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Abstract
We look at arithmetic progressions on elliptic curves known as Huff curves.

By an arithmetic progression on an elliptic curve, we mean that either the x or
y-coordinates of a sequence of rational points on the curve form an arithmetic
progression. Previous work has found arithmetic progressions on Weierstrass
curves, quartic curves, Edwards curves, and genus 2 curves. We find an
infinite number of Huff curves with an arithmetic progression of length 9.
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1. Introduction

Recently, several researchers have looked at arithmetic progressions on elliptic
curves. Bremner [3], Campbell [4], Garcia-Selfa and Tornero [8] used elliptic curves
given by a Weierstrass equation, while Campbell [4], MacLeod [12], and Ulas [15]
have looked at quartic models. Moody [13] has studied the problem on Edwards
curves. Alvarado [1] and Ulas [16] have extended similar results to genus 2 hyper-
elliptic curves. The historical motivation for this problem is discussed in [8].

Besides Weierstrass equations, quartic curves, and Edwards curves [6], there
are other models for elliptic curves. These include Jacobi intersections [5], Hessian
curves [10], and Huff curves [9], for example. Originally introduced in 1948, Huff
curves have recently been shown to have applications in cryptography [11], [7]. An
elliptic curve in Huff’s model can be written as

Ha,b : x(ay2 − 1) = y(bx2 − 1).

In this work, we look at arithmetic progressions on Huff curves. By this we mean
a sequence of rational points (x1, y1), . . . , (xn, yn) on Ha,b with the xi forming an
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Source Model Longest progression Longest progression
for infinite family

[3],[4] Weierstrass curves 8 8
This work Huff curves 9 9

[13] Edwards curves 9 9
[2],[12],[15] quartic curves 14 12
[1],[16] genus 2 quintics 12 12
[16] genus 2 sextics 18 16

Table 1: Longest arithmetic progressions on curves

arithmetic progression. The main result of this paper is to show several infinite
families of Huff curves with arithmetic progressions of length 9. In comparison,
Table 1 gives the length of the longest arithmetic progression for the previously
mentioned models. Note in general the length increases as we have more variables
in the defining curve equation we can specify.

2. Arithmetic progressions

Huff curves are elliptic curves that can be written as x(ay2−1) = y(bx2−1), when
ab(a − b) 6= 0. Clearly we have symmetry in x and y if we switch a and b, so we
only look for arithmetic progressions on the x-coordinates. Note trivially that the
point (0, 0) is always on the curve. Notice also that an arithmetic progression of
x-coordinates of the form {−kd,−(k − 1)d, . . . ,−d, 0, d, 2d, . . . , (k − 1)d, kd} can
always be rescaled so that d = 1. This is seen as follows. If the point (jd, y) is
on the curve Ha,b, then the point (j, y/d) is on the curve Had2,bd2 . As a conse-
quence, we will focus on finding Huff curves which have x-coordinates in the set
{±1,±2,±3,±4}.

We will repeatedly need the following calculation. If we require a rational point
(x, y) on Ha,b with x = n, then we must have that any2−(bn2−1)y−n = 0. In order
for y ∈ Q, the discriminant (bn2 − 1)2 + 4an2 must be a rational square. Applying
this to x = 1, we need (b− 1)2 +4a = j2 for some rational j. The same equation is
true for x = −1. Similarly, if we require rational points with x-coordinate ±2 and
±3, then we must have (4b − 1)2 + 16a = k2, and (9b − 1)2 + 36a = l2 for some
rational k and l. Solving for a in our first equation, we have

a =
1
4

(
j2 − (b− 1)2

)
. (2.1)

Eliminating a from the other two equations, we are left with the system

12b2 + 4j2 − k2 = 3, (2.2)

72b2 + 9j2 − l2 = 8. (2.3)
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We now parameterize the solutions in terms of b and a parameter m. Some
easy algebra verifies that j = 3b2 − 1 and k = 6b2 − 1 is a solution to (2.2). Let
j = 3b2 − 1 + t and k = 6b2 − 1 + mt. Substituting these values into (2.2) yields

t
(
(m2 − 4)t + 12mb2 − 24b2 − 2m + 8

)
= 0.

Solving for t, we see t = −2 (6b2−1)m−4(3b2−1)
m2−4 , and thus

j =
(3b2 − 1)m2 − 2(6b2 − 1)m + 4(3b2 − 1)

m2 − 4
, (2.4)

k =
−(6b2 − 1)m2 + 8(3b2 − 1)m− 4(6b2 − 1)

m2 − 4
.

We substitute this expression for j into (2.3) and seek a rational solution for l.
Some more algebra shows that this is equivalent to

81(m−2)4b4+18(m−2)2(m2+22m+4)b2+m4−36m3+172m2−144m+16 (2.5)

being a rational square. Considering this as a polynomial in b, we first check to
see what values of m will lead to the constant term being square. The equation
E : v2 = m4 − 36m3 + 172m2 − 144m + 16 clearly has the rational point (0, 4),
and so determines an elliptic curve. Using SAGE [14], the curve E is found to
have rank 0, and torsion points (0,±4), (1,±3), (2,±12), (4,±12), and (−2,±36).
We exclude m = ±2, as this leads to division by 0 in the expressions for j and k.
When m = 1 or m = 4, then (2.5) is not the square of a polynomial in b. When
m = 0, then (2.5) is 16(9b2 + 1)2.

So letting m = 0, we have j = −(3b2 − 1), and a = 1
4b(3b− 2)(3b− 1)(b + 1) by

(2.1). With this expression for a, then the curve Ha,b has an arithmetic progression
of length 7, namely x = −3,−2,−1, 0, 1, 2, 3. In order for x = ±4 to be a rational
point, we are led to the discriminant 144b4 + 144b2 + 1 needing to be a square. As
the curve

E1 : v2 = 144b4 + 144b2 + 1

clearly has rational point (0, 1), then E1 is an elliptic curve. By SAGE, this curve
has rank 2 with generators ( 1

12 , 17
12 ), and ( 1

8 , 29
16 ). Each rational point on E1 leads

to a value for b so that the Huff curve Ha,b has an arithmetic progression of length
9. We thus have our first infinite family of Huff curves with a progression of length
9.

3. More families

Returning to (2.5),we consider it as a polynomial in m,

(9b2 + 1)2m4 − 36(18b4 − 9b2 + 1)m3 + 4(486b4 − 360b2 + 43)m2

− 144(18b4 − 9b2 + 1)m + 16(9b2 + 1)2.
(3.1)
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If we compare this to(
(9b2 + 1)m2 − 18(18b4 − 9b2 + 1)

9b2 + 1
m + 4(9b2 + 1)

)2

,

the difference is
160m2(324b4 − 45b2 + 1)

(9b2 + 1)2
.

If the difference is equal to 0, then (3.1) is a square. The case m = 0 was already
examined. The other zeroes are when b = ± 1

3 ,± 1
6 . Letting b = − 1

3 , then

a = − (3m− 4)(m− 3)(m + 1)(m + 4)
9(m2 − 4)2

.

The condition that x = ±4 is the coordinate of a rational point is equivalent to the
corresponding discriminant being a rational square; i.e. we seek a rational point
on the curve

E2 : v2 = 169m4 − 128m3 − 264m2 − 512m + 2704.

The choice of b = 1
3 leads to the same curve. Similarly, when b = ± 1

6 , we are led
to the curve

E3 : v2 = 46m4 − 440m3 + 1968m2 − 1760m + 736.

Both E2 and E3 are elliptic curves with rank 2 and 1 respectively. These ranks were
computed by SAGE. Each rational point on one of the curves leads to a Huff curve
with a rational point having x-coordinate ±4, and thus a progression of length 9.

By experimentation, we found a few other infinite families. Using the same
parameterization as above, let b = ± 1

4 or ± 1
8 . Then it can be checked that x = ±4

is the x-coordinate of a rational point on the Huff curve Ha,b with a determined
by (2.1) and (2.4). However, we are no longer guaranteed that x = ±3 is on the
Huff curve. Requiring x = ±3, we arrive at the following curves

E4 : v2 = 625m4 − 4680m3 + 22936m2 − 18720m + 10000, (b = ±1/4)

E5 : v2 = 5329m4 − 127368m3 + 614296m2 − 509472m + 85624. (b = ±1/8)

These elliptic curves have ranks 1 and 2, leading to two more infinite families of
Huff curves with progressions of length 9.

Finally, letting b = ± 1
2 the parameterized Huff curve is Ha,±1/2, with

a = − (3m− 2)(m− 6)
64(m− 2)2

. (3.2)

The condition that there is a rational point with x = ±3 leads to a quadratic,
instead of a quartic as in previous cases:

v2 = 169m2 − 604m + 676. (3.3)
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A parametric solution to (3.3) is given by

m = −4(13s + 151)
s2 − 169

,

v = −2(13s2 + 302s + 2197)
s2 − 169

.

Substituting this expression for m into (3.2), and requiring x = ±4 we have the
curve

E6 : r2 = 46s4 + 2288s3 + 42124s2 + 335712s + 1017846,

which has rank 1. Each rational point of E6 gives a rational s, which in turn
determines a rational m and a. The curve Ha,±1/2 will have rational points with
x-coordinates ±3 and ±4.

4. Conclusion

In the previous section, we produced six infinite families of Huff curves having the
property that each has rational points with x-coordinate x = −4,−3, −2,−1, 0, 1,
2, 3, 4. This produces an arithmetic progression of length 9. We have performed
computer searches to see if we can find any rational points on these curves leading
to x = ±5 being the x-coordinate of a rational point on Ha,b. So far these searches
have failed to turn up such a point. It is therefore an open problem to find a
Huff curve with an arithmetic progression of length 10 (or longer). It would also
be interesting to investigate arithmetic progressions on the remaining models of
elliptic curves.

Acknowledgments. We would like to thank the anonymous referee for noticing
a few minor mistakes in our formulas.
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