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Abstract

In the present paper we prove a general theorem which gives the rates of
convergence in distribution of asymptotically normal statistics based on sam-
ples of random size. The proof of the theorem uses the rates of convergences
in distribution for the random size and for the statistics based on samples of
nonrandom size.
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1. Introduction

Asymptotic properties of distributions of sums of random number of random vari-
ables are subject of many papers (see e.g. Gnedenko&Fahim, 1969; Gnedenko,
1989; Kruglov&Korolev, 1990; Gnedenko&Korolev, 1996; Bening&Korolev, 2002;
vonChossy&Rappl, 1983). This kind of sums are widely used in insurance, eco-
nomics, biology, etc. (see Gnedenko, 1989; Gnedenko, 1998; Bening&Korolev,
2002). However, in mathematical statistics and its applications, there are common
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statistics that are not sums of observations. Examples are the rank statistics, U-
statistics, linear combinations of order statistics, etc. In this case the statistics are
often situations when the sample size is not predetermined and can be regarded
as random. For example, in reliability testing the number of failed devices at a
particular time is a random variable.

Generally, in most cases related to the analysis and processing of experimental
data, we can assume that the number of random factors, influencing the observed
values, is itself random and varies from observation to observation. Therefore,
instead of different variants of the central limit theorem, proving the normality of
the limiting distribution of classical statistics, in such situations we should rely on
their analogues for samples of random size. This makes it natural to study the
asymptotic behavior of distributions of statistics of general form, based on samples
of random size. For example, Gnedenko (1989) examines the asymptotic properties
of the distributions of sample quantiles constructed from samples of random size.

In this paper we estimate the rate of convergence of distribution functions of
asymptotically normal statistics based on samples of random size. The estima-
tions depend on the rates of convergences of distributions of the random size of
sample and the statistic based on sample of nonrandom size. Such statements are
usually called transfer theorems. In the present paper we prove transfer theorems
concerning estimates of convergence rate.

In this paper we use the following notation and symbols: R as real numbers,
N as positive integers, Φ(x), ϕ(x) as standard normal distribution function and
density.

In Section 2 we give a sketch of the proof of a general transfer theorem, Sections
3, 4 and 5 contain the main theorems, their proofs and examples.

Consider random variables N1, N2, . . . and X1, X2, . . . defined on a common
measurable space (Ω,A,P). The random variables X1, X2, . . . Xn denote observa-
tions, n is a nonrandom size of sample, the random variable Nn denotes a random
size of sample and depends on a natural parameter n ∈ N. Suppose that the
random variables Nn take on positive integers for any n ≥ 1, that is Nn ∈ N,
and do not depend on X1, X2, . . .. Suppose that X1, X2, . . . are independent and
identically distributed observations having a distribution function F (x).

Let Tn = Tn(X1, . . . , Xn) be some statistic, that is a real measurable function
on observations X1, . . . , Xn. The statistic Tn is called asymptotically normal with
parameters (µ, 1/σ2), µ ∈ R, σ > 0, if

P(σ
√
n(Tn − µ) < x) −→ Φ(x), n→∞, x ∈ R, (1.1)

where Φ(x) is the standard normal distribution function.
The asymptotically normal statistics are abundant. Recall some examples of

asymptotically normal statistics: the sample mean (assuming nonzero variances),
the maximum likelihood estimators (under weak regularity conditions), the central
order statistics and many others.

For any n ≥ 1 define the random variable TNn by

TNn
(ω) ≡ TNn(ω)(X1(ω), . . . , XNn(ω)(ω)), ω ∈ Ω. (1.2)
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Therefore, TNn is a statistic constructed from the statistic Tn and from the sample
of random size Nn.

In Gnedenko&Fahim (1969) and Gnedenko (1989), the first and second transfer
theorems are proved for the case of sums of independent random variables and
sample quantiles.

Theorem 1.1 (Gnedenko, 1989). Let X1, X2, . . . be independent and identically
distributed random variables and Nn ∈ N denotes a sequence of random variables
which are independent of X1, X2, . . .. If there exist real numbers bn > 0, an ∈ R
such that

1. P
( 1

bn

n∑

i=1

(Xi − an) < x
)
−→ Ψ(x), n→∞

and

2. P
(Nn
n

< x
)
−→ H(x), H(0+) = 0, n→∞,

where Ψ(x) and H(x) are distribution functions, then, as n→∞,

P
( 1

bn

Nn∑

i=1

(Xi − an) < x
)
−→ G(x), n→∞,

where the distribution function G(x) is defined by its characteristic function

g(t) =

∞∫

0

(ψ(t))z dH(z)

and ψ(t) is the characteristic function of Ψ(x).

The proof of the theorem can be read in Gnedenko (1998).

Theorem 1.2 (Gnedenko, 1989). Let X1, X2, . . . be independent and identically
distributed random variables and Nn ∈ N is a sequence of random variables which
are independent of X1, X2, . . ., and let Xγ:n be the sample quantile of order γ ∈
(0, 1) constructed from sample X1, . . . , Xn. If there exist real numbers bn > 0,
an ∈ R such that

1. P
( 1

bn
(Xγ:n − an) < x

)
−→ Φ(x), n→∞

and

2. P
(Nn
n

< x
)
−→ H(x), H(0+) = 0, n→∞,
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where H(x) is a distribution function, then, as n→∞,

P
( 1

bn
(Xγ:Nn

− an) < x
)
−→ G(x), n→∞

where the distribution function G(x) is a mixture of normal distribution with the
mixing distribution H

G(x) =

∞∫

0

Φ(x
√
y) dH(y).

In Bening&Korolev (2005), the following general transfer theorem is proved for
asymptotically normal statistics (1.1).

Theorem 1.3. Let {dn} be an increasing and unbounded sequence of positive in-
tegers. Suppose that Nn →∞ in probability as n→∞. Let Tn(X1, . . . , Xn) be an
asymptotically normal statistics, that is

P(σ
√
n(Tn − µ) < x) −→ Φ(x), n→∞.

Then a necessary and sufficient condition for a distribution function G(x) to satisfy

P(σ
√
dn(TNn

− µ) < x) −→ G(x), n→∞,

is that there exists a distribution function H(x) with H(0+) = 0 satisfying

P(Nn < dnx) −→ H(x), n→∞, x > 0,

and G(x) has a form

G(x) =

∞∫

0

Φ(x
√
y) dH(y), x ∈ R,

that is the distribution G(x) is a mixture of the normal law with the mixing distri-
bution H.

Now, we give a brief sketch of proof of Theorem 1.3 to make references later.

2. Sketch of proof of Theorem 1.3

The proof of Theorem 1.3 is closely related to the proof of Theorems 6.6.1 and
6.7.3 for random sums in Kruglov&Korolev (1990).

By the formula of total probability, we have

P
(
σ
√
dn(TNn

− µ) < x
)
−G(x)
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=
∞∑

k=1

P(Nn = k)P
(
σ
√
k(Tk − µ) <

√
k/dnx

)
−G(x)

=

∞∑

k=1

P(Nn = k)
(

Φ
(√

k/dnx
)
−G(x)

)

+
∞∑

k=1

P(Nn = k)
(
P
(
σ
√
k(Tk − µ) <

√
k/dnx

)
− Φ

(√
k/dnx

))

≡ J1n + J2n. (2.1)

From definition of G(x) the expression for J1n can be written in the form

J1n =

∞∫

0

Φ(x
√
y) dP(Nn < dny)−

∞∫

0

Φ(x
√
y) dH(y)

=

∞∫

0

Φ(x
√
y) d

(
P(Nn < dny)−H(y)

)
.

Using the formula of integration by parts for Lebesgue integral (see e.g. Theorem
2.6.11 in Shiryaev, 1995) yields

J1n = −
∞∫

0

(
P(Nn < dny)−H(y)

)
dΦ(x

√
y). (2.2)

By the condition of the present theorem,

P(Nn < dny)−H(y) −→ 0, n→∞
for any fixed y ∈ R, therefore, by the dominated convergence theorem (see e.g.
Theorem 2.6.3 in Shiryaev, 1995), we have

J1n −→ 0, n→∞.
Consider J2n. For simplicity, instead of the condition for the statistic Tn to be
asymptotically normal (see (1.1)), we suggest a stronger condition which describes
the rate of convergence of distributions of Tn to the normal law. Suppose that the
following condition is satisfied.

Condition 1. There exist real numbers α > 0 and C1 > 0 such that

sup
x

∣∣∣P
(
σ
√
n(Tn − µ) < x

)
− Φ(x)

∣∣∣ ≤ C1

nα
, n ∈ N.

From the condition we obtain estimates for J2n. We have

|J2n| =
∣∣∣
∞∑

k=1

P(Nn = k)
(
P
(
σ
√
k(Tk − µ) <

√
k/dnx

)
− Φ

(√
k/dnx

))∣∣∣
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≤ C1

∞∑

k=1

P(Nn = k)
1

kα
= C1E(Nn)−α =

C1

dαn
E(Nn/dn)−α. (2.3)

Since, by the condition of theorem, the random variables Nn/dn have a weak limit,
then the expectation E(Nn/dn)−α is typically bounded. Because dn → ∞, from
the last inequality it follows that

J2n −→ 0, n→∞.

3. The main results

Suppose that the limiting behavior of distribution functions of the normalized ran-
dom size is described by the following condition.

Condition 2. There exist real numbers β > 0, C2 > 0 and a distribution H(x)
with H(0+) = 0 such that

sup
x≥0

∣∣∣P
(Nn
n

< x
)
−H(x)

∣∣∣ ≤ C2

nβ
, n ∈ N.

Theorem 3.1. If for the statistic Tn(X1, . . . , Xn) condition 1 is satisfied, for the
random sample size Nn condition 2 is satisfied, then the following inequality holds

sup
x

∣∣∣P
(
σ
√
n(TNn

− µ) < x
)
−G(x)

∣∣∣ ≤ C1EN
−α
n +

C2

2nβ
,

where the distribution G(x) has the form

G(x) =

∞∫

0

Φ(x
√
y) dH(y), x ∈ R.

Corollary 3.2. The statement of the theorem remains valid if the normal law is
replaced by any limiting distribution.

Corollary 3.3. If the moments E(Nn/n)−α are bounded uniformly in n, that is

E
(Nn
n

)−α
≤ C3, C3 > 0, n ∈ N,

then the right side of the inequality in the statement of the theorem has the form

C1C3

nα
+

C2

2nβ
= O

(
n−min(α,β)

)
.
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Corollary 3.4. By Hölder’s inequality for 0 < α ≤ 1, the following estimate holds

EN−αn ≤
(
E

1

Nn

)α
,

which is useful from practical viewpoint. In this case, the right side of the inequality
has the form

C1

(
E

1

Nn

)α
+

C2

2nβ
.

Corollary 3.5. Note that, condition 2 means that the random variables Nn/n
converge weakly to V which has the distribution H(x). From the definition of weak
convergence with function x−α, x ≥ 1, for Nn ≥ n, n ∈ N, it follows that

E
(Nn
n

)−α
−→ E

1

V α
, n→∞,

that is the moments E(Nn/n)−α are bounded in n and, therefore, the estimate from
Corollary 3.3 holds.

The case Nn ≥ n appears when the random variable Nn takes on values
n, 2n, . . . , kn with equal probabilities 1/k for any fixed k ∈ N. In this case, the
random variables Nn/n do not depend on n and, therefore, converge weakly to V
which takes values 1, 2, . . . , k with equal probability 1/k.

Corollary 3.6. From the proof of the theorem it follows that skipping of conditions
1 and 2 yields the following statement

sup
x

∣∣∣P
(
σ
√
n(TNn

− µ) < x
)
−G(x)

∣∣∣

≤
∞∑

k=1

P
(
Nn = k

)
sup
x

∣∣∣P
(
σ
√
k(Tk − µ) < x

)
− Φ(x)

∣∣∣

+
1

2
sup
x≥0

∣∣∣P
(Nn
n

< x
)
−H(x)

∣∣∣.

Following the proof of Theorem 3.1 (see Section 2 and 4), we can formulate
more general result.

Theorem 3.7. Let a random element Xn in some measurable space and random
variable Nn be defined on a common measurable space and independent for any
n ∈ N. Suppose that a real-valued statistic Tn = Tn(Xn) and the random variable
Nn satisfy the following conditions.

1. There exist real numbers α > 0, σ > 0, µ ∈ R, C1 > 0 and a sequence
0 < dn ↑ +∞, n→∞, such that

sup
x

∣∣∣P
(
σ
√
dn(Tn − µ) < x

)
− Φ(x)

∣∣∣ ≤ C1

nα
, n ∈ N.
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2. There exist a number C2 > 0, a sequence 0 < δn ↓ 0, n → ∞ and a
distribution function H(x) with H(0+) = 0 such that

sup
x≥0

∣∣∣P
(Nn
dn

< x
)
−H(x)

∣∣∣ ≤ C2δn, n ∈ N.

Then the following inequality holds

sup
x

∣∣∣P
(
σ
√
dn(TNn − µ) < x

)
−G(x)

∣∣∣ ≤ C1EN
−α
n +

C2

2
δn,

where the distribution function G(x) has the form

G(x) =

∞∫

0

Φ(x
√
y) dH(y), x ∈ R.

4. Proof of Theorem 3.1

Suppose x ≥ 0. Using formulas (2.1)–(2.3) with dn = n yields

sup
x≥0

∣∣∣P
(
σ
√
n(TNn − µ) < x

)
−G(x)

∣∣∣ ≤ I1n + I2n, (4.1)

where

I1n = sup
x≥0

∞∫

0

∣∣P(Nn < ny)−H(y)
∣∣ dΦ(x

√
y), (4.2)

I2n =

∞∑

k=1

P(Nn = k) sup
x≥0

∣∣∣P
(
σ
√
k(Tk − µ) <

√
k/nx

)
− Φ

(√
k/nx

)∣∣∣. (4.3)

To estimate the variable I1n we use equality (4.2) and condition 2,

I1n ≤
C2

nβ
sup
x≥0

∞∫

0

dΦ(x
√
y) =

C2

2nβ
. (4.4)

The series in I2n (see (4.3)) is estimated by using condition 1.

I2n ≤ C1

∞∑

k=1

1

kα
P(Nn = k) = C1EN

−α
n . (4.5)

Note that the estimate (4.5) is valid for x < 0. For I1n and negative x, we have
(see (2.1) and (2.2))

I1n = sup
x<0

∣∣∣
∞∫

0

(
P(Nn < ny)−H(y)

)
dΦ(x

√
y)
∣∣∣

24 V. E. Bening, N. K. Galieva, R. A. Korolev



= sup
x<0

∣∣∣
∞∫

0

(
P(Nn < ny)−H(y)

)
dΦ(|x|√y)

∣∣∣

≤ sup
x≥0

∞∫

0

∣∣P(Nn < ny)−H(y)
∣∣dΦ(x

√
y),

and we can use (4.4) again. The statement of the theorem follows from (4.1), (4.4)
and (4.5). The theorem is proved.

5. Examples

We consider two examples of use of Theorem 3.1 when the limiting distribution
function G(x) is known.

5.1. Student’s distribution
Bening&Korolev (2005) shows that if the random sample size Nn has the negative
binomial distribution with parameters p = 1/n and r > 0, that is (in particular,
for r = 1, it is the geometric distribution)

P(Nn = k) =
(k + r − 2) · · · r

(k − 1)!

1

nr

(
1− 1

n

)k−1
, k ∈ N,

then, for an asymptotically normal statistic Tn the following limiting relationship
holds (see Corollary 2.1 in Bening&Korolev, 2005)

P(σ
√
n(TNn

− µ) < x) −→ G2r(x
√
r), n→∞, (5.1)

where G2r(x) is Student’s distribution with parameter γ = 2r, having density

pγ(x) =
Γ((γ + 1)/2)√
πγΓ(γ/2)

(
1 +

x2

γ

)−(γ+1)/2

, x ∈ R,

where Γ(·) is the gamma function, and γ > 0 is a shape parameter (if the parameter
γ is a positive integer, then it is called the number of degrees of freedom). In our
situation the parameter may be arbitrary small, and we have typical heavy-tailed
distribution. If γ = 2, that is r = 1, then the distribution function G2(x) can be
found explicitly

G2(x) =
1

2

(
1 +

x√
2 + x2

)
, x ∈ R.

For r = 1/2, we obtain the Cauchy distribution.
Bening et al. (2004) gives an estimate of rate of convergence for random sample

size, for 0 < r < 1,

sup
x≥0

∣∣∣P
( Nn
ENn

< x
)
−Hr(x)

∣∣∣ ≤ Cr
nr/(r+1)

, Cr > 0, n ∈ N, (5.2)
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where

Hr(x) =
rr

Γ(r)

x∫

0

e−ryyr−1 dy, x ≥ 0,

for r = 1, the right side of the inequality can be replaced by 1/(n− 1). So, Hr(x)
is a distribution with parameter r ∈ (0, 1], and

ENn = r(n− 1) + 1. (5.3)

From

(1 + x)γ =
∞∑

k=0

γ(γ − 1) · · · (γ − k + 1)

k!
xk, |x| < 1, γ ∈ R,

we have

EN−1n =
1

(n− 1)(1− r)
( 1

nr−1
− 1
)

= O(n−r), 0 < r < 1, n ∈ N. (5.4)

If the Berry-Esseen estimate is valid for the rate of convergence of distribution of
Tn, that is

sup
x

∣∣∣P
(
σ
√
n(Tn − µ) < x

)
− Φ(x)

∣∣∣ = O
( 1√

n

)
, n ∈ N, (5.5)

then from Theorem 3.1 with α = 1/2, β = r/(r+ 1), from relations (5.1)–(5.4) and
Corollary 3.4, we have the following estimate

sup
x

∣∣∣P
(
σ
√
n(TNn

− µ) < x
)
−G2r(x

√
r)
∣∣∣

= O
( 1

nr/2

)
+O

( 1

nr/(r+1)

)
= O

( 1

nr/2

)
, r ∈ (0, 1), n ∈ N. (5.6)

5.2. Laplace distribution
Consider Laplace distribution with distribution function Λγ(x) and density

λγ(x) =
1

γ
√

2
exp
{
−
√

2|x|
γ

}
, γ > 0, x ∈ R.

Bening&Korolev (2008) gives a sequence of random variables Nn(m) which depends
on the parameter m ∈ N. Let Y1, Y2, . . . be independent and identically distributed
random variables with some continuous distribution function. Let m be a positive
integer and

N(m) = min{i ≥ 1 : max
1≤j≤m

Yj < max
m+1≤k≤m+i

Yk}.

It is well-known that such random variables have the discrete Pareto distribution

P(N(m) ≥ k) =
m

m+ k − 1
, k ≥ 1. (5.7)
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Now, let N (1)(m), N (2)(m), . . . be independent random variables with the same
distribution (5.7). Define the random variable

Nn(m) = max
1≤j≤n

N (j)(m),

then Bening&Korolev (2008) shows that

lim
n→∞

P
(Nn(m)

n
< x

)
= e−m/x, x > 0, (5.8)

and, for an asymptotically normal statistic Tn, the following relationship holds

P(σ
√
n(TNn(m) − µ) < x) −→ Λ1/m(x), n→∞,

where Λ1/m(x) is the Laplace distribution function with parameter γ = 1/m.
Lyamin (2010) gives the estimate for the rate of convergence for (5.8),

sup
x≥0

∣∣∣P
(Nn(m)

n
< x

)
− e−m/x

∣∣∣ ≤ Cm
n
, Cm > 0, n ∈ N. (5.9)

If the Berry-Esseen estimate is valid for the rate of convergence of distribution for
the statistic (see (5.5)), then from Corollary 3.4 for α = 1/2, β = 1 and from
inequality (5.9), we have

sup
x

∣∣∣P
(
σ
√
n(TNn(m)−µ) < x

)
−Λ1/m(x)

∣∣∣ = O
(

(EN−1n (m))1/2
)

+O
(
n−1

)
. (5.10)

Consider the variable EN−1n (m). From definition of Nn(m) and inequality (5.7),
we have

P(Nn(m) = k) =
( k

m+ k

)n
−
( k − 1

m+ k − 1

)n
= mn

k∫

k−1

xn−1

(m+ x)n+1
dx,

therefore,

EN−1n (m) =
∞∑

k=1

1

k
P(Nn(m) = k) = mn

∞∑

k=1

1

k

k∫

k−1

xn−1

(m+ x)n+1
dx

≤ mn
∞∑

k=1

k∫

k−1

xn−2

(m+ x)n+1
dxmn

∞∫

0

xn−2

(m+ x)n+1
dx.

To calculate the last integral we use the following formula (see formula 856.12 in
Dwight, 1961)

∞∫

0

xm−1

(a+ bx)m+n
dx =

Γ(m)Γ(n)

anbmΓ(m+ n)
a, b,m, n > 0.
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We have
EN−1n (m) ≤ mnΓ(n− 1)Γ(2)

m2Γ(n+ 1)
=

1

m(n− 1)
= O(n−1).

Now, by this formula and (5.10), we obtain

sup
x

∣∣∣P
(
σ
√
n(TNn(m) − µ) < x

)
− Λ1/m(x)

∣∣∣ = O
( 1√

n

)
.
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