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Abstract

Let [k] = {1,2,...,k} be an alphabet over k letters. A word w of length n
over alphabet [k] is an element of [k]™ and is also called a k-ary word of length
n. We say that w contains an ¢-peak, if it exists an ¢ such that 2 <i<n—¢
where w; = wiy1 = -+ = wite—1 and wi—1 < w; and Wiye—1 > Wite. A
partition II of set [n] of size k is a collection {Bi, Ba, ..., Bx} of non empty
disjoint subsets of [n], called blocks, whose union equals [n]. In this paper, we
find an explicit formula for the generating function for the number of words
of length n over alphabet [k] according to the number of ¢-peaks in terms of
Chebyshev polynomials of the second kind. As a consequence of the results
obtained for words, we finally find the number of ¢-peaks in set partitions of
[n] with exactly k blocks.

Keywords: Set partitions, words, ¢-peak, Chebyshev polynomials of the sec-
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1. Introduction

Words

Let [k] = {1,2,...,k} be an alphabet over k letters. A word w of length n over
alphabet [k] is an element of [k]™ and is also called a word of length n on k letters
or a k-ary word of length n. The number of the words of length n over alphabet
[k] is k™. Similar statistics in patterns of subwords have been widely studied in
the literature (see [2]). For example, Kitaev, Mansour and Remmel [3] enumerated
the number of rises (respectively, levels and falls) which are subword patterns 12,
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(respectively, 11 and 21) in words that have a prescribe first element. Heubach and
Mansour [2] enumerated the number of words of length n over alphabet [k] that
contain the subword pattern 111 and the subword pattern 112 exactly r times.
Burstein and Mansour [1] generalized the result to subword pattern of length /.
More recently, Mansour [4] enumerated the number of peaks (subword patterns
121, 132 or 231) and valleys (subword patterns 212, 213 or 312) in words of length
n over alphabet [k]. Our aim is to extend this result to patterns of arbitrary
length. We say that w contains an f-peak, if exists 2 < ¢ < n — £ such that
W; = Wig1 = -+ = Wipe—1 and w;—1 < w; and w41 > w;qe. For example, the
word 1241342 = 12222133332 in [3]'! contains two 4-peaks, namely 122221 and
133332.

Set partitions

A partition I of set [n] with exactly k blocks is a collection {Bj, Bs, ..., B} of
non empty disjoint subsets of [n] whose union is equal to [n]. We assume that
blocks are listed in increasing order of their minimal elements, that is, minB; <
minBy < --- < minBy. We denote the set of all partitions of [n] with exactly
k blocks to be P, . The number of all partitions of [n] with k blocks is S(n, k),
these are the Stirling numbers of the second kind [9]. We denote the set of all
partitions of [n] to be P,, namely P, = U}_yP, 5. The number of all partitions
of [n] is B, = Y _j_, Sn.k, which is the n-th Bell number. Any partition II can be
written as mymg - - - m,, where ¢ € By, for all ¢, and this form is called the canonical
sequential form. For example IT = {{12}, {3}, {4}} is a partition of [4], the canoni-
cal sequential form is 7 = 1123. Several authors have studied different statistics on
P, (see [4]). For instance, Mansour and Munagi [6] found the generating function
for the number of partitions of [n] according to rises, descents and levels, they also
computed the total number of t-rises (respectively, t-descents and t-levels), this is
a increasing subword pattern of size ¢ (respectively, decreasing subword pattern of
size t, fixed subword pattern of size t), see [5]. A lot of attention has been given
to the statistics on P, (see [4]). For example, Shattuck [8] counted the rises,
descents and levels in the set partition of [n] with exactly k blocks. In addition,
Mansour [4] found an explicit formula for the generating functions for the number
of set partition of [n] with exactly k blocks according to the statistics ¢-rise (respec-
tively, ¢-descent and ¢-level). Mansour and Shattuck [7] found an explicit formula
for the generating function of set partitions of n with exactly [k] blocks according
to the number of peaks (valleys). Our aim is to extend this result for the set P, j
according to the number of /-peaks.

In this paper, we find the generating function of the words of length n over
alphabet [k] according to the number of ¢-peaks. We also compute the total number
of ¢-peaks in the words of length n over alphabet [k]. As a consequence of these
results, we find the number of ¢-peaks in set partitions of [n] with exactly &k blocks.
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2. Words and partitions of a set according to multi
statistics £-peaks

Let Wi (x,q1,-..,qe) be the generating function for the number of words of length
n over alphabet [k] according to the number of ¢-peaks, namely,

Wk(x,lh,...,qe Zx Z H L peak(w)

n>0 welk]™ =1

Lemma 2.1. The generating function Wy (x, q1, ..., qe) satisfies the recurrence re-
lation

Wk(xa q1y--- 7%)
Ay — B+ Wi_1(x,q1, .-, qe)(Beg1 — Ag)
(1—z)(1+ Ap) + 2+t — Wi (x, q1, - - - Qg)((l —x)A;+ xé"‘l) ’

'3

where Ay = Zf L x'q; and By = 11 -

Proof. Tt is obvious
Wk(l’7 qi1,--- »(IE) = kal(xa q1,-- -, QZ) + W[j(ivv q1,--- 7qf)7 (21)

where W]I (z,q1,...,q¢) is the generating function for the number of words w of
length n over alphabet [k] according to the number of ¢-peaks such that w contains
at least one occurrence of the letter k. A word w that contains a letter k can be
decomposed as either

(1) k;
(2) kw', where &’ is a non empty word over [k];

(3) w”kiw™, where k' denotes a word kk - - - k with exactly i letters, w” is a non
empty word over [k — 1] and "’ is a non empty word over [k] which starts
with a letter a # k, for 1 <i < /;

(4) W'k, for 1 <i < ¥; or
(5) W’k W™ where w"” is a word over [k].
The corresponding generating functions of these decomposition are
(1
2) e(Wg(z,q1,...,q0) — 1);
G Wi—1(x,q1s -5 q0) — D(Wr(2,q1,5 -, q0) (1 —2) — 1), for 1 < i < 4
{Wi—1(z,q1,--,q0) — 1), for 1 <i < ¢; or

) ©
(2)
(3)
(4) @
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(5) errl(Wk—l(xa q1,- -+, Q/) - 1)Wk(‘r7qla ceey q@)a

respectively. Hence, by (2.1), we obtain

Wi(z,q1,...,q)
- Wk_l(l' q17~'~7q€) +$+$(Wk(x,q1,-~-,QZ) - 1)

+Zqz Wk 1 x Q17"'7q€)_1)(Wk(xaq17"'7QZ)(1_m)_1)

¢
+ Zmi(Wk—l(x7q1a .. 'aQZ) - 1)

i=1
+ me+1(kal(x7 q1,--- aqf) - 1)Wk;<.’1}, q1,--- 7q€>7

which equivalent to

Wi(z,q1,...,q)
Ay — 2By + Wk,l(x,ql, .. .,qg)(Berl — Az)

- L)
(L= )1+ A0+ 41 = W) (1 )+ 041

where Ay = Zle 2'q; and By = 111125. O

We plan to find an explicit formula for the generating function Py(x,q1,...,qe)

for the number of partitions of n with exactly k blocks according to the number of
{-peaks.

4
Pk(ﬂ?, qiy-- -, qg) = Z x" Z H qifpeak(ﬂ-)

n>0 TEP, 1, i=1

To do that we will use Lemma 2.1.

Theorem 2.2. Forallk > 1,

P(l’ qi,- -, qe)

— H (Zx (Wi (z,q1,-..,q) (1 —x) — 1) +1) +x”1Wj(m,q1,...,qg)>.

Proof. Any partition 7 of [n] with exactly k& blocks can be decomposed either

(1) mkin', nk?, for 1 <14 <, where 7 is a set partition with exactly k& — 1 blocks,
7’ is a non empty word over alphabet [k] which starts with a letter a < k; or

(2) wk“1x” where 7'’ is a word over alphabet [k].

The corresponding generating functions are
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(1)
qi$iPk,1(£C,q1, cee 7ql)(Wk(m7q17 cee aqg)
- ka(xaqlv e 7(]2) - 1) + mZ‘F)kfl(x,qla .. 'an)a

for1 <i<¥;

(2) 1’Z+1Pk71(x,q1’ R QZ)Wk(% qiy--- ,qf)v

respectively. By summing all the last terms we obtain

Pk(‘rvqlu"qu)
l

= Zqimipkfl(xﬂqh .. w%)(Wk(%Qh e 7qf) - ka(x7q17 e 7(14) - 1)
i=1
0

+ inpkfl(% Qo qe) T P (g, g W, qe)
i=1

= Pi1(z,q15-- -, q0)
4
. (Z IZ(QZ<W](:I;7q17 s 7q€)(1 - x) - 1) + 1) + $e+1Wj($,q1, s 7QZ)> .
i=1

Thus, by induction on k together with the initial condition Py(x,q) = 1, we com-
plete the proof. O

Example 2.3. Using the recursion given in Theorem 2.2, we may obtain the
generating function for the number of partitions of [n] with exactly k blocks,

4
Pe(z, 1, 1) =[] D Wiz, 1,..., )1 =) + 2 W(,1,...,1)
j=11i=1
k
1—2¢ 1 1
:H gl — (1 — )+ 2!
, l—21—-jz 1—jx
Jj=1
k
1
k
=X s
jI;[ll—jx

which is in accord with the well-known the generating function for the number of
partitions of [n] with exactly & blocks.

Example 2.4. By substituting £ = 1 and ¢; = ¢ in Lemma 2.1, we get Wi (z,q)
the generating function for the number of words of length n over the alphabet [k]
according to the number of peaks (peak of length one), which gives the following
recursion

2(g =1+ (1= z(g = D)Wr(2,9)
1—2(1—-q)(1—2) —a(@+q(l —2))Wi1(z,q)

Wk(xv Q) =
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By using the same substitution in Theorem 2.2, we obtain the recurrence relation
for the generating function for the number of set partitions P, , according to the
number of peaks (peak of length one), which gives the following recursion

k
Py(z,q) = z* H (1+z(1 — Wz, q) + q(W;(z.q) — 1)),

where the two above results agree with the results of Mansour and Shattuck
(see [7]).
2.1. Counting £-peaks in words and partitions of a set

Let Wi(z, q) be the generating function for the number of words of length n over
alphabet [k] according to the number of /-peaks.

Wk(flz}Q) _ Z " Z qé—peak(w)

n>0 welk]m

Corollary 2.5. The generating function Wy(x, q) for the number of words of length
n over alphabet [k] according to the number of {-peaks is

A+ (1 —-AWi_1(z,q)

Wile.q) = ar — aWi_1(z, q)ae—1 23)
where A = x%(q — 1) and ag = 1 + 2*(q¢ — 1)(1 — x), which is equivalent to
_ 2'(q = 1) (Up-1(t) — Up—2(t))
1 e R ) PN ) A

where t = 14 *5—(1 —q) and Uy, is the m-th Chebyshev polynomial of the second
kind.

Proof. By substituting ¢; = 1 for i # ¢, and gy = ¢ in (2.2) we obtain (2.3). Then,
by applying [Appendix D] [4] for (2.2), we obtain (2.4). O

Now, our aim is to find the total number of /-peaks in all words of length n
over alphabet [k].

Lemma 2.6. For all k > 1,

i i () ()

Proof. We compute the number of /-peaks in all the words of length n over alphabet
[k]. By differentiating (2.3) with respect to ¢, we obtain

d
Vi(z) = dfqu(%CI) lg=1
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(2'(1 = Wi_1(2,1)) + Vi1 (2)) (1 — 2Wi_1 (2, 1))
(1 —aWi_1(z,1))?
~ Wi (a, D(xf(1—2)(1 = Wy_q(2,1)) — 2Vi_1(2))
(1 —2Wg_1(z,1))2 ’

and using Wy (z,1) = (easy to prove by induction), we obtain

lk:z:

d%wmm Jo=1= ul:w (2 (';) + (’;)) : (25)

as claimed. O
By finding the coeflicient of z™ in (2.5) we get the following result

Corollary 2.7. The total number of £-peaks in all the words of length n over
alphabet [k] is given by

s (o) ()

We plan to find the explicit formula for the generating function Py (x,q) for the
number of P, j; according to the number of /-peaks.

_ E " § qlfpeak(ﬂ')
n>0 TEPn

Corollary 2.8. For all k > 1, the generating function Py(x,q) is given by
k
H (z,q)(L+ 2" (@ — 1) + 27 + g2 (W2, 9)(1 — z) — 1)).

Proof. By substituting ¢; = 1 for i # ¢, and gy = ¢ in Theorem (2.2). O
Lemma 2.9. For all k > 3,

k k j j
2R () phe2 2(4) + (9)

(1—x)~~~(1—k‘x)+(1—x) 1—kxz 1—jx

J=3

d
aqH @) le=1=

Proof. By Corollary 2.8, we have

k dLJ
jqp (@.0) lyo1= Pi(z, 1 Z <d2](§)q)>, (2.6)
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Note that

Cd
tig 52, = lin W0 + W1 - 0) - 1))

2 (=1 = (= Djr+ @)+ 6)e*) _ < i—1 @)+ (é))w2> .

(1—jx)? l—jx (1—jz)

Hence, by using (2.6) we obtain

. pr el
d—qu(ac,q) lg=1= (=) (1—ka) Z; <J -1+ ﬁ
. b ko) )

:(l—m)~-~(21—k:x)+(1—x) (1— kx) J; 1—]1; ’

as required. O

By using the facts that Py(z,1) = 3, Sy 2™ and Z] LG =Dt =2t (5),
together with Lemma 2.9 we get the following corollary.

Corollary 2.10. The total number of the £-peaks in all set partitions Py, i is given

L G Enade(0) ()

2.2. Applications
By substituting ¢ = 2 in Corollary 2.7, we obtain the following result
Corollary 2.11. The total number of the 2-peaks in all the words of length n over

alphabet [k] is given by
o (o) ()

By substituting ¢ = 2 in Corollary 2.10, this leads to

Corollary 2.12. The total number of the 2-peaks in all set partitions P, j is given

b k k
k n— P . .
(2) Sp—2.k + Z Sn—ik ZJ 4 <2 (‘;) + (;))
i—4 i=3

By substituting ¢ = 0 in (2.4), we obtain that the generating function for the
number of words of length n over alphabet [k] without ¢-peaks is given by

—2* (Up—1(t) — Up—2(t))
Uk(t) = Ug—1(t) = (L 4+ 2) (Ug-1(t) — Up—2(t))’

Wi (x,0) = (2.7)
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m 18 m-th Chebyshev polynomial of the second kind. By
substituting ¢ = 0 in Corollary 2.8, we get

k
T (Wi, 0)(1 + 2~ (= 1)) + 2°71), (2.8)

j=1

by substituting (2.7) into (2.8), and using the relation U;41(t) = 2tU;(t) — U;_1(¢),
we get

b U, t 1+x)Uj_2(t)
1;[ (1- ~1(t) = Uj—2(t)’

where , n,k Without /-peaks. By
using the above result with ¢ = 1, we obtain the same result of Mansour and
Shattuck (see [7]).

Corollary 2.13. The generating function for the number of set partitions of P,
without £-peaks is given by

k U t 1 X Uj, t
LD Pi(e,0)=3 H( <+> )U4_22<(t>)’
k>1 k>0 =1 J

m 1S the m-th Chebyshev polynomial of the second kind.

2.3. Conclusion

In the present paper, we determined the generating function for the number of
k-ary words of length n according to the number of ¢-peaks. Also, we determined
the generating function for the number of set partitions of [n] with exactly k blocks
according to the number of f-peaks. Seems our techniques can be extended to
the case of compositions of n (a composition of n is a word o103 - - 0., such that
>, 0; =n), where we leave it to the interest reader.

Acknowledgment. The author expresses her appreciation to the referee for
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