
Annales Mathematicae et Informaticae
37 (2010) pp. 225–240
http://ami.ektf.hu

The software developers’ view on product

metrics — A survey-based experiment∗

István Siket, Tibor Gyimóthy

Department of Software Engineering
University of Szeged, Hungary

Submitted 12 November 2009; Accepted 14 February 2010

Abstract

Object-oriented metrics are becoming evermore popular and they are used
in many different areas of software development. Many researchers have
showed in practice that object-oriented metrics can be efficiently used for
quality assurance. For example, a lot of experimental results confirm that
some of the object-oriented metrics (like coupling, size, and complexity) are
able to predict the fault-proneness of classes. Quality assurance experts usu-
ally accept that actively applying metrics can help their work. On the other
hand, developers tend not to use metrics because they do not know about
them, or if they do know about them, they do not really know how to use
them. Hence we devised a Survey to ask developers with different levels of ex-
perience about the use of metrics. Our hypothesis was that developers with
different levels of experience might have significantly different views about
the usefulness of metrics.

In the Survey four metrics (size, complexity, coupling, and code duplica-
tion) were examined. The Survey asked questions about the participants’ ex-
perience and skills, then it asked questions about how the participants would
probably use these metrics for software testing or program comprehension,
and at the end the relative importance of the metrics was assessed.

The main result of the Survey is a list which contains those cases where
the views about the metrics from developers having different experience sig-
nificantly differ. We think that getting to know the developers’ views better
can help us to create better quality models based on object-oriented metrics.

Keywords: Survey, object-oriented metrics, program comprehension, software
testing.

∗This study was supported in part by the Hungarian national grants OTKA K-73688 and
TECH_08-A2/2-2008-0089-SZOMIN08.

225

226 I. Siket, T. Gyimóthy

1. Introduction

Quite a lot of object-oriented metrics have been defined and published (for example,
Brito e Abreu’s MOOD metrics [5]) since Chidamber and Kemerer published the
first notable article in this area, which discussed 6 object-oriented design metrics [4].
Besides their “simple presentation”, they investigated how metrics could be applied
for quality assurance. Other surveys looked at the relationship between the object-
oriented metrics and the number of bugs found and corrected in software products.
For example, Basili et al. [1] examined the relationship between Chidamber and
Kemerer metrics and the fault density on a small/medium-sized software system.
We repeated Basili’s experiment on Mozilla [8], while Olague et al. [9] carried out
a similar experiment on six different versions of Rhino, but they examined more
metrics. The common conclusion of these studies was that metrics could be used
to predict bugs, hence they can be used to measure the quality aspect of a piece of
software.

In general we can say that experts very familiar with metrics accept that met-
rics can be used efficiently in different areas of software development. On the other
hand, developers hardly use metrics in their everyday work because they do not
know the metrics well enough, or they know about the metrics but they do not
know how they can apply them. Therefore we devised a Survey to get to learn
about the developers’ knowledge and views of object-oriented metrics and also to
see how experience influences the assessment of their practical worth. We asked 50
software engineers working at our department on industrial and R&D projects to
take part in our experiment and to fill out an online Survey. The participants’ ex-
perience was wide ranging because there were both very experienced programmers
and students with very little experience among them. Our hypothesis was that
there was a significant difference between the views of senior programmers experi-
enced in different areas of software development and junior developers about the
usefulness of metrics. This experiment validated these suspicions in many cases.
For example, the senior and junior programmers often judged generated classes
with bad metric values quite differently, regardless of the metric they were asked
about. On the other hand, we did not find any significant difference in certain situ-
ations. One example might be that the senior and junior participants’ opinions did
not differ significantly from the point of view of program comprehension. Hence,
one of the Survey results is a set of hypotheses. The aim of a further investigation
is to validate these results by involving some of our project partners. If we can
reliably characterize the views of senior and junior developers about the usefulness
of metrics, then we could develop the kind of metric-based tools which support
development and run more efficiently.

In this paper we will proceed as follows. In the next section we will introduce
the Survey and the main results will be discussed in detail. In Section 3 we will
discuss several other articles which addressed the same problems. Then in Section
4 we will present our main conclusions, and outline our plans for future study.

The software developers’ view on product metrics — A survey-based experiment 227

2. Survey

In this section we will present the Survey and our main findings. It contained
over 50 questions, so due to lack of space we cannot present all the questions and
results. Therefore we will only describe the Survey in general, and only the most
interesting questions and most important results will be elaborated on.

The Survey can be divided into three parts. The first part (Section 2.1) contains
several general questions about the participants’ experience and skills. From the
responses we were able to get a general picture about the participants.

The rest of the questions examined the participants’ views about the object-
oriented metrics and about the connection between these metrics and program
comprehension & testing. Since object-oriented programming is class-based, we
examined only class-level metrics. We could have examined many different metric-
categories and specific metrics but in that case the Survey would have been too
long. Therefore only four general categories (size, complexity, coupling, and code
duplications) and only one metric per category were selected for the Survey.

• The size metric we chose was Lines of Code (LOC), which counts all non-
empty and non-comment lines of the class and all its methods implemented
outside the class definition.

• Weighted Methods for Class (WMC), which measures the complexity of a
class, is defined as the sum of the complexity of its methods where the McCabe
cyclomatic complexity is used to measure their complexity.

• Coupling metrics measure the interactions between the program elements
and Coupling Between Object classes (CBO), the chosen metric from this
category, counts the number of other classes “used” by the given class.

• In the case of code duplications (later we will refer to this category as clones
as well), the Clone Instances (CI) metric was chosen which counts the number
of duplicated code instances which are located inside the class.

In the second part (Section 2.2) the metrics were examined one by one; more
precisely, we asked exactly the same questions about all four metrics to see what
the participants thought about them. The third part can be found at the end of the
Survey (Subsection 2.3) where the metrics were examined together in the questions
and the participants had to rank the metrics by their importance.

The 50 participants who filled out the questionnaire at our Software Engineering
Department all work on industrial and R&D projects. They ranged from begin-
ner students to experienced programmers so the participants’ experience and skills
differed greatly. Consequently we examined how the different levels of experience
influenced their assessment on the practical worth of the metrics examined in the
Survey. This meant that besides the presentation of the answers and their dis-
tribution, statistical methods were applied to see whether experience affected the
participants’ responses or not.

In the following we will present the most important parts of the Survey and
the conclusions drawn from it in the following way: after each question or group of
questions (if they belong together) the possible answers and the set of participants

228 I. Siket, T. Gyimóthy

who indicated the given answer are presented in percentage terms. In addition,
after each question we discuss the results and conclusions drawn.

2.1. Questions about the participants’ skills

The first questions measured the participants’ experience and skills. The partic-
ipants had to rank their experience and skills from 1 (least experienced) to 4 or
5 (most experienced).1 Since there was no point in drawing any conclusion from
the individual questions, the following questions were examined together and the
conclusions drawn are presented after them. So, first the questions and the distri-
butions of the answers are presented in Table 1.

Question 1 2 3 4 5
How much programming experience do you have? 8% 14% 24% 54% –
How much do you know about software metrics? 10% 58% 16% 16% –
How experienced are you in using the C language? 2% 20% 32% 30% 16%
How experienced are you in using the C++ language? 0% 20% 14% 32% 34%
How experienced are you in using the Java language? 0% 8% 34% 24% 34%
How experienced are you in using the C# language? 32% 32% 22% 8% 6%
How experienced are you in using the SQL language? 6% 34% 20% 30% 10%
How experienced are you in open-source development? 22% 52% 16% 10% –
How experienced are you in software testing? 10% 34% 40% 16% –

Table 1: The general questions and the distributions of the replies

First, we examined whether there was any connection between the different ex-
perience and skills mentioned above. In spite of the fact that the results inferred
from these questions cannot really be generalized to any other group of develop-
ers because they are greatly influenced by the group structure of our department,
we will present them and briefly explain them. We applied the Kendall tau rank
correlation [3] with a 0.05 significance level to see whether there was any connec-
tion between the participants’ experience and skills or not. Table 2 contains only
the significant correlation coefficients. These results highlight some of the typical
features of our department. For example, our most experienced programmers use
C/C++ (the corresponding correlation coefficients are 0.494 and 0.252) and many
of them took part in open source projects as well (0.344), where all the project
were written in C/C++ (0.534 and 0.281). Java and C# are less frequently used
in our department (there are no significant correlations) but our applications writ-
ten in Java also use databases, which indicates a correlation between Java and SQL
(0.351). And finally, object-oriented metrics are one of our research areas, hence
many of us working here are very familiar with them.

Now, we will examine how experience and skills acquired in different areas
influenced the responses. The results of 5 out of the 9 questions listed above were

1The answers for these questions were full sentences expressing different levels of experience
and skills, so the programmers could easily and accurately rank themselves on the given scale.
However due to lack of space we cannot present these answers here but only their distributions.

The software developers’ view on product metrics — A survey-based experiment 229

Exp. in Metrics Exp. Exp. Exp. Exp. Exp. Exp.
prog. knowl. C C++ Java C# SQL in os

Exp. in prog. 1.000
Metrics knowl. 0.425 1.000
Exp. in C 0.494 0.242 1.000
Exp. in C++ 0.252 0.324 0.393 1.000
Exp. in Java 1.000
Exp. in C# 1.000
Exp. in SQL 0.256 0.351 1.000
Exp. in os 0.344 0.534 0.281 1.000
Exp. in testing

Table 2: Correlation between experience in different areas and skills

included (experience in C, Java, C# and SQL were not taken into account). In
the rest of this study we applied only two categories, senior (experienced) and
junior (inexperienced), thus the 4 or 5 possible answers of a question had to be
placed into one of the two categories. Since there was no exact definition about a
person’s amount of experience in a particular area, we drew the borderline between
the categories ourselves. We categorized the responses for the 5 questions and the
results can be seen in Table 3.

Question No. of junior part. No. of senior part.
Experienced in programming 23 (46%) 27 (54%)
Metrics knowledge 34 (68%) 16 (32%)
Experienced in C++ 17 (34%) 33 (66%)
Experienced in open-source 37 (74%) 13 (26%)
Experienced in testing 22 (44%) 28 (56%)

Table 3: The scores obtained for the senior and junior participants

2.2. Questions about metrics separately

The following questions examined the metrics separately, which means that only
one metric was considered in each question. Besides the usefulness of metrics, we
examined whether there was any significant difference between the responses of
the senior and the junior participants. We applied Pearson’s χ2 test with a 0.1
significance level to see whether there was statistical correlation between the expe-
rience level and the judgment of metrics. The null hypothesis is that a participant’s
judgment of a metric does not depend on experience. The alternative hypothesis
is that experience influences a participant’s judgment of metrics. In each case we
carried out a test and either accepted the null hypothesis or rejected it (then, we
accepted the alternative hypothesis).

We know that the size of the sample is small, hence the test is less reliable and
since the sample was collected from our department the results cannot really be
generalized to any other software engineering team. In spite of this, the results
presented in this article show that it is worth investigating this topic in greater

230 I. Siket, T. Gyimóthy

depth because the results reveal a potential problem about the usage of metrics in
practice.

In the following, each question was asked for each metric category (although
there was one case where it was no use asking about code duplications). For all the
questions and for each experience and skill group defined in the previous subsection
we examined the connection between the experience and skills and the replies given
to the questions. These results are also presented after the questions.

2.2.1. Metrics used for program comprehension and testing

The first two kinds of questions examined how metrics can help in understanding
or testing an unknown part of a familiar program. The question was posed for
understanding with a size metric only, but the same one was asked with complexity,
coupling, and clone metrics, and all four questions were repeated with testing.

Question1: Suppose that you have to become familiar with (or to test) a system
whose development you did not take part in. Does the size (complexity, coupling,
and clones) of the classes in the system influence your understanding (testing
approach)?

• A1: Yes, it is easier to understand them if the system consists of more, but
smaller classes

• A2: Yes, it is easier to understand them if the system consists of fewer, but
bigger classes

• A3: No, the size of the classes does not influence my understanding
• A4: I am not sure
• A5: In my opinion, size itself is not enough for this and I suggest using other

metrics as well

Metric
Understanding Testing

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

Size 28% 6% 10% 6% 50% 36% 10% 16% 6% 32%
Complexity 68% 6% 6% 0% 20% 80% 2% 2% 2% 14%
Coupling 56% 12% 6% 4% 22% 80% 2% 2% 0% 16%
Clones 64% 8% 14% 4% 10% 64% 8% 14% 4% 10%

Table 4: The distributions of the replies for Question1

The distributions of the responses for the four key questions are summarized
in Table 4. The figures in bold represent the answers which were selected by most
participants. From the point of view of understanding half of the participants would
have chosen other metrics than size (A5), while 28% of them said that programs
containing more but smaller classes were more understandable (A1). In the case of
testing the scores changed a lot because 36% of them indicated that it was easier
to test programs that had more but smaller classes (A1), but only slightly fewer
participants (32%) wanted to choose another metric than size (A5). In the case of
complexity, coupling and clones more than the half of the participants said that
it was easier to understand programs containing more but less complex or less

The software developers’ view on product metrics — A survey-based experiment 231

strongly coupled classes, or classes containing fewer clones (A1). This score is even
more remarkable in the case of testing.

Figure 1: The distributions of the senior and junior participants’
answers for Question1 when testing was considered

We found that from the point of view of understanding there was no significant
difference between the responses of the senior and junior participants. On the other
hand, with testing we found that, in 4 out of the 20 cases, experience and skills
significantly influenced the person’s assessment of the metrics. Figure 1 shows the
distributions of the responses of the senior and junior participants for the questions
where the difference is significant and their justifications are the following:

Experience in programming and size: 22% of the participants inexperi-
enced in programming thought that it was easier to test fewer but bigger classes
while experienced ones rejected this answer. On the other hand, many more expe-
rienced programmers (41% versus 22%) thought that size itself was not enough to
decide this question.

Metric knowledge and coupling: 25% fewer people quite familiar with met-
rics thought that low coupling was better for testing but significantly more of them
(8% versus 31%) thought that coupling itself was not enough to assess the testing
aspect.

Experience in open source and complexity: Most of the programmers

232 I. Siket, T. Gyimóthy

not experienced in open source systems (89%) thought that more but less complex
classes could be tested more easily while only 54% of open source developers, which
is 35% less than the other group, had the same opinion. On the other hand, almost
one third (31%) of open source developers said that complexity was not enough
while only 8% of the other group marked this option.

Experience in open source systems and clones: Most of the inexperienced
open source programmers (73%) said that fewer clones were easier to test. However,
the experienced group was divided on this point since 3 possible answers were
chosen with more or less the same frequency (from 23% to 31%).

2.2.2. Acceptable reasons for bad metric values

When a part of a given source code has bad metric values (e.g. due to strong
coupling), it is suggested that the code be refactored so as to improve its quality.
But in some cases bad metric values may be accepted. For example, we will not
refactor a well-known design pattern just because of its bad metric values. The
next questions examined what kind of reasons the participants can accept for this.

Question2: What reasons would you accept for a class being too large? (Several
answers can be marked.)

• A1: No reason at all
• A2: A well-known design pattern
• A3: The implemented functionality requires a large size
• A4: The source code of the class is generated from some other file
• A5: The class must fit a given API
• A6: If the large size does not make understanding difficult
• A7: It has been tested and works properly
• A8: I cannot decide
• A9: Any other reason (with a justification)

Metric A1 A2 A3 A4 A5 A6 A7 A8 A9

Size 2% 34% 52% 56% 56% 24% 28% 2% 4%
Complexity 2% 36% 80% 46% 30% 36% 28% 2% 0%
Coupling 4% 36% 56% 38% 52% 26% 26% 8% 0%
Clones 18% 42% 22% 68% 24% 12% 14% 4% 4%
Average 6.5% 37% 52.6% 52% 40.5% 24.5% 24% 4% 2%

Table 5: The acceptance rates of the different reasons (Question2)

Table 5 shows the distributions of the replies, expressed in percentage terms.2

It is interesting that though many participants said that bad metric values made
understanding and testing difficult, only a few of those questioned indicated that
they did not accept any reason (A1) or that they could not decide (A8) based on
a large size, complexity or coupling. More participants (18%) rejected the clones
option but this percentage is still not very high, so we can say that to some extent

2Since an arbitrary number of replies could be given for these questions, the sum of the scores
for a question is not 100%.

The software developers’ view on product metrics — A survey-based experiment 233

bad metrics values can be accepted. The answers from A2 to A7 that reflect some
special excuses got notable scores. The most widely accepted reasons were the
implemented functionality (A3) and the generated code (A4) but the design patterns
(A2) and the given API (A5) also had high scores. The remaining two reasons (A6

and A7) are still worth examining but they got much lower scores.
We also examined the difference between the senior and junior participants’

responses in this case. More answers could be marked for this question, therefore
every answer was handled separately and we examined whether there was a sig-
nificant difference between the answers of the senior and junior participants who
accepted the given reason. Since answers A1, A8, and A9 were rarely marked, we
decided to exclude them from any further investigation. On the other hand, the
excluded answers are just synonyms of “I do not know”, therefore all real excuses
will be discussed. Table 6 shows the results where the possible answers can be
found in the rows and the given metric categories are presented in the columns.
Where a significant difference was found between the answers of the two groups, an
abbreviation of the participant’s experience or skill was written in that table cell.
For example, test in the second row (A3) and in the second column (Complexity)
means that there was a significant difference between the replies of participants
experienced in testing well and the replies of participants with little experience in
testing.

Size Complexity Coupling Clones
A2

A3 test o.s., test
A4 exp, met, C++, test exp, met, C++, test exp, met exp, met, C++, test
A5 exp, met
A6

A7 exp, met, C++, o.s. met o.s. met, test

Table 6: Significant correlations between the participant’s experi-
ence and skills and the different excuses

Since too many significant cases were found, we will discuss them in general and
only one example will be presented. First, we will analyze the results from the point
of view of experience groups. Metric knowledge (met) influenced the judgment of
metrics in 8 out of the 24 cases, which is 33.3%. Experience in programming (exp)
and experience in testing (test) influenced their judgment 6 times (25%), while
experience in C++ (C++) influenced their judgment 4 times (16.7%). Experience
with open source systems had the smallest effect because the replies of the two
groups differed only in 3 cases (12.5%). We may conclude from these questions
that the participants’ experience or skills have a notable influence on the judgment
of metrics.

Next, we examined how the opinions of the participants varied based on the
given replies. The judgment of generated classes (A4) affected the opinions of
the senior and junior participants in most cases: programming experience and
metric knowledge always divided their opinions and having experience in C++

234 I. Siket, T. Gyimóthy

and experience in testing influenced them significantly in 3 cases. On the other
hand, experience in open source development had no effect in this case. A typical
opinion about the tested code (A7) was the other possible reason that had different
judgments. In this case, the judgments of size and clones differed in four and two
cases, respectively, but with the other two metric categories the answers of the two
groups were very similar in four out of the five cases. This means that here the
difference between the opinions of the senior and junior participants was significant
in 8 out of the 20 cases examined. After these observations it was interesting that
the judgments of understandable source code (A6) and design pattern (A2) were the
same. Only several significant differences were found when the other two reasons
(A3 and A5) were investigated.

Figure 2: The distributions of the senior and junior participants’
replies (Question2)

Due to lack of space we cannot discuss all 27 significant differences one by one,
hence we present only one example. Figure 2 shows that 74% of the participants
experienced in programming accept large generated classes and only 26% of them
reject such classes. On the other hand, only 35% of the participants inexperienced
in programming accept it and 65% of them reject large generated classes. This
is a good example because it shows how much the senior and junior participants’
judgment of metrics can differ.

2.2.3. Sharing testing resources based on metrics

Testing is a very important phase of software development. Its aim is to reveal
all the bugs in the source code, but for large software packages this is impossible
because the testing resources (testers, time, etc.) are limited. Hence, we have to
share testing resources among the parts of a program and it is important how we
do it. The better the testing resources are shared, the more effective the testing
phase is, which means that more bugs can be found. We examined how the partic-
ipants would probably share testing resources if they knew the metric values of the
elements in advance. A very simple example (consisting of two classes) was chosen
to see how the participants would share testing resources.

Question3: Suppose that there are two classes in an unknown system where the
size of class A is 1000 lines (LOC) and the size of class B is 5000 lines. The quality
of the two classes is almost the same. During the development the size of class A
increased by 10 percent and the size of class B increased by 2 percent. How would
you share your testing resources?

• A1: I would test only class A
• A2: I would spend 90% of the testing res. on class A and 10% on class B
• A3: I would spend 75% of the testing res. on class A and 25% on class B

The software developers’ view on product metrics — A survey-based experiment 235

• A4: I would spend the testing resources equally on the two classes
• A5: I would spend 25% of the testing res. on class A and 75% on class B
• A6: I would spend 10% of the testing res. on class A and 90% on class B
• A7: I would test only class B
• A8: I would not determine it based on size
• A9: I cannot decide
The same question was asked for complexity where the complexity (WMC)

values of class A and B were 100 and 500, and for coupling where the coupling
(CBO) values of class A and class B were 20 and 100, respectively. We did not ask
about code duplications here because it would not have made any sense.

Metric A1 A2 A3 A4 A5 A6 A7 A8 A9

Size 0% 0% 8% 12% 30% 0% 0% 48% 2%
Complexity 0% 4% 10% 34% 30% 6% 0% 12% 4%
Coupling 0% 2% 10% 28% 28% 6% 4% 20% 2%

Table 7: The distributions of the replies for Question3

The results of the responses are listed in Table 7. Almost half (48%) of the
participants said that they would not share testing resources based on size (A8)
while 30% of them said they would spend 75% of the testing effort on class A (A5).
With the complexity issue, most participants (34%) said they would share testing
resources equally between the two classes (A4) but only slightly fewer (30%) said
that they would spend 75% of the testing resources on class A (A5). In the case of
coupling answers A4 and A5 got the same response (28%), which is very similar to
what we got with complexity.

Figure 3: The distributions of the senior and junior participants’
replies for Question3

236 I. Siket, T. Gyimóthy

We found in two cases that experience and skills had a significant effect on the
kind of answers of Question3 (see Figure 3). These two cases are the following:

Experience in programming and complexity: 48% of the (37% and 11%)
participants experienced in programming thought that it was the absolute complex-
ity of the classes that matters from a testing perspective and not the increment after
a change (A5 and A6). In contrast, participants inexperienced in programming said
they would share testing resources equally (A4).

Experience in C++ and size: More than half of the senior C++ program-
mers (55%) would not rely on size for test design (A8), and they (30%) thought
that absolute size was more important than any increment (A5). The opinions of
the junior C++ programmers were heterogeneous, which meant that two answers
conflicting with each other (A3 and A5) had significant scores and they were almost
the same (24% and 29%).

Besides these four questions (actually, there are a lot of questions but they can
be classified into four basic categories), there were other questions which examined
the metrics individually. Due to lack of space they will not be presented in detail,
but will be mentioned only briefly.

We analyzed ten systems3 and calculated the averages of the metrics and what
percentage of the classes exceeded the triple of the average of the metric values
in question. For a given metric both values of the systems were presented anony-
mously on a diagram and the participants were asked to classify the systems into
7 quality categories using the diagrams. The categories ranged from very bad qual-
ity to very good quality. We gave the same task for all four metrics mentioned
previously.

We investigated the participants’ opinions about what the optimal size (com-
plexity and coupling) for a class in an object-oriented system was (minimum and
maximum values could be given) and what the code size was, above which the clone
instances should be eliminated (a limit could be given).

2.3. Questions about the importance of metrics

In the third part of the Survey the importance of each metric was examined. In
these questions more than one metric was used at the same time and the partici-
pants had to select those they thought were the better ones, and they also had to
rank them.

Question4, the only question delineated from this part of the Survey, examined
the importance of the metrics from a testing point of view. The participants had
to weight the four metrics (size, complexity, coupling, and code duplications) when
deciding how useful the four metrics were. The weight ranged from 1 (the least
useful) to 10 (the most useful).

Figure 4 gives a histogram representation of the responses. According to the
participants surveyed, complexity is the most relevant metric because the two high-

3We analyzed 6 industrial and 4 open source systems. Among the industrial ones there were
telecommunications, a graphical application, and a code analysis system, while the four open
source systems were Tamarin, WebKit, Mozilla, and OpenOffice.org.

The software developers’ view on product metrics — A survey-based experiment 237

Figure 4: The distributions of the senior and junior participants’
replies for Question4

est weights got the biggest response and its average (7.88) is the largest. The two
most frequent weights of the other three metrics are the same (weights 7 and 8) and
their averages (size 6.40, coupling 6.34, and clones 6.20) are almost the same. De-
spite the fact that the distributions of the three metrics differ, we can say that their
degree of importance is very similar, but they seem less important than complex-
ity. This result is slightly surprising because in an earlier paper [8] we investigated
which metrics could be used to predict the fault-proneness of the classes and we
found that CBO (coupling) and LOC (size) metrics came out top while WMC
(complexity) got a lower score, which seems to contradict these new findings.

2.3.1. An experiment on Mozilla

In an earlier paper [8] we examined the fault-proneness property of eight object-
oriented class level metrics. We calculated the metrics for seven different versions of
Mozilla [12] (from version 1.0 to version 1.6), collected the reported and corrected
bugs from the bug tracking system called Bugzilla [2] and associated them with the
classes. This way we knew the metric values and the number of bugs for each class
in each version so we could examine how well the different metrics could predict the
fault-proneness property of classes. Although we had all the necessary information
for all the Mozilla versions, we chose version 1.6, which contained 3,209 classes,
and carried out the experiment on this version. We applied a statistical method
(logistic regression) and machine learning (neural networks and decision tree) to
predict whether a given class was bug-free (containing no bug) or faulty (containing
at least one bug). We examined the metrics one by one with each method and the
results of the three methods were very similar. We found that CBO was the best
metric but LOC was only a slightly worse and WMC also gave good results. On
the other hand, code duplication was not examined, so we have no information
about the usefulness of the CI metric.

238 I. Siket, T. Gyimóthy

We carried out an experiment to investigate the result of Question4 on Mozilla
version 1.6. We examined which weight combination given by the participants
could find the most classes which contained at least 10 bugs. For this we defined
a simple model in the following way: for each class we calculated the weighted
sum of its four normalized metrics (LOC, CBO, WMC and CI) where the weights
were the answers of Question4. Then, the classes were sorted by their weighted
sum and the top 177 were selected as faulty classes. We selected only the top 177
because there were 177 classes in Mozilla version 1.6 which contained at least 10
bugs. We examined how many of the 177 classes selected by the given model really
contained at least 10 bugs so we could compare the “quality” of the models. The
more such classes the model found, the better it was. We examined all 50 models
and discovered that the best one found 113 out of the 177 classes, which means
that it found 63.8% of the worst classes. Here, the weights of the model were the
following: size = 3, complexity = 8, coupling = 9, and clones = 3.

3. Related works

Our earlier experiment on Mozilla [8] was described in Section 2.3.1 above. In this
summary we can see that metrics can be used for fault-proneness but at a different
level. However, instead of presenting other similar empirical validations (e.g. Yu
et al. [13], Fioravanti and Nesi [6], Basili et al. [1], and Olague et al. [9]), we will
summarize another survey.

The ISO/IEC 9126 international standard [10] defines the relationship between
the system quality and ISO/IEC 9126 subcharacteristic. The Software Improve-
ment Group (SIG) introduced another level below the subcharacteristics which
consists of system properties and they defined a binary mapping between ISO/IEC
9126 subcharacteristics and system properties. José et al. [11] carried out a survey
to examine the connection between system properties and quality characteristics
for maintainability. 22 software quality experts of SIG were asked to take part in
their experiment. The participants had to compare the 4 maintainability subchar-
acteristics with each other (6 comparisons) and the 9 systems properties with each
other for each subcharacteristic (4 times 36 comparisons), so a participant had to
make 150 comparisons. They used a scale of 1 (equal importance) to 5 (extreme
importance) to rate the relative importance. There were three main questions that
they wanted to answer with their survey.

Does the weighted mapping represent agreement among experts? The result was
that, at the level of subcharacteristics, 2 out of 4 relations were non-consensual,
while at the level of system properties 7 out of the 36 relations were non-consensual.

How similar are the weighted mapping and binary mapping? After the evalua-
tion they found that in 7 cases the result had to be excluded because there was no
consensus; in 21 cases the result confirmed the earlier definitions; in 2 cases new
relations were found; and 6 were not presented.

Can the difference between the mappings be somehow used to refine the quality
model? In the case of mapping from subcharacteristics to maintainability, the re-

The software developers’ view on product metrics — A survey-based experiment 239

sults suggested that the relative weight of testability should be increased and the
weight of stability should be decreased. However, the consensus among the experts
was too small to warrant the change. On the other hand, there was a better consen-
sus among the experts for mapping from system properties to subcharacteristics.
After excluding non-consensual relations, several changes were recommended.

4. Conclusions and future work

The main motivation for this Survey was to learn more about the developers’
expertise and opinions concerning object-oriented metrics and to investigate how
experience influenced their assessment of metrics.

The main contributions of this paper are the following. Firstly, we listed a set of
interesting questions of our Survey which examined the software engineers’ opinions
about four object-oriented metrics. Secondly, we presented the distributions of
the replies and drew some conclusions about them. Thirdly, we examined the
relationship between the experience and skills of our programmers. Fourthly, we
applied a statistical method to see how experience affects the assessment of these
metrics and we devised hypotheses based on them. And finally, we carried out an
experiment on Mozilla to see which metrics were important in bug prediction.

Our main observations are the following. First, we did learn more about the
participants’ opinions concerning the four metrics in different situations. Second,
we found that in certain cases experience in different areas significantly affects
the assessment of the metrics. Third, the importance of metrics in testing is not
in accordance with the results of experiments [8, 1] which examined the relation-
ship between metrics and fault-proneness. Fourthly, we devised several hypotheses
which asserted that there were significant differences between the senior and junior
programmers’ assessments of metrics (for example, generated code with wrong met-
ric values was judged differently in 14 out of the 20 cases). The main conclusion is
that we need to investigate this topic in greater depth because some of the results
here are quite surprising.

In the future we plan to repeat this experiment with our industrial partners to
survey the same questions, but in different circumstances. This way we can verify
our observations and we should have more reliable conclusions. Furthermore, we
will refine the Survey by using the experience gained during this experiment. We
examined only four metric categories here, but there are many other interesting
issues which are worth investigating. Hence, we plan to incorporate other kinds of
metrics (e.g. cohesion metrics) and design issues (e.g. bad smells [7]) into our next
Survey.

References

[1] Basili, V. R., Briand, L. C., Melo, W. L., A Validation of Object-Oriented
Design Metrics as Quality Indicators, In IEEE Transactions on Software Engineering,

240 I. Siket, T. Gyimóthy

volume 22, (1996) 751–761.

[2] Bugzilla for Mozilla, http://bugzilla.mozilla.org.

[3] Chalmer, B. J., Understanding Statistics, CRC Press, 1986.

[4] Chidamber, S. R., Kemerer, C. F., A Metrics Suite for Object-Oriented Design,
In IEEE Transactions on Software Engineering 20,6(1994), (1994) 476–493.

[5] e Abreu, F. B., Melo, W., Evaluating the Impact of Object-Oriented Design
on Software Quality, In Proceedings of the Third International Software Metrics
Symposium, IEEE Computer Society, March 1996, 90–99.

[6] Fioravanti, F., Nesi, P., A Study on Fault-Proneness Detection of Object-
Oriented Systems, In Fifth European Conference on Software Maintenance and
Reengineering (CSMR 2001), March 2001, 121–130.

[7] Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D., Refactoring:
Improving the Design of Existing Code, Addison-Wesley Pub Co, 1999.

[8] Gyimóthy, T., Ferenc, R., Siket, I., Empirical Validation of Object-Oriented
Metrics on Open Source Software for Fault Prediction, In IEEE Transactions on
Software Engineering, volume 31, IEEE Computer Society, October 2005, 897–910.

[9] Olague, H. M., Etzkorn, L. H., Gholston, S., Quattlebaum, S., Empirical
Validation of Three Software Metrics Suites to Predict Fault-Proneness of Object-
Oriented Classes Developed Using Highly Iterative or Agile Software Development
Processes, In IEEE Transactions on Software Engineering, volume 33, June 2007,
402–419.

[10] International Standards Organization. Software engineering - product quality - part
1: Quality model, ISO/IEC 9126-1 edition, 2001.

[11] Kanellopoulos, Y., Correia, J. P., Visser, J., A Survey-based Study of the
Mapping of System Properties to ISO/IEC 9126 Maintainability Characteristics, In
The International Conference on Software Maintenance (ICSM’09), IEEE Computer
Society, September 2009, 61–70.

[12] The Mozilla Homepage, http://www.mozilla.org.

[13] Yu, P., Systä, T., Müller, H., Predicting Fault-Proneness using OO Metrics:
An Industrial Case Study, In Sixth European Conference on Software Maintenance
and Reengineering (CSMR 2002), March 2002, 99–107.

István Siket, Tibor Gyimóthy

Department of Software Engineering
University of Szeged
H-6720 Szeged
Árpád tér 2.
Hungary
e-mail: siket@inf.u-szeged.hu

gyimi@inf.u-szeged.hu

