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Abstract

For suitable integers α, γ and f : [3,+∞[ ∩ Z → [0,+∞[ ∩ Z, denote
by w(Rα,γ,f , k, r) the least positive integer such that for any r-colouring of
[1, w(Rα,γ,f , k, r)] ∩ Z, there exists a monochromatic finite sequence
(x1, . . . , xk) satisfying xi = (αai + 2)xi−1 + (γai − 1)xi−2 with some inte-
gers ai = 0 or ai ≥ f(i) (i = 3, . . . , k). In the present paper we describe the
possible values of α and γ. We also derive an upper bound on w(Rα,γ,f , k, 2)
in these cases. This gives a generalization of a result of B. M. Landman [3].
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1. Introduction

Most results of Ramsey theory in the area of number theory deal with monochro-
matic sequences or monochromatic solutions of diophantine equations, systems of
diophantine equations (for an extensive survey see [4]). In this paper we study the
monochromatic properties of some second order linear recurrence sequences.

Let S be a non-empty set of sequences of positive integers. On a finite sequence
of S of length k we mean the first k elements of a sequence from S. For integers
k ≥ 3 and r ≥ 2, let w(S, k, r) be the least positive integer if it exists, such that
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for any r-colouring of [1, w(S, k, r)] ∩ Z, there is a monochromatic finite sequence
of S of length k. We call w(S, k, r) a van der Waerden type number.

Throughout this paper by arithmetic progression we mean a strictly increasing
arithmetic progression of positive integers and denote their set by A. By the
classical theorem of B. L. van der Waerden [6], w(A, k, r) exists for arbitrary k, r.
We will use the standard notation w(k, r) for w(A, k, r).

Obviously, if S1 and S2 are non-empty sets of sequences of positive integers such
that S1 ⊆ S2 and w(S1, k, r) exists, then w(S2, k, r) also exists and w(S2, k, r) ≤
w(S1, k, r). In particular, if S is a non-empty set of sequences of positive integers
with A ⊆ S, then w(S, k, r) exists and w(S, k, r) ≤ w(k, r).

In our paper we consider the case of linear recurrence sequences. Remark that
we can describe A by a linear recurrence, namely A is the set of sequences (xi)∞i=1

satisfying xi = 2xi−1 − xi−2 (i = 3, 4, . . .) with some positive integers x1 < x2.
Denote by F the set of strictly increasing sequences of positive integers satis-

fying the Fibonacci recurrence, that is

F = {(xi)∞i=1 |x1 < x2 positive integers, xi = xi−1 + xi−2 (i = 3, 4, . . . )}.

H. Harborth, S. Maasberg [2] and H. Ardal, D. S. Gunderson, V. Jungić, B. M.
Landman, K. Williamson [1] proved that w(F , k, r) exists if and only if k = 3. The
previous authors also examined other binary recurrences. A forthcoming paper of
G. Nyul and B. Rauf [5] studies the existence of van der Waerden type numbers
for higher order linear recurrence sequences.

B. M. Landman [3] (see also [4], Section 3.6) considered van der Waerden type
numbers for three families of some second order linear recurrence sequences, con-
taining A as a subset. He gave an upper bound for them when r = 2. In [4] at
the end of Section 3.6, the authors suggest to investigate some similar families of
sequences.

The purpose of our paper is to study this question, but not only for some new
separate families. We describe all possible families of sequences and give an upper
bound for the corresponding van der Waerden type numbers. As we shall see, the
three families and the results of B. M. Landman [3] are special cases of our general
ones.

2. Description of our families of sequences

Let α, γ ∈ Z, not both zero, and let f : [3,+∞[ ∩ Z → [0,+∞[ ∩ Z. Denote by
Rα,γ,f the family of sequences (xi)∞i=1 with positive integers x1 < x2, satisfying
xi = (αai + 2)xi−1 + (γai − 1)xi−2 for some integers ai where ai = 0 or ai ≥ f(i)
(i = 3, 4, . . .).

Later on we will also consider the special case when f is identically 0. For this
we introduce the notation Rα,γ = Rα,γ,f .

According to the slightly different parametrization given by B. M. Landman [3]
for familiesR0,1,f ,R1,0,f ,R1,−1,f , more generally we could set α, β, γ, δ, A ∈ Z, α, γ
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not both zero, such that αA+β = 2, γA+δ = −1 and g : [3,+∞[∩Z→ [A,+∞[∩Z
and consider the collection of sequences (xi)∞i=1 with positive integers x1 < x2,
satisfying the recurrence xi = (αbi + β)xi−1 + (γbi + δ)xi−2 where bi = A or
bi ≥ g(i) is an integer (i = 3, 4, . . .). Note that in fact this is not a more general
family of sequences, because it can be reparametrized toRα,γ,f with g(i) = f(i)+A
and bi = ai +A.

The van der Waerden type number w(Rα,γ,f , k, r) is meaningful only if each
element of Rα,γ,f consists of positive integers. But in this case w(Rα,γ,f , k, r)
always exists, sinceA ⊆ Rα,γ,f (with the choice ai = 0), moreover w(Rα,γ,f , k, r) ≤
w(k, r). Thus it is natural to prove the following statement.

Proposition 2.1. Each element of Rα,γ,f contains only positive integers if and
only if α ≥ 0, γ > 0 or α > 0, γ ≤ 0, α ≥ |γ|.

Proof.
I. First let α ≥ 0 and γ > 0. In this case we prove by induction that each

element (xi)∞i=1 of Rα,γ,f is strictly increasing. It follows from the assumption that
x1 < x2. If we suppose xi−1 < xi, then xi+1−xi = (αai+1+1)xi+(γai+1−1)xi−1 ≥
xi − xi−1 > 0 since αai+1 + 1 ≥ 1 and γai+1 − 1 ≥ −1.

In the case α > 0, γ ≤ 0, α ≥ |γ| we can prove it similarly by induc-
tion and using xi+1 − xi = (αai+1 + 1)xi + (γai+1 − 1)xi−1 ≥ (|γ| ai+1 + 1)
(xi − xi−1) > 0.

II. In the remaining cases we can find a sequence from Rα,γ,f which contains
a negative number.

In the case α < 0, let x1 = 1. Then we have x3 = (αx2 + γ)a3 + 2x2 − 1. If x2

is sufficiently large, then αx2 + γ < 0, hence by choosing a sufficiently large a3, x3

is negative.
If α = 0 and γ < 0, we get similarly with the choice x1 = 1 that

x3 = γa3 + 2x2 − 1, which is negative for sufficiently large a3.
Finally consider α > 0, γ < 0, α < |γ|, and let x2 = x1 + 1. Now

x3 = ((α+γ)x1+α)a3+x1+2 holds. If x1 is sufficiently large, then (α+γ)x1+α < 0,
which gives x3 < 0 with a sufficiently large a3.

3. Upper bounds on van der Waerden type numbers

Now we prove our main result, an upper bound on van der Waerden type numbers
for Rα,γ,f when the number of colours is 2.

Theorem 3.1.
Case 1: If α ≥ 0 and γ > 0, then

w(Rα,γ,f , k, 2) ≤ w(Rα,γ,f , 3, 2)
k∏
j=4

[(α+ γ)f(j) + (α+ γ)j − α− γ + 1].
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Case 2: If α > 0, γ ≤ 0 and α ≥ |γ|, then

w(Rα,γ,f , k, 2) ≤ w(Rα,γ,f , 3, 2)
k∏
j=4

(αf(j) + αj − α+ 2).

Proof. For brevity let us use the notation Cα,γ,f (k) for the right-hand sides of the
inequalities. We prove the theorem by induction on k. It is obvious for k = 3.
Suppose that it is true for k − 1 (k ≥ 4) and prove it for k.

Let χ be an arbitrary 2-colouring of [1, Cα,γ,f (k)]∩Z with colours red and blue.
By the induction hypothesis there exists a (k − 1)-term monochromatic finite se-
quence (x1, . . . , xk−1) ofRα,γ,f under the colouring χ with elements x1, . . . , xk−1 ≤
Cα,γ,f (k − 1), say it is red.

Let yi = [α(f(k) + i − 1) + 2]xk−1 + [γ(f(k) + i − 1) − 1]xk−2 (i = 1, . . . , k).
In both cases y1 < . . . < yk, yi > xk−1 and yi ≤ [α(f(k) + k − 1) + 2]xk−1+
[γ(f(k) + k − 1) − 1]xk−2 using the assumptions on α and γ. In Case 1 the
numbers in brackets are positive and xk−2, xk−1 ≤ Cα,γ,f (k − 1), hence yi ≤
[(α + γ)f(k) + (α + γ)k − α − γ + 1]Cα,γ,f (k − 1) = Cα,γ,f (k). In Case 2 the
first number in brackets is positive and the other is negative, which gives similarly
yi ≤ [α(f(k) + k − 1) + 2]xk−1 ≤ [α(f(k) + k − 1) + 2]Cα,γ,f (k − 1) = Cα,γ,f (k).
This means yi ∈ [1, Cα,γ,f (k)] ∩ Z.

Now we have two possibilities: If some yi (i = 1, . . . , k) is red, then
(x1, . . . , xk−1, yi) is a red finite sequence from Rα,γ,f of length k having elements
in the desired interval. On the other hand, if each yi (i = 1, . . . , k) is blue, then
(y1, . . . , yk) is a k-term monochromatic finite arithmetic progression, hence a finite
sequence of Rα,γ,f with elements in [1, Cα,γ,f (k)] ∩ Z.

If f is identically 0, we have the following immediate consequence:

Corollary 3.2.
Case 1: If α ≥ 0 and γ > 0, then

w(Rα,γ , k, 2) ≤ w(Rα,γ , 3, 2)
(α+ γ + 1)(2α+ 2γ + 1)

k∏
j=1

[(α+ γ)j − α− γ + 1].

Case 2: If α > 0, γ ≤ 0 and α ≥ |γ|, then

w(Rα,γ , k, 2) ≤ w(Rα,γ , 3, 2)
2(α+ 2)(2α+ 2)

k∏
j=1

(αj − α+ 2).

4. Examples

Finally we show some examples with the most interesting possible values of α and
γ. Examples 1 and 2 belong to Case 1, while Examples 3, 4 and 5 belong to Case 2.
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We notice that Examples 1, 3 and 4 were the original families treated by B. M.
Landman [3].

In each example we describe the recurrence, but omit the conditions of
f : [3,+∞[ ∩ Z → [0,+∞[ ∩ Z, and ai = 0 or ai ≥ f(i), since they are common
in all cases. Additionally we give a possible reparametrization of the recurrence,
together with the corresponding value of A with our earlier notation. (In Examples
2 and 5, n!! denotes the semifactorial of a natural number n.)

Example 1: α = 0, γ = 1.
Recurrence: xi = 2xi−1 + (ai − 1)xi−2

Reparametrization: xi = 2xi−1 + bixi−2 (A = −1)
Upper bounds:

w(R0,1,f , k, 2) ≤ w(R0,1,f , 3, 2)
k∏
j=4

(f(j) + j)

w(R0,1, k, 2) ≤ 7
6
k!, since w(R0,1, 3, 2) = 7.

Example 2: α = 1, γ = 1.
Recurrence: xi = (ai + 2)xi−1 + (ai − 1)xi−2

Reparametrization: xi = (bi + 3)xi−1 + bixi−2 (A = −1)
Upper bounds:

w(R1,1,f , k, 2) ≤ w(R1,1,f , 3, 2)
k∏
j=4

(2f(j) + 2j − 1)

w(R1,1, k, 2) ≤ 3
5
(2k − 1)!!, since w(R1,1, 3, 2) = 9.

Example 3: α = 1, γ = 0.
Recurrence: xi = (ai + 2)xi−1 − xi−2

Reparametrization: xi = bixi−1 − xi−2 (A = 2)
Upper bounds:

w(R1,0,f , k, 2) ≤ w(R1,0,f , 3, 2)
k∏
j=4

(f(j) + j + 1)

w(R1,0, k, 2) ≤ 1
3
(k + 1)!, since w(R1,0, 3, 2) = 8.

Example 4: α = 1, γ = −1.
Recurrence: xi = (ai + 2)xi−1 + (−ai − 1)xi−2

Reparametrization: xi = bixi−1 + (−bi + 1)xi−2 (A = 2)
Upper bounds:

w(R1,−1,f , k, 2) ≤ w(R1,−1,f , 3, 2)
k∏
j=4

(f(j) + j + 1)
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w(R1,−1, k, 2) ≤ 7
24

(k + 1)!, since w(R1,−1, 3, 2) = 7.

Example 5: α = 2, γ = −1.
Recurrence: xi = (2ai + 2)xi−1 + (−ai − 1)xi−2

Reparametrization: xi = 2bixi−1 − bixi−2 (A = 1)
Upper bounds:

w(R2,−1,f , k, 2) ≤ w(R2,−1,f , 3, 2)
k∏
j=4

(2f(j) + 2j)

w(R2,−1, k, 2) ≤ 3
16

(2k)!!, since w(R2,−1, 3, 2) = 9.
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