, 0)(1 + x`−1(x− 1)) + x`−1

)
, (2.8)

by substituting (2.7) into (2.8), and using the relation Uj+1(t) = 2tUj(t)−Uj−1(t),
we get

Pk(x, 0) = xk
k∏

j=1

Uj−1(t)− (1 + x`)Uj−2(t)

(1− x)Uj−1(t)− Uj−2(t)
,

where t = 1 + x`+1

2 , which is the generating function of Pn,k without `-peaks. By
using the above result with ` = 1, we obtain the same result of Mansour and
Shattuck (see [7]).

Corollary 2.13. The generating function for the number of set partitions of Pn
without `-peaks is given by

1 +
∑

k≥1
Pk(x, 0) =

∑

k≥0
xk

k∏

j=1

Uj−1(t)− (1 + x`)Uj−2(t)

(1− x)Uj−1(t)− Uj−2(t)
,

where t = 1 + x`+1

2 and Um is the m-th Chebyshev polynomial of the second kind.

2.3. Conclusion
In the present paper, we determined the generating function for the number of
k-ary words of length n according to the number of `-peaks. Also, we determined
the generating function for the number of set partitions of [n] with exactly k blocks
according to the number of `-peaks. Seems our techniques can be extended to
the case of compositions of n (a composition of n is a word σ1σ2 · · ·σm such that∑m
i=1 σi = n), where we leave it to the interest reader.
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