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Abstract

Nowadays there are many methods for processing of digital signals. A
classic example is Fourier analysis. Using this transformation we build a
decomposition of a signal by frequencies, so the result is easy for interpre-
tation. But this method works well only with stationary signals, when we
can find periodic components. Also using Fourier transform we lose informa-
tion about coordinates of events in the original signal, because the result of
transformation is in terms of frequencies.

Of course, there are alternative ways of signal processing. Wavelet anal-
ysis is one of them. Wavelet transform works in a very simple manner. It
divides the original signal into two parts – approximation and details. This
dichotomization can be repeated many times and we’ll have decomposition
with multilevel detailization. There are 2 ways for further work: to analyze
the result of transformation interpreting it as something or to execute some
operations with the result and then use inverse Wavelet transform.

This article is about the using of wavelet analysis in climatic challenges.
The work of the authors of this article was to analyze water vapor field of the
Earth searching for numerical patterns.

1. Basic information about Wavelet transform

Information about wavelets required for further discussion is placed in this section
of the article.
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1.1. 1D wavelet transform

1.1.1. 1D discrete wavelet transform

Definition 1.1. The function ϕ(x) ∈ L2(R) is scaling function if it can be repre-
sented as:

ϕ(x) =
√
2
∑

n∈Z
hnϕ(2x− n), (1.1)

where hn, n ∈ Z satisfy the condition
∑

n∈Z
|hn|2 <∞.

The equation (1.1) is scaling equation, the set of coefficients {hn}n∈Z is scaling
filter.

Widely known Haar function:

F (x) =

{
1, x ∈ [0, 1),

0, otherwise

is scaling function, but centered Haar function

F (x) =

{
1, x ∈ [− 1

2 ,
1
2 ),

0, otherwise

cannot be classified to scaling functions.

Definition 1.2. Orthogonal multiresolution decomposition (or multiresolution
analysis, or MRA) of L2(R)-space is a sequence of confined spaces:

. . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . ,

with following properties:

1.
⋃
j∈Z Vj = L2(R),

2.
⋂
j∈Z Vj = {0},

3. f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1,

4. ∃ϕ(x) ∈ V0 : {ϕ0,n(x) = ϕ(x− n)}n∈Z – an orthonormal basis of V0-space.

Using properties 3 and 4 of Definition 1.2 we can conclude that

{ϕj,n(x) =
√
2jϕ(2jx− n)}n∈Z

is an orthonormal basis of Vj-space.
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∀j we have Vj ⊂ Vj+1. Let Wj be an orthogonal complement of Vj to Vj+1, i.e.
Vj+1 = Vj ⊕Wj . Then Vj+1 = Vj−1 ⊕Wj−1 ⊕Wj , because Vj = Vj−1 ⊕Wj−1.
Repeating this procedure we’ll have

Vj+1 =

j⊕

k=−∞
Wk.

According to property 1 of Definition 1.2 we can conclude that L2(R)-space has
an orthogonal decomposition:

L2(R) =
+∞⊕

k=−∞
Wk.

Definition 1.3. If a sequence of subspaces . . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . is multires-
olution analysis and ∀j ∈ Z Wj is the orthogonal complement of Vj to Vj+1 then
each such Wj is wavelet space and its elements are wavelets.
∃ψ(x) ∈W0, called “mother wavelet”, with properties

1. {ψ(x− n)}n∈Z – an orthonormal basis of W0-space,

2. {ψj,n(x) =
√
2jψ(2jx−n)}n∈Z – an orthonormal basis of Wj-space for every

j.

Let (f(x), g(x)) be the scalar product in L2(R), i.e.

〈f(x), g(x)〉 =
+∞∫

−∞

f(x)g(x)dx. (1.2)

Let f(x) ∈ Vj+1 then we have the decomposition of f(x):

f(x) =

j∑

k=−∞

∑

n∈Z
〈f(x), ψk,n(x)〉ψk,n(x).

In practice the number of detailization levels is finite, so for f(x) we have the
following decomposition formula:

f(x) =

j∑

k=0

∑

n∈Z
〈f(x), ψk,n(x)〉ψk,n(x) +

∑

n∈Z
〈f(x), ϕ(x− n)〉ϕ(x− n),

i.e. the signal from Vj+1-space is represented in terms of elements of spaces
{V0,W0, . . . ,Wj}.

In case of discrete signal the formula (1.2) can be rewritten as the sum. If
x = {xn}n∈Z is the digitization of the signal x(t), t ∈ R, then wavelet coefficient
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aj,n can be represented in terms of discrete convolution with the filter h = {hn}n∈Z
corresponded to function ψj,n:

aj,n =
∞∑

k=−∞
hkxn−k.

Usually the process of signal analysis starts from its representation in terms
of a basis of Vj+1-space. Then we build a decomposition in bases of Vj č Wj

constructing approximation and details. We can repeat decomposition or stop the
process. So we have the following decomposition scheme:

Vj+1 −−−−→ Vj −−−−→ ... −−−−→ V1 −−−−→ V0y
y

y

Wj Wj−1 W0

We stopped at 0-index, so V0-based approximation component consists of the
most general trends of the original signal and W0-based detailization includes the
most spatially extended deviations from these trends.

As we noted in the abstract we can use decomposition coefficients as indepen-
dent data and create a conclusion based on it or perform operations on them and
then reconstruct the signal.

For the reconstruction process we have the following scheme:

Vj+1 ←−−−− Vj ←−−−− ... ←−−−− V1 ←−−−− V0x
x

x

Wj Wj−1 W0

1.1.2. 1D continuous wavelet transform

As we know, for 1D discrete wavelet transform the following formula is valid:

ψj,n(x) =
√
2jψ(2jx− n), where j, n ∈ Z.

Continuous wavelet transform is constructed by allowing arbitrary real values
of the parameters of scaling and shift (in discrete variant we should use powers
of 2 for the scale parameter and integers for shift parameter). This generalization
allows to select details of a signal with arbitrary size of their support.

Let ψ(x) be wavelet. ψ(x) ∈ L2(R) and also

Cψ = 2π

+∞∫

−∞

|ω|−1|ψ̂(ω)|2dω <∞. (1.3)
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(The relation (1.3) guarantees the existence of inverse continuous transform).
Let a be the scaling parameter and b is the shift parameter, then we have

2-parameter family of wavelets:

ψab(x) = |a|−1/2ψ
(
x− b
a

)
, where a, b ∈ R.

1D continuous wavelet transform is defined by the formula:

Wψ [f ] (a, b) = (f, ψa,b) = |a|−1/2
+∞∫

−∞

f(x)ψ

(
x− b
a

)
dx. (1.4)

It’s obvious that the coefficients of 1D discrete wavelet transform can be com-
puted as

cjk =Wψ[f ]

(
1

2j
,
k

2j

)
.

And as in discrete case we have inverse transform:

Theorem 1.4. If f(x) ∈ L2(R) and (1.3) is satisfied, then we have inverse 1D
continuous wavelet transform formula:

f(x) = C−1ψ

∫∫
Wψ[f ](a, b)ψab(x)

dadb

a2
.

1.2. 2D discrete wavelet transform

In this subsection we’ll consider the case of functions from L2(R2)-space.
The simplest way of generalization 1D wavelet transform to 2D wavelet trans-

form is based on tensor product. We have the following representation for L2(R2)-
space:

L2(R2) = L2(R)⊗ L2(R).

I.e. linear combinations of f(x)g(y) construct dense set in L2(R2).
We’ll define V 2

0 as tensor product of V0:

V 2
0 = V0 ⊗ V0.

According to this fact

{ϕ0,k,n(x, y) = ϕ(x− k)ϕ(y − n)}k,n∈Z

is an orthonormal basis of V 2
0 -space.

V 2
j = Vj ⊗ Vj are scaled versions of V 2

0 -space, for them we have the following
relation

f(x, y) ∈ V 2
0 ⇐⇒ f(2jx, 2jy) ∈ V 2

j .
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So, as in 1D-case, there is a sequence of spaces . . . ⊂ V 2
−1 ⊂ V 2

0 ⊂ V 2
1 ⊂ . . ..

Using equation V1 = V0 ⊕W0 for L2(R2) we conclude that

V 2
1 = V1 ⊗ V1 = (V0 ⊕W0)⊗ (V0 ⊕W0) =

= (V0 ⊗ V0)⊕ (V0 ⊗W0)⊕ (W0 ⊗ V0)⊕ (W0 ⊗W0) =

= V 2
0 ⊕ (V0 ⊗W0)⊕ (W0 ⊗ V0)⊕ (W0 ⊗W0).

V0 ⊗W0, W0 ⊗ V0, W0 ⊗W0 forms 2D-wavelet space W 2
0 . The following facts

exist:

space V0 ⊗ W0 is constructed by shifts of function ψH(x, y) = ϕ(x)ψ(y),
we’ll designate it as WH

0 – this is the space of horizontal details (ox-oriented
homogeneous areas can be selected);

space W0 ⊗ V0 is constructed by shifts of function ψV (x, y) = ψ(x)ϕ(y),
we’ll designate it as WV

0 – this is the space of vertical details (oy-oriented
homogeneous areas can be selected);

spaceW0⊗W0 is constructed by shifts of function ψD(x, y) = ψ(x)ψ(y), we’ll
designate it as WD

0 – this is the space of diagonal details(diagonal inhomo-
geneous areas can be selected).

So we have the following decomposition:

V 2
j+1 = V 2

j ⊕WH
j ⊕WV

j ⊕WD
j ∀j.

The following sets of functions are orthonormal bases of listed spaces:

{ϕj,k,n(x, y) = 2jϕ(2jx− k)ϕ(2jy − n)}k,n∈Z;
{ψHj,k,n(x, y) = 2jϕ(2jx− k)ψ(2jy − n)}k,n∈Z;
{ψVj,k,n(x, y) = 2jψ(2jx− k)ϕ(2jy − n)}k,n∈Z;
{ψDj,k,n(x, y) = 2jψ(2jx− k)ψ(2jy − n)}k,n∈Z.

I.e. there are 4 types of decomposition coefficients:

〈f(x, y), ϕj,k,n(x, y)〉 = 2j
∫

R2

f(x, y)ϕ(2jx− k)ϕ(2jy − n)dxdy;

〈f(x, y), ψHj,k,n(x, y)〉 = 2j
∫

R2

f(x, y)ϕ(2jx− k)ψ(2jy − n)dxdy;

〈f(x, y), ψVj,k,n(x, y)〉 = 2j
∫

R2

f(x, y)ψ(2jx− k)ϕ(2jy − n)dxdy;

〈f(x, y), ψDj,k,n(x, y)〉 = 2j
∫

R2

f(x, y)ψ(2jx− k)ψ(2jy − n)dxdy;
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Schemes of decomposition and reconstruction processes are

V 2
j+1 −−−−−−−→ V 2

j −−−−−−−→ ... −−−−−−−→ V 2
1 −−−−−−−→ V 2

0

y
y

y

WH
j ,WV

j ,WD
j WH

j−1,WV
j−1,WD

j−1 WH
0 ,WV

0 ,WD
0

V 2
j+1 ←−−−−−−− V 2

j ←−−−−−−− ... ←−−−−−−− V 2
1 ←−−−−−−− V 2

0

x
x

x

WH
j ,WV

j ,WD
j WH

j−1,WV
j−1,WD

j−1 WH
0 ,WV

0 ,WD
0

2. The task of analysis of water vapor field of the
Earth

2.1. Introduction
The Earth atmosphere is very complex and unpredictable. Energy of the atmo-
sphere is contained mostly in water vapor, because of its heat capacity. Study
of processes in water vapor field can help us to explain and predict atmospheric
phenomena, for example, cyclones and hurricanes’ formation – they are the most
interesting because of their consequences.

Many atmospheric phenomena have periodic nature, for example, it is easy to
understand that water vapor field has an annual cycle of movements. But the most
interesting phenomena for scientists are nonstationary. They should be localized
in space and time and their parameters should be found so appropriate methods
of research are required.

In our research of water vapor field we used wavelet analysis.

2.2. Essence of the task
For every day from 01.01.1999 to 31.12.2009 we had a digital map of the earth
with the size 360× 720 (grid is 0,5◦). A value of every pixel on map is an average
density (kg/m2) of water vapor in spheric segment of the Earth with appropriate
geographic coordinates and date (rounded to the nearest whole). So we had 3D-
array of data from satellite images.

There are some problems with this array. The algorithm of value construction
can be used only for water vapor field above the surface of the oceans, so by this
reason the land surface pixels are filled with zeros. Also there are spaces on maps
where in some days satellites didn’t make images, these pixels are marked with
“−20”-value.

It’s obvious that the most convenient way to display this information is graphic
– for every day we can draw a map of water vapor field as indexed image. The
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picture (1) demonstrates an example image (the matching of colors to values of
density is on the right side): we can see all the problems listed above.

Figure 1: Water vapor field. 01.01.1999

So the essence of the task was to search for numeric patterns in this density
array.

The preliminary analysis of data had given a very important fact. The variance
of values for the first 7 years differs from the variance of values for the last 4 years
(the algorithm of value construction had been changed by data provider), so we
decided to use data from 01.01.1999 to 31.12.2005.

2.3. Research ways
We decided to divide research into 2 parts:

1. The research of time series in every discretization point;

2. Meridional analysis.

The main idea was to examine the results of wavelet decomposition on numeric
patterns. All the algorithms were realized in Matlab using Wavelet Toolbox.

2.3.1. The research of time series

We had 3D-array where every 2D-layer is a density map. Fixing values of geo-
graphic coordinates we can extract time series for every point of discretization of
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the Earth’s surface, so it had been done for data appropriate to surface of the
oceans. An example of such time series is on the Figure 2.

Figure 2: An example of time series (ox - time, oy - density)

In Matlab’s Wavelet Toolbox we can analyze 1D arrays using both discrete and
continuous wavelet transforms. But the second variant gives much more infor-
mation about signal, because we can observe details of time series with arbitrary
length instead of only the powers of 2. We had tested many wavelet families and
for some of them found interesting patterns.

Results obtained with the use of wavelet Morlet (in terms of Matlab - “cmor1-
1.5”) we consider the most important. Wavelet Morlet is a complex function which
can be written as

ψ(t) = e2πit−
t2

2 .

Decomposition of every time series should be executed according to formula
(1.4). On Figure 3 the result of 1D continuous complex wavelet transform for
time series of point from Oceania is presented. This figure is built using Matlab’s
Wavelet Toolbox, so we can see specific Matlab notation for wavelet coefficients.
For example, Ca, b means wavelet coefficient of continuous wavelet decomposition
with scale parameter a and shift parameter b:

Wψ[f ](a, b) = Ca, b.

So we had such decomposition arrays for all available values of geographic co-
ordinates. We had computed main frequencies for every pair (time series, values
of scale parameter) using Fourier transform and for every value of scale parameter
of decomposition generated a “frequency map”. An example of such map is on the
Figure 4. The area of 45◦ sl. — 45◦ nl. is presented because cyclonic activity is
strong there.
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Figure 3: An example of continuous complex wavelet decomposi-
tion of time series which is presented on Figure 2

Figure 4: An example of “frequency map” (30-days activity)

Figure 4 demonstrates distribution of 30-days activity because the wavelet filter
works with interval of coefficients of this length.

The staff of Institute of Space Researches had worked with this algorithm
searching for physical interpretation of results represented on “frequency maps”.
They had found some new numeric patterns in the Earth’s water vapor field such
as subzones of variability of density of water vapor, known subzones had been
localized better. Also all season effects and high day to day activity had been
confirmed.
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2.3.2. Meridional analysis

This part of researches is based on idea of joint analysis of data for every merid-
ian. From original 3D array we extracted 2D array fixing the value of geographic
longitude. So we had indexed images such as presented on Figure 5.

Figure 5: An example of distribution of density of water vapor
during 1999-2005 for 21.5◦ el

According to strong variance of data from day to day we cannot use continuous
wavelets. We will not reconstruct signal after decomposition, so we don’t need
any specific properties of wavelet basis in this context. Also it’s comfortable when
wavelet function is symmetric because transform results are unbiased. So we were
using biorthogonal wavelets.

The physical interpretation of wavelet coefficients is rather simple. 2D discrete
wavelet transform on every step of decomposition doubles the size of details it con-
structs. In our case it doubles them both by time and space. According to nature of
selected basis we can conclude that the first level of decomposition consists of (day
to day, 0,5◦ of latitude) details (for example the 5th level has details represented
fluctuations during a month (approximately)). But we must take into account that
there are 3 sorts of details: horizontal, vertical and diagonal. Horizontal details
represent constant time nature of signal and difference by latitude. For vertical
details we have an opposite situation. Diagonal details include space-and-time
differences in signal.

There are many interesting facts we had found on decomposition images. In
this article we are presented only some of them.

The first conclusion is based on the results of analysis of the first level of decom-
positions.We can say that day to day variability is stronger then interlatitudinal.
Day to day activity is stronger in equatorial zone and mid-latitudes then in sub-
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tropics and circumpolar regions. Also it’s easy to see that activity movings has
seasonal component.

Another interesting fact we want to present in this article had been found on
the 5th level of decomposition (“monthly details”). There is a strong difference
between equatorial and subtropical monthly climatic activities. Similar result we
see in circumpolar regions but we cannot be so sure in wavelet coefficients computed
there because of edge effects.

2.4. Summary of current results
Distancing from facts listed above we can say that some relatively common results
have already been achieved:

New mathematical methods for data processing has been proposed;

Using this methods the new concept “frequency map” has been introduced in the
subject area;

Some numeric patterns for water vapor field have been discovered;

The hypothesis that “frequency maps” can help to predict atmospheric phenomena
has been proposed.

2.5. Further plans
We have got many ideas about further work on this task and using of wavelet anal-
ysis in other research areas. We are working on the hypothesis of the relationship
between water vapor field fluctuations and cyclonic activity. Many facts say that
“frequency maps” can help us to make necessary mathematical tools for prediction
of some atmospheric phenomena such as hurricanes. Some simple visual patterns
were detected during comparison of sets of images such as Figures 6 and 7.

Figure 6: Element of frequency map
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Figure 7: Trajectory of Catrina hurricane

So further researches are needed.
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