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Abstract

Let k be a positive integer. A Roman k-dominating function on a graph
G is a labelling f : V (G) −→ {0, 1, 2} such that every vertex with label 0 has
at least k neighbors with label 2. A set {f1, f2, . . . , fd} of distinct Roman
k-dominating functions on G with the property that

∑d
i=1 fi(v) ≤ 2k for each

v ∈ V (G), is called a Roman (k, k)-dominating family (of functions) on G.
The maximum number of functions in a Roman (k, k)-dominating family on G
is the Roman (k, k)-domatic number of G, denoted by dk

R(G). Note that the
Roman (1, 1)-domatic number d1

R(G) is the usual Roman domatic number
dR(G). In this paper we initiate the study of the Roman (k, k)-domatic
number in graphs and we present sharp bounds for dk

R(G). In addition, we
determine the Roman (k, k)-domatic number of some graphs. Some of our
results extend those given by Sheikholeslami and Volkmann in 2010 for the
Roman domatic number.
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domination number, Roman (k, k)-domatic number.
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1. Introduction

In this paper, G is a simple graph with vertex set V = V (G) and edge set E =
E(G). The order |V | of G is denoted by n = n(G). For every vertex v ∈ V ,
the open neighborhood N(v) is the set {u ∈ V (G) | uv ∈ E(G)} and the closed
neighborhood of v is the set N [v] = N(v)∪{v}. The degree of a vertex v ∈ V (G) is
degG(v) = deg(v) = |N(v)|. The minimum and maximum degree of a graph G are
denoted by δ = δ(G) and ∆ = ∆(G), respectively. The open neighborhood of a set
S ⊆ V is the set N(S) = ∪v∈SN(v), and the closed neighborhood of S is the set
N [S] = N(S) ∪ S. The complement of a graph G is denoted by G. We write Kn

for the complete graph of order n and Cn for a cycle of length n. Consult [4, 15]
for the notation and terminology which are not defined here.

Let k be a positive integer. A subset S of vertices of G is a k-dominating set
if |NG(v) ∩ S| ≥ k for every v ∈ V (G) − S. The k-domination number γk(G)
is the minimum cardinality of a k-dominating set of G. A k-domatic partition
is a partition of V into k-dominating sets, and the k-domatic number dk(G) is
the largest number of sets in a k-domatic partition. The k-domatic number was
introduced by Zelinka [16]. Further results on the k-domatic number can be found
in the paper [5] by Kämmerling and Volkmann. For a good survey on the domatic
numbers in graphs we refer the reader to [1]. Recently more domatic parameters
are studied (see for instance [10, 11, 12]).

Let k ≥ 1 be an integer. Following Kämmerling and Volkmann [6], a Roman k-
dominating function (briefly RkDF) on a graph G is a labelling f : V (G)→ {0, 1, 2}
such that every vertex with label 0 has at least k neighbors with label 2. The
weight of a Roman k-dominating function is the value f(V (G)) =

∑
v∈V (G) f(v).

The minimum weight of a Roman k-dominating function on a graph G is called
the Roman k-domination number, denoted by γkR(G). Note that the Roman 1-
domination number γ1R(G) is the usual Roman domination number γR(G). A
γkR(G)-function is a Roman k-dominating function of G with weight γkR(G). A
Roman k-dominating function f : V → {0, 1, 2} can be represented by the ordered
partition (V0, V1, V2) (or (V f0 , V

f
1 , V

f
2 ) to refer to f) of V , where Vi = {v ∈ V |

f(v) = i}. In this representation, its weight is ω(f) = |V1|+2|V2|. Since V f1 ∪V
f
2 is

a k-dominating set when f is an RkDF, and since placing weight 2 at the vertices
of a k-dominating set yields an RkDF, in [6], it was observed that

γk(G) ≤ γkR(G) ≤ 2γk(G). (1.1)

A set {f1, f2, . . . , fd} of distinct Roman k-dominating functions on G with
the property that

∑d
i=1 fi(v) ≤ 2k for each v ∈ V (G) is called a Roman (k, k)-

dominating family (of functions) on G. The maximum number of functions in a
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Roman (k, k)-dominating family (briefly R(k, k)D family) on G is the Roman (k, k)-
domatic number of G, denoted by dkR(G). The Roman (k, k)-domatic number is
well-defined and

dkR(G) ≥ 1 (1.2)

for all graphs G since the set consisting of any RkDF forms an R(k, k)D family on
G and if k ≥ 2, then

dkR(G) ≥ 2 (1.3)

since the functions fi : V (G) → {0, 1, 2} defined by fi(v) = i for each v ∈ V (G)
and i = 1, 2 forms an R(k, k)D family on G of order 2. In the special case when
k = 1, d1

R(G) is the Roman domatic number dR(G) investigated in [8] and has been
studied in [9].

The definition of the Roman dominating function was given implicitly by Stew-
art [14] and ReVelle and Rosing [7]. Cockayne et al. [3] as well as Chambers et al.
[2] have given a lot of results on Roman domination.

Our purpose in this paper is to initiate the study of the Roman (k, k)-domatic
number in graphs. We first study basic properties and bounds for the Roman (k, k)-
domatic number of a graph. In addition, we determine the Roman (k, k)-domatic
number of some classes of graphs.

The next known results are useful for our investigations.

Proposition A (Kämmerling, Volkmann [6] 2009). Let k ≥ 1 be an integer, and
let G be a graph of order n. If n ≤ 2k, then γkR(G) = n. If n ≥ 2k + 1, then
γkR(G) ≥ 2k.

Proposition B (Kämmerling, Volkmann [6] 2009). Let G be a graph of order n.
Then γkR(G) < n if and only if G contains a bipartite subgraph H with bipartition
X,Y such that |X| > |Y | ≥ k and degH(v) ≥ k for each v ∈ X.

Proposition C (Kämmerling, Volkmann [6] 2009). If G is a graph of order n and
maximum degree ∆ ≥ k, then

γkR(G) ≥

⌈
2n

∆
k + 1

⌉
.

Proposition D (Sheikholeslami, Volkmann [8] 2010). If G is a graph, then

dR(G) = 1

if and only if G is empty.

Proposition E (Sheikholeslami, Volkmann [8] 2010). If G is a graph of order
n ≥ 2, then dR(G) = n if and only if G is the complete graph on n vertices.

Proposition F (Sheikholeslami, Volkmann [8] 2010). Let Kn be the complete graph
of order n ≥ 1. Then dR(Kn) = n.
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Proposition G (Sheikholeslami, Volkmann [13]). Let Kp,q be the complete bipar-
tite graph of order p + q such that q ≥ p ≥ 1. Then γkR(Kp,q) = p + q when
p < k or q = p = k, γkR(Kp,q) = k + p when p + q ≥ 2k + 1 and k ≤ p ≤ 3k and
γkR(Kp,q) = 4k when p ≥ 3k.

We start with the following observations and properties. The first observation
is an immediate consequence of (1.3) and Proposition D.

Observation 1.1. If G is a graph, then dkR(G) = 1 if and only if k = 1 and G is
empty.

Observation 1.2. If G is a graph and k ≥ 2 is an integer, then dkR(G) = 2 if and
only if G is trivial.

Proof. If G is trivial, then obviously dkR(G) = 2. Now let G be nontrivial and let
v ∈ V (G). Define f, g, h : V (G)→ {0, 1, 2} by

f(v) = 1 and f(x) = 2 if x ∈ V (G)− {v},

g(v) = 2 and g(x) = 1 if x ∈ V (G)− {v},

and
h(x) = 1 if x ∈ V (G).

It is clear that {f, g, h} is an R(k, k)D family of G and hence dkR(G) ≥ 3. This
completes the proof.

Observation 1.3. If G is a graph and k ≥ ∆(G) + 1 is an integer, then dkR(G) ≤
2k − 1.

Proof. If dkR(G) = 1, then the statement is trivial. Let dkR(G) ≥ 2. Since k ≥
∆(G)+1, we have γkR(G) = n. Let {f1, f2, . . . , fd} be an R(k, k)D family onG such
that d = dkR(G). Since f1, f2, . . . , fd are distinct, we may assume fi(v) = 2 for some
i and some v ∈ V (G). It follows from

∑d
j=1 fj(v) ≤ 2k that

∑
j 6=i fj(v) ≤ 2k − 2.

Thus d− 1 ≤ 2k − 2 as desired.

Observation 1.4. If k ≥ 2 is an integer, and G is a graph of order n ≥ 2k − 2,
then dkR(G) ≥ 2k − 1.

Proof. If V (G) = {v1, v2, . . . , vn}, then define fj : V (G) → {0, 1, 2} by fj(vj) = 2
and fj(x) = 1 for x ∈ V (G)−{vj} and 1 ≤ j ≤ 2k−2 and f2k−1 : V (G)→ {0, 1, 2}
by f2k−1(x) = 1 for each x ∈ V (G). Then f1, f2, . . . , f2k−1 are distinct with∑2k−1
i=1 fi(x) = 2k for each x ∈ {v1, v2, . . . , v2k−2} and

∑2k−1
i=1 fi(x) = 2k − 1

otherwise. Therefore {f1, f2, . . . , f2k−1} is an R(k, k)D family on G, and thus
dkR(G) ≥ 2k − 1.

The last two observations lead to the next result immediately.

Corollary 1.5. Let k ≥ 2 be an integer. If G is a graph of order n ≥ 2k − 2 and
k ≥ ∆(G) + 1, then dkR(G) = 2k − 1.
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Observation 1.6. If k ≥ 3 is an integer, and G is a graph of order n ≥ 2k − 4,
then dkR(G) ≥ 2k − 2.

Proof. If V (G) = {v1, v2, . . . , vn}, then define fj : V (G) → {0, 1, 2} by fj(vj) = 2
and fj(x) = 1 for x ∈ V (G) − {vj} and 1 ≤ j ≤ 2k − 4, f2k−3 : V (G) → {0, 1, 2}
by f2k−3(x) = 1 for each x ∈ V (G) and f2k−2 : V (G) → {0, 1, 2} by f2k−2(x) = 2
for each x ∈ V (G). Then f1, f2, . . . , f2k−2 are distinct with

∑2k−2
i=1 fi(x) = 2k for

each x ∈ V (G). Therefore {f1, f2, . . . , f2k−2} is an R(k, k)D family on G, and thus
dkR(G) ≥ 2k − 2.

Observation 1.7. Let k ≥ 2 be an integer. If G is a graph of order n ≤ 2k − 3
and k ≥ ∆(G) + 1, then dkR(G) ≤ 2k − 2.

Proof. If n = 1, then dkR(G) = 2 ≤ 2k − 2. Assume now that n ≥ 2. Let
{f1, f2, . . . , fd} be an R(k, k)D family on G such that d = dkR(G). Since k ≥
∆(G)+1, we observe that fi(x) ≥ 1 for each 1 ≤ i ≤ d and each x ∈ V (G). Suppose
to the contrary that d ≥ 2k−1. Since f1, f2, . . . , fd are distinct, there exists a vertex
u ∈ V (G) such that fs(u) = ft(u) = 2 for two indices s, t ∈ {1, 2, . . . , d} with s 6= t.
However, this leads to

d∑
i=1

fi(u) ≥
2k−1∑
i=1

fi(u) ≥ 4 + 2k − 3 = 2k + 1,

a contradiction. Therefore dkR(G) ≤ 2k − 2, and the proof is complete.

Theorem 1.8. Let k ≥ 1 be an integer, and let G be a graph of order n. If
k ≥ 3 · 2n−2, then dkR(G) = 2n.

Proof. Let {f1, f2, . . . , fd} be the set of all pairwise distinct functions from V (G)
into the set {1, 2}. Then fi is a Roman k-dominating function on G for 1 ≤ i ≤ d,
and it is well-known that d = 2n. The hypothesis k ≥ 3 · 2n−2 leads to

d∑
i=1

fi(v) =
2n∑
i=1

fi(v) = 2n−1 + 2n = 3 · 2n−1 ≤ 2k

for each vertex v ∈ V (G). Therefore {f1, f2, . . . , fd} is an R(k, k)D family on G
and thus dkR(G) ≥ 2n.

Now let f : V (G) −→ {0, 1, 2} be a Roman k-dominating function on G. Since
k ≥ 3 · 2n−2 > n > ∆(G), it is impossible that f(x) = 0 for any vertex x ∈ V (G).
Hence the number of Roman k-dominating functions on G is at most 2n and so
dkR(G) ≤ 2n. This yields the desired identity.

Observation 1.9. If k ≥ 1 is an integer, then γkR(Kn) = min{n, 2k}.
Proof. If n ≤ 2k, then Proposition A implies that γkR(Kn) = n.

Assume now that n ≥ 2k+1. It follows from Proposition A that γkR(Kn) ≥ 2k.
Let V (Kn) = {v1, v2, . . . , vn}, and define f : V (Kn)→ {0, 1, 2} by f(v1) = f(v2) =
. . . = f(vk) = 2 and f(vj) = 0 for k + 1 ≤ j ≤ n. Then f is an RkDF on Kn of
weight 2k and thus γkR(Kn) ≤ 2k, and the proof is complete.
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2. Properties of the Roman (k, k)-domatic number

In this section we present basic properties of dkR(G) and sharp bounds on the
Roman (k, k)-domatic number of a graph.

Theorem 2.1. Let G be a graph of order n with Roman k-domination number
γkR(G) and Roman (k, k)-domatic number dkR(G). Then

γkR(G) · dkR(G) ≤ 2kn.

Moreover, if γkR(G) · dkR(G) = 2kn, then for each R(k, k)D family {f1, f2, . . . , fd}
on G with d = dkR(G), each function fi is a γkR(G)-function and

∑d
i=1 fi(v) = 2k

for all v ∈ V .

Proof. Let {f1, f2, . . . , fd} be an R(k, k)D family on G such that d = dkR(G) and
let v ∈ V . Then

d · γkR(G) =
d∑
i=1

γkR(G)

≤
d∑
i=1

∑
v∈V

fi(v)

=
∑
v∈V

d∑
i=1

fi(v)

≤
∑
v∈V

2k

= 2kn.

If γkR(G) · dkR(G) = 2kn, then the two inequalities occurring in the proof
become equalities. Hence for the R(k, k)D family {f1, f2, . . . , fd} on G and for
each i,

∑
v∈V fi(v) = γkR(G), thus each function fi is a γkR(G)-function, and∑d

i=1 fi(v) = 2k for all v ∈ V .

Theorem 2.2. Let G be a graph of order n ≥ 2 and k ≥ 1 be an integer. Then
γkR(G) = n and dkR(G) = 2k if and only if G does not contain a bipartite subgraph
H with bipartition X,Y such that |X| > |Y | ≥ k and degH(v) ≥ k for each v ∈ X
and G has 2k or 2k−1 connected bipartite subgraphs Hi = (Xi, Yi) with |Xi| = |Yi|,
degHi

(v) ≥ k for each v ∈ Xi and |{i | u ∈ Yi}| = |{i | u ∈ Xi}| = k for each
u ∈ V (G).

Proof. Let γkR(G) = n and dkR(G) = 2k. It follows from Proposition B that G does
not contain a bipartite subgraph H with bipartition X,Y such that |X| > |Y | ≥ k
and degH(v) ≥ k for each v ∈ X. Let {f1, . . . , f2k} be a Roman (k, k)-dominating
family on G. By Theorem 2.1, γkR(G) = ω(fi) = n for each i. First suppose for
each i, there exists a vertex x such that fi(x) 6= 1. Assume that Hi is a subgraph
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of G with vertex set V fi

0 ∪ V
fi

2 and edge set E(V fi

0 , V fi

2 ). Since ω(fi) = n and
fi is a Roman k-dominating function, |V fi

2 | = |V fi

0 | and degHi
(v) ≥ k for each

v ∈ V fi

0 . By Theorem 2.1,
∑2k
i=1 fi(v) = 2k for each v ∈ V (G) which implies that

|{i | v ∈ V fi

2 }| = |{i | v ∈ V fi

0 }| = k for each v ∈ V (G). Now suppose fi(x) = 1
for each x ∈ V (G) and some i, say i = 2k. Define the bipartite subgraphs Hi for
1 ≤ i ≤ 2k − 1 as above.

Conversely, assume that G does not contain a bipartite subgraph H with bi-
partition X,Y such that |X| > |Y | ≥ k and degH(v) ≥ k for each v ∈ X and G
has 2k or 2k − 1 connected bipartite subgraphs Hi = (Xi, Yi) with |Xi| = |Yi| and
degHi

(v) ≥ k for each v ∈ Xi. Then by Proposition B, γkR(G) = n. If G has 2k
connected bipartite subgraphs Hi, then the mappings fi : V (G)→ {0, 1, 2} defined
by

fi(u) = 2 if u ∈ Yi, fi(v) = 0 if v ∈ Xi, and fi(x) = 1 for each x ∈ V − (Xi ∪ Yi)

are Roman k-dominating functions on G and {fi | 1 ≤ i ≤ 2k} is a Roman (k, k)-
dominating family on G. If G has 2k − 1 connected bipartite subgraphs Hi, then
the mappings fi, g : V (G)→ {0, 1, 2} defined by g(x) = 1 for each x ∈ V (G) and

fi(u) = 2 if u ∈ Yi, fi(v) = 0 if v ∈ Xi, and fi(x) = 1 for each x ∈ V − (Xi ∪ Yi)

are Roman k-dominating functions on G and {g, fi | 1 ≤ i ≤ 2k − 1} is a Roman
(k, k)-dominating family on G.

Thus dkR(G) ≥ 2k. It follows from Theorem 2.1 that dkR(G) = 2k, and the proof
is complete.

The next corollary is an immediate consequence of Proposition C, Observation
1.3 and Theorem 2.1.

Corollary 2.3. For every graph G of order n, dkR(G) ≤ max{∆, k − 1}+ k.

Let A1 ∪A2 ∪ . . .∪Ad be a k-domatic partition of V (G) into k-dominating sets
such that d = dk(G). Then the set of functions {f1, f2, . . . , fd} with fi(v) = 2 if
v ∈ Ai and fi(v) = 0 otherwise for 1 ≤ i ≤ d is an R(k, k)D family onG. This shows
that dk(G) ≤ dkR(G) for every graph G. Since γkR(G) ≥ min{n, γk(G)+k} (cf. [6]),
for each graph G of order n ≥ 2, Theorem 2.1 implies that dkR(G) ≤ 2kn

min{n,γk(G)+k} .
Combining these two observations, we obtain the following result.

Corollary 2.4. For any graph G of order n,

dk(G) ≤ dkR(G) ≤ 2kn
min{n, γk(G) + k}

.

Theorem 2.5. Let Kn be the complete graph of order n and k a positive integer.
Then dkR(Kn) = n if n ≥ 2k, dkR(Kn) ≤ 2k− 1 if n ≤ 2k− 1 and dkR(Kn) = 2k− 1
if k ≥ 2 and 2k − 2 ≤ n ≤ 2k − 1.
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Proof. By Proposition F, we may assume that k ≥ 2. Assume that V (Kn) =
{x1, x2, ..., xn}. First let n ≥ 2k. Since Observation 1.9 implies that γkR(Kn) =
2k, it follows from Theorem 2.1 that dkR(Kn) ≤ n. For 1 ≤ i ≤ n, define now
fi : V (Kn)→ {0, 1, 2} by

fi(xi) = fi(xi+1) = . . . = fi(xi+k−1) = 2 and fi(x) = 0 otherwise,

where the indices are taken modulo n. It is easy to see that {f1, f2, . . . , fn} is an
R(k, k)D family on G and hence dkR(Kn) ≥ n. Thus dkR(Kn) = n.

Now let n ≤ 2k − 1. Then Observation 1.9 yields γkR(Kn) = n, and it follows
from Theorem 2.1 that dkR(Kn) ≤ 2k. Suppose to the contrary that dkR(Kn) =
2k. Then by Theorem 2.1, each Roman k-dominating function fi in any R(k, k)D
family {f1, f2, , . . . , f2k} on G is a γkR(G)-function. This implies that fi(x) = 1
for each x ∈ V (Kn). Hence f1 ≡ f2 ≡ · · · ≡ f2k which is a contradiction. Thus
dkR(Kn) ≤ 2k − 1.

In the special case k ≥ 2 and 2k − 2 ≤ n ≤ 2k − 1, Observation 1.4 shows that
dkR(Kn) ≥ 2k − 1 and so dkR(Kn) = 2k − 1.

In view of Proposition G and Theorem 2.1 we obtain the next upper bounds
for the Roman (k, k)-domatic number of complete bipartite graphs.

Corollary 2.6. Let Kp,q be the complete bipartite graph of order p + q such that
q ≥ p ≥ 1, and let k be a positive integer. Then dkR(Kp,q) ≤ 2k if p < k or
q = p = k, dkR(Kp,q) ≤ 2k(p+q)

k+p if p+q ≥ 2k+1 and k ≤ p ≤ 3k and dkR(Kp,q) ≤ p+q
2

if p ≥ 3k.

For some special cases of complete bipartite graphs, we can prove more.

Corollary 2.7. Let Kp,p be the complete bipartite graph of order 2p, and let k be
a positive integer. If p ≥ 3k, then dkR(Kp,p) = p. If p < k, then dkR(Kp,p) ≤ 2k− 1.
In particular, if p = k − 1, then dkR(Kp,p) = 2k − 1, and if p = k − 2, then
dkR(Kp,p) = 2k − 2.

Proof. Assume first that p ≥ 3k. Let X = {u1, u2, . . . , up} and Y = {v1, v2, . . . , vp}
be the partite sets of the complete bipartite graph Kp,p. For 1 ≤ i ≤ p, define
fi : V (Kp,p)→ {0, 1, 2} by

fi(ui) = fi(ui+1) = . . . = fi(ui+k−1) = fi(vi) = fi(vi+1) = . . . = fi(vi+k−1) = 2

and fi(x) = 0 otherwise, where the indices are taken modulo p. It is a simple
matter to verify that {f1, f2, . . . , fp} is an R(k, k)D family on Kp,p and hence
dkR(Kp,p) ≥ p. Using Corollary 2.6 for p = q ≥ 3k, we obtain dkR(Kp,p) = p.

Assume next that p < k. Since k > p = ∆(Kp,p), it follows from Observation
1.3 that dkR(Kp,p) ≤ 2k − 1.

Assume now that p = k− 1. Then k ≥ 2 and n(Kp,p) = 2k− 2, and we deduce
from Observation 1.4 that dkR(Kp,p) ≥ 2k − 1 and so dkR(Kp,p) = 2k − 1.

Finally, assume that p = k − 2. Then k ≥ 3 and n(Kp,p) = 2k − 4. It
follows from Observation 1.6 that dkR(Kp,p) ≥ 2k − 2 and from Observation 1.7
that dkR(Kp,p) ≤ 2k − 2 and thus dkR(Kp,p) = 2k − 2.
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Theorem 2.8. If G is a graph of order n ≥ 2, then

γkR(G) + dkR(G) ≤ n+ 2k (2.1)

with equality if and only if γkR(G) = n and dkR(G) = 2k or γkR(G) = 2k and
dkR(G) = n.

Proof. If dkR(G) ≤ 2k − 1, then obviously γkR(G) + dkR(G) ≤ n+ 2k − 1. Let now
dkR(G) ≥ 2k. If γkR(G) ≥ 2k, Theorem 2.1 implies that dkR(G) ≤ n. According to
Theorem 2.1, we obtain

γkR(G) + dkR(G) ≤ 2kn
dkR(G)

+ dkR(G). (2.2)

Using the fact that the function g(x) = x+(2kn)/x is decreasing for 2k ≤ x ≤
√

2kn
and increasing for

√
2kn ≤ x ≤ n, this inequality leads to the desired bound

immediately.
Now let γkR(G) ≤ 2k − 1. Since min{n, γk(G) + k} ≤ γkR(G), we deduce

that γkR(G) = n. According to Theorem 2.1, we obtain dkR(G) ≤ 2k and hence
dkR(G) = 2k. Thus

γkR(G) + dkR(G) = n+ 2k.

If γkR(G) = n and dkR(G) = 2k or γkR(G) = 2k and dkR(G) = n, then obviously
γkR(G) + dkR(G) = n+ 2k.

Conversely, let equality hold in (2.1). It follows from (2.2) that

n+ 2k = γkR(G) + dkR(G) ≤ 2kn
dkR(G)

+ dkR(G) ≤ n+ 2k,

which implies that γkR(G) = 2kn
dk

R(G)
and dkR(G) = 2k or dkR(G) = n. This completes

the proof.

The special case k = 1 of the next result can be found in [8].

Theorem 2.9. For every graph G and positive integer k,

dkR(G) ≤ δ(G) + 2k.

Moreover, the upper bound is sharp.

Proof. If dkR(G) ≤ 2k, the result is immediate. Let now dkR(G) ≥ 2k + 1 and let
{f1, f2, . . . , fd} be an R(k, k)D family on G such that d = dkR(G). Assume that v is
a vertex of minimum degree δ(G). Let ` be the number of sums

∑
u∈N [v] fi(u) = 1

and let m be the number of those sums in which
∑
u∈N [v] fi(u) = 2. Obviously,

l + 2m ≤ 2k.
We may assume, without loss of generality, that the equality

∑
u∈N [v] fi(u) = 1

holds for i = 1, . . . , `, if any, and the equality
∑
u∈N [v] fi(u) = 2 holds for i =

` + 1, . . . , ` + m when m ≥ 1. In this case fi(v) = 1 and fi(u) = 0 for each
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u ∈ N(v) and i = 1, . . . , ` and fi(v) = 2 and fi(u) = 0 for each u ∈ N(v)
and i = ` + 1, . . . , ` + m. Thus fi(v) = 0 for ` + m + 1 ≤ i ≤ d, and thus∑
u∈N [v] fi(u) ≥ 2k for `+m+ 1 ≤ i ≤ d. Altogether we obtain

2k(d− (`+m)) + `+ 2m ≤
d∑
i=1

∑
u∈N [v]

fi(u)

=
∑

u∈N [v]

d∑
i=1

fi(u)

≤
∑

u∈N [v]

2k

= 2k(δ(G) + 1).

If m = 0, then the above inequality chain leads to

d ≤ δ(G) + 1 + `− `/(2k).

Since the function g(x) = x + x/(2k) is increasing for 0 ≤ x ≤ 2k, we deduce the
desired bound as follows

d ≤ δ(G) + 1 + `− `/(2k) ≤ δ(G) + 1 + 2k − (2k)/(2k) = δ(G) + 2k.

Now let m ≥ 1. Then we obtain

d ≤ δ(G) + (`+m) +
2k − `− 2m

2k
.

Since the last fraction in the sum is a rational number in [0, 1] and since m ≥ 1,
we deduce that

d ≤ δ(G)+(`+m)+
2k − `− 2m

2k
≤ δ(G)+(`+m)+1 ≤ δ(G)+`+2m ≤ δ(G)+2k

as desired.
To prove the sharpness of this inequality, let Gi be a copy of Kk3+(2k+1)k with

vertex set V (Gi) = {vi1, vi2, . . . , vik3+(2k+1)k} for 1 ≤ i ≤ k and let the graph G be
obtained from ∪ki=1Gi by adding a new vertex v and joining v to each vi1, . . . , vik.
Define the Roman k-dominating functions fsi , hl for 1 ≤ i ≤ k, 0 ≤ s ≤ k − 1 and
1 ≤ l ≤ 2k as follows:

fsi (vi1) = · · ·= fsi (vik) = 2, fsi (vj(i−1)k2+(s+1)k+1) = · · ·= fsi (vj(i−1)k2+(s+1)k+k) = 2

if j ∈ {1, 2, . . . , k} − {i} and fsi (x) = 0 otherwise

and for 1 ≤ l ≤ 2k,

hl(v) = 1, hl(vik3+lk+1) = . . . = hl(vik3+lk+k) = 2 (1 ≤ i ≤ k),
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and hl(x) = 0 otherwise.

It is easy to see that fsi and gl are Roman k-dominating function on G for each
1 ≤ i ≤ k, 0 ≤ s ≤ k − 1, 1 ≤ l ≤ 2k and {fsi , gl | 1 ≤ i ≤ k, 0 ≤ s ≤ k − 1 and 1 ≤
l ≤ 2k} is a Roman (k, k)-dominating family on G. Since δ(G) = k2, we have
dkR(G) = δ(G) + 2k.

For regular graphs the following improvement of Theorem 2.9 is valid.

Theorem 2.10. Let k be a positive integer. If G is a δ(G)-regular graph, then

dkR(G) ≤ max{2k − 1, δ(G) + k} ≤ δ(G) + 2k − 1.

Proof. If k > ∆(G) = δ(G) then by Observation 1.7, dkR(G) ≤ 2k − 1 and the
desired bound is proved. If k ≤ ∆(G), then it follows from Corollary 2.3 that

dkR(G) ≤ δ(G) + k,

and the proof is complete.

As an application of Theorems 2.9 and 2.10, we will prove the following Nord-
haus-Gaddum type result.

Theorem 2.11. Let k ≥ 1 be an integer. If G is a graph of order n, then

dkR(G) + dkR(G) ≤ n+ 4k − 2, (2.3)

with equality only for graphs with ∆(G)− δ(G) = 1.

Proof. It follows from Theorem 2.9 that

dkR(G) + dkR(G) ≤ (δ(G) + 2k) + (δ(G) + 2k) = (δ(G) + 2k) + (n−∆(G)− 1 + 2k).

If G is not regular, then ∆(G) − δ(G) ≥ 1, and hence this inequality implies the
desired bound dkR(G) + dkR(G) ≤ n+ 4k − 2. If G is δ(G)-regular, then we deduce
from Theorem 2.10 that

dkR(G) + dkR(G) ≤ (δ(G) + 2k − 1) + (δ(G) + 2k − 1) = n+ 4k − 3,

and the proof of the Nordhaus-Gaddum bound (2.3) is complete. Furthermore, the
proof shows that we have equality in (2.3) only when ∆(G)− δ(G) = 1.

Corollary 2.12 ([8]). For every graph G of order n,

dR(G) + dR(G) ≤ n+ 2,

with equality only for graphs with ∆(G) = δ(G) + 1.

For regular graphs we prove the following Nordhaus-Gaddum inequality.
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Theorem 2.13. Let k ≥ 1 be an integer. If G is a δ-regular graph of order n, then

dkR(G) + dkR(G) ≤ max{4k − 2, n+ 2k − 1, n+ 3k − 2− δ, 3k + δ − 1}. (2.4)

Proof. Let δ(G) = δ and δ(G) = δ. We distinguish four cases.
If k ≥ δ + 1 and k ≥ δ + 1, then it follows from Observation 1.7 that

dkR(G) + dkR(G) ≤ (2k − 1) + (2k − 1) = 4k − 2.

If k ≤ δ and k ≤ δ, then Corollary 2.3 implies that

dkR(G) + dkR(G) ≤ (δ + k) + (δ + k) = δ + 2k + n− 1− δ = n+ 2k − 1.

If k ≥ δ+ 1 and k ≤ δ, then we deduce from Observation 1.7 and Corollary 2.3
that

dkR(G) + dkR(G) ≤ (2k − 1) + (δ + k) = 3k − 1 + n− 1− δ = n+ 3k − 2− δ.

If k ≤ δ and k ≥ δ + 1, then Observation 1.7 and Corollary 2.3 lead to

dkR(G) + dkR(G) ≤ (δ + k) + (2k − 1) = 3k + δ − 1.

This completes the proof.

If G is a δ-regular graph of order n ≥ 2, then Theorem 2.13 leads to the following
improvement of Theorem 2.11 for k ≥ 2.

Corollary 2.14. Let k ≥ 2 be an integer. If G is a δ-regular graph of order n ≥ 2,
then

dkR(G) + dkR(G) ≤ n+ 4k − 4.
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