Annales Mathematicae et Informaticae
38 (2011) pp. 45-57
http://ami.ektf.hu

The Roman (k, k)-domatic number of a
graph®

A.P. Kazemi®, S.M. Sheikholeslami’¢, L. Volkmann*

“Department of Mathematics
University of Mohaghegh Ardabili, Ardabil, Iran
e-mail: adelpkazemi@yahoo.com

*Department of Mathematics
Azarbaijan University of Tarbiat Moallem, Tabriz, Islamic Republic of Iran
e-mail: s.m.sheikholeslami@azaruniv.edu

“School of Mathematics
Institute for Research in Fundamental Sciences (IPM), Tehran, Islamic Republic of Iran

“Lehrstuhl 1T fiir Mathematik
RWTH-Aachen University, Aachen, Germany
e-mail: volkm@math2.rwth-aachen.de

Submitted February 21, 2011 Accepted April 19, 2011

Abstract

Let k be a positive integer. A Roman k-dominating function on a graph
G is a labelling f : V(G) — {0, 1,2} such that every vertex with label 0 has
at least k neighbors with label 2. A set {fi, f2,..., fa} of distinct Roman
k-dominating functions on G with the property that Zle fi(v) < 2k for each
v € V(G), is called a Roman (k, k)-dominating family (of functions) on G.
The maximum number of functions in a Roman (k, k)-dominating family on G
is the Roman (k, k)-domatic number of G, denoted by d%(G). Note that the
Roman (1,1)-domatic number d(G) is the usual Roman domatic number
dr(G). In this paper we initiate the study of the Roman (k,k)-domatic
number in graphs and we present sharp bounds for d%(G). In addition, we
determine the Roman (k, k)-domatic number of some graphs. Some of our
results extend those given by Sheikholeslami and Volkmann in 2010 for the
Roman domatic number.
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domination number, Roman (k, k)-domatic number.
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1. Introduction

In this paper, G is a simple graph with vertex set V' = V(G) and edge set E =
E(G). The order |V| of G is denoted by n = n(G). For every vertex v € V,
the open neighborhood N(v) is the set {u € V(G) | uv € E(G)} and the closed
neighborhood of v is the set N[v] = N(v)U{v}. The degree of a vertex v € V(G) is
degy(v) = deg(v) = |N(v)|. The minimum and mazimum degree of a graph G are
denoted by § = 0(G) and A = A(G), respectively. The open neighborhood of a set
S C V is the set N(S) = UyesN(v), and the closed neighborhood of S is the set
N[S] = N(S)U S. The complement of a graph G is denoted by G. We write K,
for the complete graph of order n and C,, for a cycle of length n. Consult [4, 15]
for the notation and terminology which are not defined here.

Let k be a positive integer. A subset S of vertices of G is a k-dominating set
if [INg(v) N S| > k for every v € V(G) — S. The k-domination number vx(G)
is the minimum cardinality of a k-dominating set of G. A k-domatic partition
is a partition of V into k-dominating sets, and the k-domatic number di(G) is
the largest number of sets in a k-domatic partition. The k-domatic number was
introduced by Zelinka [16]. Further results on the k-domatic number can be found
in the paper [5] by K&dmmerling and Volkmann. For a good survey on the domatic
numbers in graphs we refer the reader to [1]. Recently more domatic parameters
are studied (see for instance [10, 11, 12]).

Let k > 1 be an integer. Following Kdmmerling and Volkmann [6], a Roman k-
dominating function (briefly RKDF) on a graph G is a labelling f : V(G) — {0,1,2}
such that every vertex with label 0 has at least k neighbors with label 2. The
weight of a Roman k-dominating function is the value f(V(G)) = X cv () f(v).
The minimum weight of a Roman k-dominating function on a graph G is called
the Roman k-domination number, denoted by vxr(G). Note that the Roman 1-
domination number v;r(G) is the usual Roman domination number vr(G). A
Yir(G)-function is a Roman k-dominating function of G with weight vxr(G). A
Roman k-dominating function f:V — {0,1,2} can be represented by the ordered
partition (Vp, Vi, Va) (or (VOf,Vlf,VQf) to refer to f) of V, where V; = {v € V|
f(v) =i}. In this representation, its weight is w(f) = [V4|+2|Va|. Since V; UV is
a k-dominating set when f is an RkDF, and since placing weight 2 at the vertices
of a k-dominating set yields an RkDF, in [6], it was observed that

1 (G) < r(G) < 27(G). (1.1)

A set {f1, f2,..., fa} of distinct Roman k-dominating functions on G with
the property that E?Zl fi(v) < 2k for each v € V(G) is called a Roman (k,k)-
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Roman (k, k)-dominating family (briefly R(k, k)D family) on G is the Roman (k, k)-
domatic number of G, denoted by d%(G). The Roman (k, k)-domatic number is
well-defined and

dp(G) > 1 (1.2)

for all graphs G since the set consisting of any RkDF forms an R(k, k)D family on
G and if k > 2, then
d3(G) > 2 (1.3)

since the functions f; : V(G) — {0,1,2} defined by f;(v) = i for each v € V(G)
and ¢ = 1,2 forms an R(k, k)D family on G of order 2. In the special case when
k=1, d5(G) is the Roman domatic number dr(G) investigated in [8] and has been
studied in [9].

The definition of the Roman dominating function was given implicitly by Stew-
art [14] and ReVelle and Rosing [7]. Cockayne et al. [3] as well as Chambers et al.
[2] have given a lot of results on Roman domination.

Our purpose in this paper is to initiate the study of the Roman (k, k)-domatic
number in graphs. We first study basic properties and bounds for the Roman (k, k)-
domatic number of a graph. In addition, we determine the Roman (k, k)-domatic
number of some classes of graphs.

The next known results are useful for our investigations.

Proposition A (Kdmmerling, Volkmann [6] 2009). Let k > 1 be an integer, and
let G be a graph of order n. If n < 2k, then vykr(G) = n. If n > 2k + 1, then
Yr(G) > 2k.

Proposition B (Kdmmerling, Volkmann [6] 2009). Let G be a graph of order n.
Then vkr(G) < n if and only if G contains a bipartite subgraph H with bipartition
X,Y such that | X| > |Y| > k and deg(v) > k for each v € X.

Proposition C (Kdmmerling, Volkmann [6] 2009). If G is a graph of order n and
mazimum degree A >k, then

R (G) > { 2n w .

T+1
Proposition D (Sheikholeslami, Volkmann [8] 2010). If G is a graph, then
dr(G) =1
if and only if G is empty.

Proposition E (Sheikholeslami, Volkmann [8] 2010). If G is a graph of order
n > 2, then dg(G) = n if and only if G is the complete graph on n vertices.

Proposition F (Sheikholeslami, Volkmann [8] 2010). Let K,, be the complete graph
of order n > 1. Then dr(K,) = n.
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Proposition G (Sheikholeslami, Volkmann [13]). Let K, ; be the complete bipar-
tite graph of order p + q such that ¢ > p > 1. Then vwr(Kp ) = p + q when
p<korgq=p=k, wr(Kpq) =k+pwhenp+q>2k+1andk <p <3k and
Yer(Kp,q) = 4k when p > 3k.

We start with the following observations and properties. The first observation
is an immediate consequence of (1.3) and Proposition D.

Observation 1.1. If G is a graph, then d%(G) =1 if and only if k = 1 and G is
empty.

Observation 1.2. If G is a graph and k > 2 is an integer, then d%(G) =2 if and
only if G is trivial.

Proof. If G is trivial, then obviously d}(G) = 2. Now let G be nontrivial and let
v € V(G). Define f,g,h: V(G) — {0,1,2} by
fw)y=1land f(z) =2if z € V(G) — {v},

g(v) =2and g(z) =1if z € V(G) — {v},
and
hz)=1if z € V(G).
It is clear that {f,g,h} is an R(k,k)D family of G and hence d%(G) > 3. This
completes the proof. O

Observation 1.3. If G is a graph and k > A(G) + 1 is an integer, then ds(G) <
2k — 1.

Proof. If d5%(G) = 1, then the statement is trivial. Let d§(G) > 2. Since k >
A(G)+1, we have v, r(G) = n. Let { f1, f2, ..., fa} be an R(k, k)D family on G such

that d = d%(G). Since f1, fa, ..., fa are distinct, we may assume f;(v) = 2 for some
i and some v € V(G). It follows from Z}i:l fi(v) < 2k that 3°,; fi(v) <2k —2.
Thus d — 1 < 2k — 2 as desired. ‘ O

Observation 1.4. If k > 2 is an integer, and G is a graph of order n > 2k — 2,
then d%(G) > 2k — 1.

Proof. If V(G) = {v1,v2,...,v,}, then define f; : V(G) — {0,1,2} by f;(v;) =2
and fj(z) =1forz € V(G)—{v;} and 1 < j <2k—2and for—1 : V(G) — {0,1,2}
by fox—1(x) = 1 for each z € V(G). Then fi, fo,..., for—1 are distinct with
Zfi;l filx) = 2k for each x € {v1,v2,...,v2,_2} and Zfﬁ;l filz) = 2k -1
otherwise. Therefore {fi, fa,..., for—1} is an R(k,k)D family on G, and thus
di(G) > 2k — 1. O

The last two observations lead to the next result immediately.

Corollary 1.5. Let k > 2 be an integer. If G is a graph of order n > 2k — 2 and
k> A(G) + 1, then d%(G) = 2k — 1.
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Observation 1.6. If k > 3 is an integer, and G is a graph of order n > 2k — 4,
then d%(G) > 2k — 2.

Proof. If V(G) = {v1,v2,...,v,}, then define f; : V(G) — {0, 1,2} by f;(v;) =2
and fj(z) =1for z € V(G) —{v;} and 1 < j < 2k —4, for—3: V(G) — {0,1,2}
by for—3(x) =1 for each z € V(G) and far—2 : V(G) — {0,1,2} by fop—a(z) =2
for each € V(G). Then fi, fa,..., far—2 are distinct with ZZQEIQ fi(x) = 2k for
each x € V(G). Therefore {f1, fa,..., for—2} is an R(k, k)D family on G, and thus
d.(G) > 2k — 2. O

Observation 1.7. Let k > 2 be an integer. If G is a graph of order n < 2k — 3
and k > A(G) + 1, then d%(G) < 2k — 2.

Proof. If n = 1, then d’f%(G) = 2 < 2k — 2. Assume now that n > 2. Let
{f1, f2,--., fa} be an R(k,k)D family on G such that d = d%(G). Since k >
A(G)+1, we observe that f;(x) > 1 for each 1 <i < d and each x € V(G). Suppose
to the contrary that d > 2k—1. Since f1, fo, ..., fq are distinct, there exists a vertex
u € V(G) such that fs(u) = fi(u) = 2 for two indices s,¢ € {1,2,...,d} with s # ¢.
However, this leads to

2k—1

d
ST fiw) > D filw) > 4+ 2k -3 =2k +1,
=1 =1

a contradiction. Therefore d’f%(G) < 2k — 2, and the proof is complete. O

Theorem 1.8. Let k > 1 be an integer, and let G be a graph of order n. If
k>3-2"72 then d%(G) = 2".

Proof. Let {f1, fa,..., fa} be the set of all pairwise distinct functions from V(G)
into the set {1,2}. Then f; is a Roman k-dominating function on G for 1 < ¢ <d,
and it is well-known that d = 2". The hypothesis & > 3 - 2"~2 leads to

on

d
d fiw) =) fily)=2""t 42 =327 <2k
=1 i=1

for each vertex v € V(G). Therefore {f1, fo,..., fa} is an R(k, k)D family on G
and thus d%(G) > 2n,

Now let f: V(G) — {0,1,2} be a Roman k-dominating function on G. Since
k>3-2""2 > n > A(G), it is impossible that f(z) = 0 for any vertex z € V(G).
Hence the number of Roman k-dominating functions on G is at most 2™ and so
d%(G) < 2™, This yields the desired identity. O

Observation 1.9. If k > 1 is an integer, then vyr(K,) = min{n, 2k}.

Proof. It n < 2k, then Proposition A implies that y,r(K,) = n.

Assume now that n > 2k+1. It follows from Proposition A that vxg(K,) > 2k.
Let V(K,) = {v1,v2,...,v,}, and define f : V(K,) — {0,1,2} by f(v1) = f(v2) =
... = f(vy) =2 and f(v;) =0for k+1 < j <n. Then f is an RkDF on K,, of
weight 2k and thus vxr(K,) < 2k, and the proof is complete. O
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2. Properties of the Roman (k, k)-domatic number
In this section we present basic properties of d%(G) and sharp bounds on the
Roman (k, k)-domatic number of a graph.

Theorem 2.1. Let G be a graph of order n with Roman k-domination number
Yxr(G) and Roman (k, k)-domatic number d%(G). Then

Yr(G) - di(G) < 2kn.

Moreover, if vxr(G) - d%(G) = 2kn, then for each R(k,k)D family {f1, f2,-.., fa}
on G with d = d%(G), each function fi is a yxr(G)-function and Zle filv) =2k
forallveV.

Proof. Let {f1, f2,..., fa} be an R(k,k)D family on G such that d = d%(G) and
let v € V. Then

d
d-wr(G) = Y wr(G)

d
Z Z fi(v)

i=1veV

= 2 hv

veV i=1

< Z2k

veV
= 2kn.

IN

If ver(G) - d%(G) = 2kn, then the two inequalities occurring in the proof
become equalities. Hence for the R(k, k)D family {f1, f2,..., fa} on G and for
each i, > oy fi(v) = r(G), thus each function f; is a yxr(G)-function, and

S filv) =2k forall v € V. O

Theorem 2.2. Let G be a graph of order n > 2 and k > 1 be an integer. Then
Yer(G) =n and d%(G) = 2k if and only if G does not contain a bipartite subgraph
H with bipartition X,Y such that | X| > |Y| > k and degg(v) > k for each v € X
and G has 2k or 2k—1 connected bipartite subgraphs H; = (X;,Y;) with | X;| = |Y;|,
degy, (v) > k for each v € X and |{i | w € Yi}| = [{i | u € Xi}| = k for each
u € V(G).

Proof. Let vr(G) = n and df(G) = 2k. It follows from Proposition B that G does
not contain a bipartite subgraph H with bipartition X,Y such that |X| > |Y| >k
and degy (v) > k for each v € X. Let {f1,..., for} be a Roman (k, k)-dominating
family on G. By Theorem 2.1, vxr(G) = w(f;) = n for each i. First suppose for
each i, there exists a vertex x such that f;(z) # 1. Assume that H; is a subgraph
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of G with vertex set Vj" U V" and edge set E(Vy*,V4*). Since w(f;) = n and
fi is a Roman k-dominating function, [V3"| = |Vj*| and degg, (v) > k for each
v € VJ'. By Theorem 2.1, 327%, f;(v) = 2k for each v € V(G) which implies that
{i|ve VY =|{i|veV/} =k for ecach v € V(G). Now suppose fi(z) = 1
for each x € V(G) and some i, say ¢ = 2k. Define the bipartite subgraphs H; for
1 <4 <2k —1 as above.

Conversely, assume that G does not contain a bipartite subgraph H with bi-
partition X,Y such that |X| > |Y| > k and degy(v) > k for each v € X and G
has 2k or 2k — 1 connected bipartite subgraphs H; = (X;,Y;) with |X;| = |Y;| and
degy. (v) > k for each v € X;. Then by Proposition B, vxr(G) = n. If G has 2k
connected bipartite subgraphs H;, then the mappings f; : V(G) — {0, 1,2} defined
by

filuy=2ifuey; fi(v)=0if v € X;,and fi(z) =1foreachz € V — (X; UY;)

are Roman k-dominating functions on G and {f; | 1 < ¢ < 2k} is a Roman (k, k)-
dominating family on G. If G has 2k — 1 connected bipartite subgraphs H;, then
the mappings f;,g: V(G) — {0, 1,2} defined by g(x) =1 for each z € V(G) and

filu)=2ifueY, fi(v)=0ifve X;,and f;(z) =1foreachz € V — (X; UY))

are Roman k-dominating functions on G and {g, f; | 1 <14 < 2k — 1} is a Roman
(k, k)-dominating family on G.

Thus d%(G) > 2k. It follows from Theorem 2.1 that d%(G) = 2k, and the proof
is complete. O

The next corollary is an immediate consequence of Proposition C, Observation
1.3 and Theorem 2.1.

Corollary 2.3. For every graph G of order n, d%(G) < max{A,k — 1} + k.

Let AjUAoU...UA, be a k-domatic partition of V(G) into k-dominating sets
such that d = di(G). Then the set of functions {fi, fa,..., fa} with fi(v) = 2 if
v € A; and f;(v) = 0 otherwise for 1 < i < dis an R(k, k)D family on G. This shows
that di,(G) < d%(G) for every graph G. Since yxr(G) > min{n, v (G)+k} (cf. [6]),
for each graph G of order n > 2, Theorem 2.1 implies that d%(G) < m
Combining these two observations, we obtain the following result.

Corollary 2.4. For any graph G of order n,

2kn
di(G) < df(G) < min{n, v (G) + k}

Theorem 2.5. Let K,, be the complete graph of order n and k a positive integer.
Then d%(K,) =n if n > 2k, d%(K,) <2k —1ifn <2k —1 and d¥%(K,) =2k —1
ifk>2and 2k —2 <n<2k—1.
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Proof. By Proposition F, we may assume that & > 2. Assume that V(K,) =
{z1,z2,...,x,}. First let n > 2k. Since Observation 1.9 implies that v, (K, ) =
2k, it follows from Theorem 2.1 that d’f%(Kn) < n. For 1 < i < n, define now
fi : V(Kn) - {07 172} by

fi(x) = fixipr) = ... = fi(xi1x—1) = 2 and f;(z) = 0 otherwise,

where the indices are taken modulo n. It is easy to see that {f1, fa2,..., fn} is an
R(k, k)D family on G and hence d%(K,) > n. Thus d%(K,,) = n.

Now let n < 2k — 1. Then Observation 1.9 yields yxr(K,) = n, and it follows
from Theorem 2.1 that d%(K,) < 2k. Suppose to the contrary that d%(K,) =
2k. Then by Theorem 2.1, each Roman k-dominating function f; in any R(k, k)D
family {f1, fo,,.-., for} on G is a yxg(G)-function. This implies that f;(x) =1
for each x € V(K,,). Hence fi1 = fo = -+ = fo, which is a contradiction. Thus
dh(K,) <2k — 1.

In the special case £ > 2 and 2k — 2 <n < 2k — 1, Observation 1.4 shows that
d%(K,) > 2k — 1 and so d%(K,,) = 2k — 1. O

In view of Proposition G and Theorem 2.1 we obtain the next upper bounds
for the Roman (k, k)-domatic number of complete bipartite graphs.

Corollary 2.6. Let K, , be the complete bipartite graph of order p 4 q such that
q > p > 1, and let k be a positive integer. Then d5(K,,) < 2k if p < k or
gf: P Zf b (K g) < 222D if ptg > 2k+1 and k < p < 3k and dfy (K, ) < 252
if p > 3k.

For some special cases of complete bipartite graphs, we can prove more.

Corollary 2.7. Let K, be the complete bipartite graph of order 2p, and let k be
a positive integer. If p > 3k, then d%(K,,) = p. If p <k, then d% (K, ) < 2k —1.
In particular, if p = k — 1, then d%(Kp,p) =2k —1, and if p = k — 2, then
d% (K, ) = 2k — 2.

Proof. Assume first that p > 3k. Let X = {uq,ug,...,up} and Y = {v1,ve,...,0,}
be the partite sets of the complete bipartite graph K, ,. For 1 < i < p, define
fi : V(K,p) — {0,1,2} by

filui) = filuizr) = ... = filwiyn—1) = fi(vi) = filvigr) = ... = fi(vigp—1) =2

and f;(x) = 0 otherwise, where the indices are taken modulo p. It is a simple
matter to verify that {fi, fo,..., fp} is an R(k,k)D family on K,, and hence
d%(K,.,) > p. Using Corollary 2.6 for p = q > 3k, we obtain d% (K, ,) = p.

Assume next that p < k. Since k > p = A(K) ), it follows from Observation
1.3 that d(Kp,) < 2k — 1.

Assume now that p =k — 1. Then k£ > 2 and n(K, ,) = 2k — 2, and we deduce
from Observation 1.4 that d% (K, ,) > 2k — 1 and so d§(K,,) = 2k — 1.

Finally, assume that p = k — 2. Then k > 3 and n(K,,) = 2k —4. It
follows from Observation 1.6 that d% (K, ,) > 2k — 2 and from Observation 1.7
that d% (K, ) < 2k — 2 and thus d (K, ) = 2k — 2. O
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Theorem 2.8. If G is a graph of order n > 2, then
Wwr(G) + dj(G) < n+ 2k (2.1)

with equality if and only if vr(G) = n and d%(G) = 2k or vr(G) = 2k and
di(G) = n.

Proof. If d%(G) < 2k — 1, then obviously 1, r(G) + d% (G ) n+ 2k — 1. Let now
d%(G) > 2k. If v.r(G) > 2k, Theorem 2.1 implies that d%(G) < n. According to
Theorem 2.1, we obtain

2kn

S AE) +d&(@). (2.2)

Wr(G) +dj(G) <

Using the fact that the function g(z) = x+(2kn)/x is decreasing for 2k < z < 2kn
and increasing for v2kn < x < n, this inequality leads to the desired bound
immediately.

Now let v4r(G) < 2k — 1. Since min{n,v,(G) + k} < v%r(G), we deduce
that y4r(G) = n. According to Theorem 2.1, we obtain d%(G) < 2k and hence
d% (@) = 2k. Thus

Yr(G) 4+ d%(G) = n + 2k.

If v.r(G) = n and d%(G) = 2k or yxr(G) = 2k and d%(G) = n, then obviously
Yer(G) + d%(G) = n + 2k.
Conversely, let equality hold in (2.1). It follows from (2.2) that

2kn
n+ 2k = ykr(G) + di(G) < ———— + dj(G) < n+ 2k,
dj(G)
which implies that v,z (G) = d%’z” and d%(G) = 2k or d%(G) = n. This completes
the proof. 0

The special case k = 1 of the next result can be found in [8].

Theorem 2.9. For every graph G and positive integer k,
d%(G) < 8(G) + 2k.
Moreover, the upper bound is sharp.

Proof. If d%(G) < 2k, the result is immediate. Let now d%(G) > 2k + 1 and let
{f1, fas- .., fa} be an R(k, k)D family on G such that d = d%(G). Assume that v is
a vertex of minimum degree §(G). Let £ be the number of sums }°, <y, fi(u) =1
and let m be the number of those sums in which >, ¢y, fi(u) = 2. Obviously,
I +2m < 2k.

We may assume, without loss of generality, that the equality ), . Nlo] filu)=1
holds for ¢ = 1,...,¢, if any, and the equality ZueN[U] fi(u) = 2 holds for i =
¢+ 1,...,4 +m when m > 1. In this case f;(v) = 1 and f;(u) = 0 for each
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u € N(v) and ¢ = 1,...,¢ and f;(v) = 2 and f;(u) = 0 for each u € N(v)
and ¢ = £+ 1,...,£ +m. Thus fi(v) = 0for £+ m+1 <4 < d, and thus
ZuEN[v] filu) > 2k for £+ m +1 <14 <d. Altogether we obtain

2k(d— (L +m))+L+2m < Z > fiu

=1 ueN[v]

= > Zfi(u)

uwEN[v] i=1

< sz

uEN[v]
— 2(S(G) + 1)

If m = 0, then the above inequality chain leads to
d<6G)+1+1—12/(2Kk).

Since the function g(z) = = + x/(2k) is increasing for 0 < x < 2k, we deduce the
desired bound as follows

d<6G)+14+0—-10/(2k) <O(G)+1+2k—(2k)/(2k) = 0(G) + 2k.
Now let m > 1. Then we obtain

2k — ¢ —2m

A< (G)+ (E+m) + ——

Since the last fraction in the sum is a rational number in [0,1] and since m > 1,
we deduce that
2k — £ —2m

d<8(G)+(Crm)+ =

< 3(G)+(L+m)+1 < 5(G)+0+2m < 6(G)+2k

as desired.
To prove the sharpness of this inequality, let G; be a copy of K34 (2k41)r With
vertex set V(G;) = {vi, v}, .. vk3+(2k+1)k} for 1 < i < k and let the graph G be

obtained from UizlGi by adding a new vertex v and joining v to each vi,... ,v,i.
Define the Roman k-dominating functions f7, h; for 1 <i < k,0<s<k—1 and
1 <[ <2k as follows:

ff(vi) == fz‘s(vi) =2, fb( (i—1)k2+ (S+1)k+1) == ff(vfiq)kn(sﬂ)mk) =2

if j €{1,2,...,k} — {i} and f’(x) = 0 otherwise
and for 1 <[ < 2k,

hi(v) =1, (Vi gpyr) = - = (Vs pyr) = 2 (1 <0 < k),
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and hy(x) = 0 otherwise.

It is easy to see that f; and ¢g; are Roman k-dominating function on G for each

1<i<k0<s<k—-11<i<2kand {ff,q|1<i<k0<s<k—1landl<
| < 2k} is a Roman (k, k)-dominating family on G. Since §(G) = k?, we have
d%(G) = §(G) + 2k. 0O

For regular graphs the following improvement of Theorem 2.9 is valid.
Theorem 2.10. Let k be a positive integer. If G is a 6(G)-regular graph, then
d%(G) < max{2k — 1,6(G) + k} < 6(G) + 2k — 1.

Proof. If k > A(G) = §(G) then by Observation 1.7, d(G) < 2k — 1 and the
desired bound is proved. If k¥ < A(G), then it follows from Corollary 2.3 that

di(G) < 8(G) +k,
and the proof is complete. O

As an application of Theorems 2.9 and 2.10, we will prove the following Nord-
haus-Gaddum type result.

Theorem 2.11. Let k > 1 be an integer. If G is a graph of order n, then
d%(G) 4+ d%(G) < n + 4k — 2, (2.3)
with equality only for graphs with A(G) — §(G) = 1.
Proof. Tt follows from Theorem 2.9 that
d%(G) + di(G) < (8(G) +2k) + (6(G) 4 2k) = (6(G) +2k) + (n — A(G) — 1+ 2k).

If G is not regular, then A(G) — 6(G) > 1, and hence this inequality implies the
desired bound d%(G) + d(G) < n + 4k — 2. If G is §(G)-regular, then we deduce
from Theorem 2.10 that

d%(G) 4 d%(G) < (0(G) + 2k — 1) + (6(G) + 2k — 1) = n + 4k — 3,

and the proof of the Nordhaus-Gaddum bound (2.3) is complete. Furthermore, the
proof shows that we have equality in (2.3) only when A(G) — 0(G) = 1. O

Corollary 2.12 ([8]). For every graph G of order n,
dR(G) + dR(é) <n+2,
with equality only for graphs with A(G) = §(G) + 1.

For regular graphs we prove the following Nordhaus-Gaddum inequality.
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Theorem 2.13. Let k > 1 be an integer. If G is a d-regular graph of order n, then
d%(G) + d%(G) < max{4k —2,n +2k —1,n+3k —2—6,3k+06 —1}.  (2.4)

Proof. Let §(G) =6 and §(G) = 6. We distinguish four cases.
If k> §+1and k > 0 + 1, then it follows from Observation 1.7 that

d(G) +d5(G) < (2k—1) + (2k — 1) = 4k — 2.
If k <6 and k < 4, then Corollary 2.3 implies that
dR(G) +dR(G) < (S +E)+ (0 +k)=0+2k+n—1—-6=n+2k—1.

If k> 6+1and k < §, then we deduce from Observation 1.7 and Corollary 2.3
that

ARG +dh(G) <2k —1)+ (0 +k)=3k—1+n—1-6=n+3k—2—0.
If k<8 and k > 6 + 1, then Observation 1.7 and Corollary 2.3 lead to
dR(G)+d5(G) < (64 k) +(2k—1) =3k +6 — 1.
This completes the proof. O

If G is a d-regular graph of order n > 2, then Theorem 2.13 leads to the following
improvement of Theorem 2.11 for £ > 2.

Corollary 2.14. Let k > 2 be an integer. If G is a 6-regular graph of order n > 2,
then -
d%(G) + d%(G) < n+ 4k — 4.
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