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1. Introduction

The well known Kolmogorov strong law of large numbers states the following. If
X1, X2, . . . are independent identically distributed (i.i.d.) random variables with
finite expectation and EX1 = 0, then the average (X1 + · · ·+Xn)/n converges to
0 almost surely (a.s.). However, if we consider a double sequence, then we need
another condition. Actually, if (Xij) is a double sequence of i.i.d. random variables
with EX11 = 0, then E |X11| log+ |X11| <∞ implies that

(∑m
i=1

∑n
j=1Xij

)
/(mn)

converges to 0 a.s., as n,m tend to infinity (see Smythe [6]).
For a double numerical sequence xij there are different notions of convergences.

One can consider a strong version of convergence when xij converges as one of
the indices i, j goes to infinity (this type of convergence was used in Fazekas [1]).
Another version when xij converges as both indices i, j tend to infinity. However,
in the second case convergence does not imply boundedness. To avoid unpleasant
situations one can assume that the sequence is bounded. In this paper we shall
study the so called bounded convergence of double sequences.

We shall prove two criteria for the bounded convergence of weighted averages
of double sequences. Both criteria are based on subsequences. The subsequence
is constructed by a well-known method: we proceed along a non-negative, in-
creasing, unbounded sequence and pick up a member which is about the double
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of the previous selected member of the sequence. (This method was applied e.g.
in Fazekas–Klesov [2]). However, this method is not convenient for an arbitrary
double sequence of weights. Therefore we apply weights of product type (it was
considered e.g. in Noszály–Tómács [5]).

Our theorems can be considered as generalizations of some results in Fekete–
Georgieva–Móricz [3], where harmonic averages of double sequences were consid-
ered. They obtained the following theorem.

1

lnm lnn

m∑

i=1

n∑

j=1

xij
ij

b−→ L, as m,n→∞ (1.1)

if and only if

1

2m+n
max

22m−1
<k≤22m

22n−1
<l≤22n

∣∣∣∣∣∣

k∑

i=22m−1+1

l∑

j=22n−1+1

xij − L
ij

∣∣∣∣∣∣
b−→ 0, as m,n→∞. (1.2)

Here b−→ means the bounded convergence. Our Theorem 2.4 is a generalization of
this result for general weights.

Our results can also be considered as extensions of certain theorems of Móricz
and Stadtmüller [4] where ordinary (that is not double) sequences were studied. In
our proofs we apply ideas of [4].

2. Main results

Let (xkl : k, l = 1, 2, . . . ) be a sequence of real numbers, and let (bk : k = 1, 2, . . . ),
(cl : l = 1, 2, . . . ) be sequences of weights, that is, sequences of non-negative num-
bers for which

Bm :=

m∑

k=1

bk →∞, as m→∞, (2.1)

Cn :=
n∑

l=1

cl →∞, as n→∞. (2.2)

Let akl := bkcl, Amn :=
∑m
k=1

∑n
l=1 akl and Smn :=

∑m
k=1

∑n
l=1 aklxkl. The

weighted averages Zmn of the sequence (xkl) with respect to the weights (akl) are
defined by

Zmn :=
1

Amn
Smn

for n,m large enough so that Amn > 0.
We define a sequence m0 = 0,m1 = 1 < m2 < m3 < . . . of integers with the

following property

Bmi+1−1 < 2Bmi
≤ Bmi+1

, i = 1, 2, . . . (2.3)
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Similarly, let n0 = 0, n1 = 1 < n2 < n3 < . . . be a sequence of integers such that

Cnj+1−1 < 2Cnj
≤ Cnj+1

, j = 1, 2, . . . (2.4)

In this paper we shall also use the following notation

∆mn
st A :=

m∑

k=s+1

n∑

l=t+1

akl, ∆mn
st S :=

m∑

k=s+1

n∑

l=t+1

aklxkl.

Actually ∆mn
st A is an increment on a rectangle (in other word two-dimensional

difference) of the sequence Amn. We note that

1

∆
mi+1nj+1
minj A

∆mi+1nj+1
minj

S

is called the moving average of the sequence (xkl) with respect to the weights (akl).

Definition 2.1. Let (ykl : k, l = 1, 2, . . . ) be a sequence of real numbers, and let y
be a real number. It is said that bounded convergence

ykl
b−→ y, as k, l→∞,

is satisfied if
(i) the sequence (ykl : k, l = 1, 2, . . . ) is bounded; and
(ii) for every ε > 0 there exist positive integers k0, l0, such that

|ykl − y| < ε for k ≥ k0, l ≥ l0. (2.5)

Remark 2.2. Relation (2.5) does not imply that (ykl) is bounded. For example
if y1l = l for l ≥ 1 and ykl = y for k ≥ 2, l ≥ 1, then (2.5) holds but (ykl) is
unbounded.

Theorem 2.3. Suppose that conditions (2.1) and (2.2) are satisfied. Then for
some constant L, we have

Zminj

b−→ L, as i, j →∞ (2.6)

if and only if

1

∆
mi+1nj+1
minj A

∆mi+1nj+1
minj

S
b−→ L, as i, j →∞, (2.7)

where the sequences (mi) and (nj) are defined in (2.3) and (2.4).

Theorem 2.4. Assume that Bm/bm ≥ 1 + δ and Cm/cm ≥ 1 + δ for m being large
enough where δ > 0. Assume that conditions (2.1), (2.2) are satisfied. Then for
some constant L, we have

Zmn
b−→ L, as m,n→∞ (2.8)
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if and only if

1

∆
mi+1nj+1
minj A

max
mi<m≤mi+1

nj<n≤nj+1

∣∣∣∣∣∣

m∑

k=mi+1

n∑

l=nj+1

akl(xkl − L)

∣∣∣∣∣∣
b−→ 0, as i, j →∞, (2.9)

where the sequences (mi) and (nj) are defined in (2.3) and (2.4).

The following two corollaries characterize the strong law of large numbers for
weighted averages of a sequence of random variables with two-dimensional indices.
These corollaries are consequences of Theorem 2.3 and 2.4.

Corollary 2.5. Let (Xkl : k, l = 1, 2, . . . ) be a sequence of random variables. If
conditions (2.1) and (2.2) are satisfied, then for some constant L, we have

1

Aminj

mi∑

k=1

nj∑

l=1

aklXkl
b−→ L, as i, j →∞ a.s.

if and only if

1

∆
mi+1nj+1
minj A

mi+1∑

k=mi+1

nj+1∑

l=nj+1

aklXkl
b−→ L, as i, j →∞ a.s.,

where the sequences (mi) and (nj) are defined in (2.3) and (2.4).

Corollary 2.6. Let (Xkl : k, l = 1, 2, . . . ) be a sequence of random variables.
Assume that Bm/bm ≥ 1 + δ and Cm/cm ≥ 1 + δ for m being large enough where
δ > 0. Assume that conditions (2.1) and (2.2) are satisfied. Then for some constant
L, we have

1

Amn

m∑

k=1

n∑

l=1

aklXkl
b−→ L, as m,n→∞ a.s.

if and only if

1

∆
mi+1nj+1
minj A

max
mi<m≤mi+1

nj<n≤nj+1

∣∣∣∣∣∣

m∑

k=mi+1

n∑

l=nj+1

akl(Xkl − L)

∣∣∣∣∣∣
b−→ 0, as i, j →∞ a.s.,

where the sequences (mi) and (nj) are defined in (2.3) and (2.4).

Remark 2.7. In the above two corollaries L can be an a.s. finite random variable,
as well.

Remark 2.8. The results of this section can be generalized for sequences with d-
dimensional indices.
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3. Proofs of Theorems 2.3 and 2.4

Proof of Theorem 2.3. Let ε be a fixed positive real number. First we prove the
necessity. Assume that (2.6) is satisfied, that is, there exist integers i0, j0 such that

∣∣Zminj
− L

∣∣ < ε for all i ≥ i0, j ≥ j0,

furthermore (Zminj ) is a bounded sequence. So, if i ≥ i0, j ≥ j0, then we have
∣∣∣∣

1

∆
mi+1nj+1
minj A

∆mi+1nj+1
minj

S − L
∣∣∣∣ =

1

∆
mi+1nj+1
minj A

∣∣∣∆mi+1nj+1
minj

S − L∆mi+1nj+1
minj

A
∣∣∣

=
1

∆
mi+1nj+1
minj A

∣∣(Smi+1nj+1
− LAmi+1nj+1

)− (Sminj+1
− LAminj+1

)

− (Smi+1nj
− LAmi+1nj

) + (Sminj
− LAminj

)
∣∣

≤ Ami+1nj+1

∆
mi+1nj+1
minj A

(
|Zmi+1nj+1−L|+ |Zminj+1−L|+ |Zmi+1nj−L|+ |Zminj−L|

)

< 4ε
Ami+1nj+1

∆
mi+1nj+1
minj A

= 4ε
Bmi+1

Bmi+1 −Bmi

Cnj+1

Cnj+1 − Cnj

≤ 16ε. (3.1)

Now, turn to the boundedness. Similarly as above
∣∣∣∣

1

∆
mi+1nj+1
minj A

∆mi+1nj+1
minj

S

∣∣∣∣ ≤
Bmi+1

Bmi+1 −Bmi

Cnj+1

Cnj+1 − Cnj

(
|Zmi+1nj+1 |+ |Zminj+1 |

+ |Zmi+1nj
|+ |Zminj

|
)
≤ const., (3.2)

because (Zminj ) is bounded. Inequalities (3.1) and (3.2) imply (2.7).
Now, we turn to sufficiency. Assume that (2.7) is satisfied, that is, there exist

integers i0, j0 such that
∣∣∣∣

1

∆
mi+1nj+1
minj A

∆mi+1nj+1
minj

S − L
∣∣∣∣ < ε for all i ≥ i0, j ≥ j0, (3.3)

furthermore
(

1

∆
mi+1nj+1
minj

A
∆
mi+1nj+1
minj S

)
is a bounded sequence. If i ≥ i0 and j ≥ j0,

then mi+1 > mi0 and nj+1 > nj0 , so

Zmi+1nj+1
− L

=
1

Ami+1nj+1

(Smi+1nj+1
− LAmi+1nj+1

) =
1

Ami+1nj+1

mi+1∑

k=1

nj+1∑

l=1

akl(xkl − L)

=
1

Ami+1nj+1



mi0∑

k=1

nj0∑

l=1

akl(xkl − L) +

mi+1∑

k=mi0
+1

nj+1∑

l=nj0
+1

akl(xkl − L)
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+

mi0∑

k=1

nj+1∑

l=nj0+1

akl(xkl − L) +

mi+1∑

k=mi0+1

nj0∑

l=1

akl(xkl − L)


 (3.4)

for all i ≥ i0, j ≥ j0.
Consider the first term in (3.4). Since 1

Ami+1nj+1
→ 0, as i→∞, j →∞, then

there exist integers i1 ≥ i0 and j1 ≥ j0, such that

1

Ami+1nj+1

∣∣∣∣∣

mi0∑

k=1

nj0∑

l=1

akl(xkl − L)

∣∣∣∣∣ < ε for all i ≥ i1, j ≥ j1. (3.5)

Now, turn to the secont term in (3.4). If i ≥ k, then

Bmk+1
−Bmk

Bmi+1

=
Bmk+1

−Bmk

Bmk+1

Bmk+1

Bmk+2

Bmk+2

Bmk+3

. · · · Bmi

Bmi+1

≤
(

1

2

)i−k
.

Similarly, if j ≥ l, then
Cnl+1

− Cnl

Cnj+1

≤
(

1

2

)j−l
.

Hence we get from (3.3)

1

Ami+1nj+1

∣∣∣∣∣∣

mi+1∑

k=mi0
+1

nj+1∑

l=nj0
+1

akl(xkl − L)

∣∣∣∣∣∣

=
1

Ami+1nj+1

∣∣∣∣∣∣

i∑

k=i0

j∑

l=j0

mk+1∑

s=mk+1

nl+1∑

t=nl+1

ast(xst − L)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

i∑

k=i0

j∑

l=j0

Bmk+1
−Bmk

Bmi+1

Cnl+1
− Cnl

Cnj+1

(
1

∆
mk+1nl+1
mknl A

∆mk+1nl+1
mknl

S − L
)∣∣∣∣∣∣

< ε
i∑

k=i0

(
1

2

)i−k j∑

l=j0

(
1

2

)j−l
< 4ε for all i ≥ i0, j ≥ j0. (3.6)

For the third term in (3.4) we have

1

Ami+1nj+1

∣∣∣∣∣∣

mi0∑

k=1

nj+1∑

l=nj0+1

akl(xkl − L)

∣∣∣∣∣∣

=
1

Ami+1nj+1

∣∣∣∣∣∣

i0−1∑

k=0

j∑

l=j0

mk+1∑

s=mk+1

nl+1∑

t=nl+1

ast(xst − L)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

i0−1∑

k=0

j∑

l=j0

Bmk+1
−Bmk

Bmi+1

Cnl+1
− Cnl

Cnj+1

(
1

∆
mk+1nl+1
mknl A

∆mk+1nl+1
mknl

S − L
)∣∣∣∣∣∣
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≤ 1

Bmi+1

i0−1∑

k=0

(Bmk+1
−Bmk

)

j∑

l=j0

(
1

2

)j−l
const.

≤ const.
1

Bmi+1

Bmi0

i0−1∑

k=0

Bmk+1
−Bmk

Bmi0

≤ const.
Bmi0

Bmi+1

i0−1∑

k=0

(
1

2

)i0−1−k

≤ const.
Bmi0

Bmi+1

→ 0, as i→∞.

Hence, there exists i2 ≥ i1 such that

1

Ami+1nj+1

∣∣∣∣∣∣

mi0∑

k=1

nj+1∑

l=nj0
+1

akl(xkl − L)

∣∣∣∣∣∣
< ε for all i ≥ i2, j ≥ j0. (3.7)

Similarly, for the fourth term in (3.4) we obtain that there exists j2 ≥ j1 such that

1

Ami+1nj+1

∣∣∣∣∣∣

mi+1∑

k=mi0
+1

nj0∑

l=1

akl(xkl − L)

∣∣∣∣∣∣
< ε for all i ≥ i0, j ≥ j2. (3.8)

By (3.4)–(3.8), we have

|Zmi+1nj+1
− L| < 7ε for all i ≥ i2, j ≥ j2. (3.9)

Finally, turn to the proof of boundedness.

|Zminj
| = 1

Aminj

∣∣∣∣∣
mi∑

k=1

nj∑

l=1

aklxkl

∣∣∣∣∣ =
1

Aminj

∣∣∣∣∣
i−1∑

k=0

j−1∑

l=0

∆mk+1nl+1
mknl

S

∣∣∣∣∣

=

∣∣∣∣∣
i−1∑

k=0

j−1∑

l=0

Bmk+1
−Bmk

Bmi

Cnl+1
− Cnl

Cnj

1

∆
mk+1nl+1
mknl A

∆mk+1nl+1
mknl

S

∣∣∣∣∣

≤ const.
i−1∑

k=0

Bmk+1
−Bmk

Bmi

j−1∑

l=0

Cnl+1
− Cnl

Cnj

≤ 4 · const.

This inequality and (3.9) imply (2.6). Thus the theorem is proved.

Proof of Theorem 2.4. Let ε be a fixed positive real number. First we prove the
necessity. Assume that (2.8) is satisfied, that is, there exist integers M0, N0 such
that

|Zmn − L| < ε for all m ≥M0, n ≥ N0, (3.10)

furthermore (Zmn) is a bounded sequence. Since we have

m∑

k=mi+1

n∑

l=nj+1

akl(xkl − L) = Amn(Zmn − L)−Amin(Zmin − L)
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−Amnj (Zmnj − L) +Aminj (Zminj − L),

if m > mi and n > nj , hence the ratio on the left-hand side in (2.9) is less than or
equal to

Ami+1nj+1

∆
mi+1nj+1
minj A


 max
mi<m≤mi+1

nj<n≤nj+1

|Zmn − L|+ max
nj<n≤nj+1

|Zmin − L|

+ max
mi<m≤mi+1

|Zmnj − L|+ |Zminj − L|


 . (3.11)

There exist integers i0, j0 such that if i ≥ i0 and j ≥ j0, than mi ≥ M0 and
nj ≥ N0. So (3.10) and (3.11) imply, that the ratio on the left-hand side in (2.9)
is less than

Ami+1nj+1

∆
mi+1nj+1
minj A

4ε ≤ 16ε for all i ≥ i0, j ≥ j0. (3.12)

On the other hand, since (Zmn) is a bounded sequence, so by (3.11), the ratio on
the left-hand side in (2.9) is less than or equal to

Ami+1nj+1

∆
mi+1nj+1
minj A

4 · const. ≤ 16 · const. for all i, j.

This fact and (3.12) imply (2.9).
Now we turn to sufficiency. Assume that (2.9) is satisfied. The ratio on the

left-hand side in (2.9) is greater than or equal to

1

∆
mi+1nj+1
minj A

∣∣∣∣∣∣

mi+1∑

k=mi+1

nj+1∑

l=nj+1

akl(xkl − L)

∣∣∣∣∣∣
=

∣∣∣∣
1

∆
mi+1nj+1
minj A

∆mi+1nj+1
minj

S − L
∣∣∣∣ ,

so (2.7) is satisfied. Now, applying Theorem 2.3, we get that (2.6) is true. In the
following parts of the proof, for fixed integers m,n let i, j be integers, such that

mi < m ≤ mi+1 and nj < n ≤ nj+1.

We have

Zmn − L =
1

Amn

m∑

k=1

n∑

l=1

akl(xkl − L)

=
1

Amn

mi∑

k=1

nj∑

l=1

akl(xkl − L) +
1

Amn

m∑

k=mi+1

n∑

l=nj+1

akl(xkl − L)

+
1

Amn

m∑

k=mi+1

nj∑

l=1

akl(xkl − L) +
1

Amn

mi∑

k=1

n∑

l=nj+1

akl(xkl − L). (3.13)
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Consider the absolute values of all terms of this sum. For the first term, from (2.6)
we get that

1

Amn

∣∣∣∣∣
mi∑

k=1

nj∑

l=1

akl(xkl − L)

∣∣∣∣∣

=
Aminj

Amn
|Zminj

− L| ≤ |Zminj
− L| b−→ 0, as m,n→∞. (3.14)

We shall use the following relations for the coefficients.

∆
mi+1nj+1
minj A

Amn
=

(Bmi+1 −Bmi)(Cnj+1 − Cnj )

BmCn
≤ Bmi+1

Bmi+1

Cnj+1

Cnj+1

=
Bmi+1−1

Bmi+1

(
1 +

bmi+1

Bmi+1−1

)
Cnj+1−1

Cnj+1

(
1 +

cnj+1

Cnj+1−1

)

≤ 4

(
1 +

bmi+1

Bmi+1−1

)(
1 +

cnj+1

Cnj+1−1

)
≤ const. (3.15)

To see the above relation, we mention that

Bm−1

bm
+ 1 =

Bm−1 + bm
bm

=
Bm
bm
≥ 1 + δ,

because of the assumptions of the theorem. Therefore (bm/Bm−1) is a bounded
sequence. Similarly (cn/Cn−1) is a bounded sequence, too.

Consider the second term in (3.13). From (3.15) and (2.9) we get that

1

Amn

∣∣∣∣∣∣

m∑

k=mi+1

n∑

l=nj+1

akl(xkl − L)

∣∣∣∣∣∣

≤ ∆
mi+1nj+1
minj A

Amn

1

∆
mi+1nj+1
minj A

max
mi<t≤mi+1

nj<s≤nj+1

∣∣∣∣∣∣

t∑

k=mi+1

s∑

l=nj+1

akl(xkl − L)

∣∣∣∣∣∣
b−→ 0,

as m,n→∞. (3.16)

Now turn to the third and fourth terms on the left hand side of (3.13). With
notation

Φit :=
1

∆
mi+1nt
mint−1A

max
mi<s≤mi+1

∣∣∣∣∣∣

s∑

k=mi+1

nt∑

l=nt−1+1

akl(xkl − L)

∣∣∣∣∣∣

we get that

1

Amn

∣∣∣∣∣
m∑

k=mi+1

nj∑

l=1

akl(xkl − L)

∣∣∣∣∣ ≤
1

Amn

j∑

t=1

∣∣∣∣∣∣

m∑

k=mi+1

nt∑

l=nt−1+1

akl(xkl − L)

∣∣∣∣∣∣
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≤ 1

Amn

j∑

t=1

∆mi+1nt
mint−1

AΦit ≤
Bmi+1 −Bmi

Bmi+1

j∑

t=1

Cnt − Cnt−1

Cnj+1
Φit. (3.17)

But

Bmi+1
−Bmi

Bmi+1
<
bmi+1

+Bmi

Bmi+1
< 1 +

Bmi+1−1

Bmi

bmi+1

Bmi+1−1
< 1 + 2

bmi+1

Bmi+1−1
,

which is bounded as we have already seen. Furthermore, for t = 1, 2, . . . , j,

Cnt
− Cnt−1

Cnj+1
=
Cnt
− Cnt−1

Cnt

Cnt

Cnt+1

Cnt+1

Cnt+2

· · · Cnj−1

Cnj

Cnj

Cnj+1
≤
(

1

2

)j−t+1

.

Hence (3.17) implies that

1

Amn

∣∣∣∣∣
m∑

k=mi+1

nj∑

l=1

akl(xkl − L)

∣∣∣∣∣ ≤ const.
j∑

t=1

(
1

2

)j−t
Φit. (3.18)

By (2.9), Φit
b−→ 0. This and (3.18) imply that the expression on the left-hand

side in (3.18) is bounded. Moreover, there exist i0, j0 such that Φit < ε and at the
same time (1/2)t < ε for all i ≥ i0, t ≥ j0. From these facts and applying that the
sequence Φit is bounded, we get

j∑

t=1

(
1

2

)j−t
Φit =

j0∑

t=1

(
1

2

)j−t
Φit +

j∑

t=j0+1

(
1

2

)j−t
Φit

< const.
(

1

2

)j/2 j0∑

t=1

(
1

2

)j/2−t
+ 2ε < const.ε for all i ≥ i0, j ≥ 2j0.

So it follows from (3.18) that

1

Amn

∣∣∣∣∣
m∑

k=mi+1

nj∑

l=1

akl(xkl − L)

∣∣∣∣∣
b−→ 0, as m,n→∞. (3.19)

By similar arguments, for the fourth term in (3.13), we have

1

Amn

∣∣∣∣∣∣

mi∑

k=1

n∑

l=nj+1

akl(xkl − L)

∣∣∣∣∣∣
b−→ 0, as m,n→∞. (3.20)

Finally (3.13), (3.14), (3.16), (3.19) and (3.20) imply (2.8). Thus the theorem is
proved.
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