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Abstract

A method of generating cubic blending spline curves based on weighted
trigonometric and hyperbolic polynomial is presented in this paper. The
curves inherit nearly all properties of cubic B-splines and enjoy some other
advantageous properties for modeling. They can represent some conics and
some transcendental curves exactly. Here weight coefficients are also shape
parameters, which are called weight parameters. The interval [0,1] of weight

parameter values can be extended to [ e−1)2

(e−1)2−π
,

e−1)2π
2

(e−1)2π
2
−8e

]. Not only can
the shape of the curves be adjusted globally or locally, but also the type
of some segments of a blending curve can be switched by taking different
values of the weight parameters. Without solving system of equations and

letting certain weight parameter be (e−1)2(2−π)

2(e−1)2−2π
, the curves can interpolate

corresponding control points directly.

Keywords: cubic uniform B-spline, CTH B-spline, weight parameter, local
and global interpolation, local and global adjustment, transcendental curve

MSC: 68U05

1. Introduction

B-spline curves and surfaces are well known geometric modeling tools in Computer
Aided Geometric Design (CAGD). Due to their several limitations in practical ap-
plications[1], several new forms of curve and surface schemes have been proposed
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for geometric modeling in CAGD[2-12]. C-curves are introduced in [2,3] by us-
ing the basis {1, t, cost, sint} instead of {1, t, t2, t3} in cubic spline curves, which
can represent some transcendental curves such as the ellipse, the helix and the
cycloid. Further properties of C-curves have been studied in [4]. Hoffmann et al.
[5] investigated a geometric interpretation of the change of parameter α for C-B-
spline curves. Similarly, using the hyperbolic basis {1, t, cosht, sinht} instead of
{1, t, t2, t3}in cubic uniform B-splines, one can construct a curve family too. This
has been studied as exponential B-splines [6,7,8]. Just for convenience, we call
them HB-splines. Koch and Lyche[6] presented a kind of exponential splines in
tension in the space spanned by {1, t, cosht, sinht}. Lü et al.[7] gave the explicit
expressions for uniform splines. Li and Wang[8] generalized the curves and surfaces
of exponential forms to algebraic hyperbolic spline forms of any degree, which can
represent exactly some remarkable curves and surfaces such as the hyperbola, the
catenary, the hyperbolic spiral and the hyperbolic paraboloid.

CB-splines and HB-splines are the same in structure and their shapes are ad-
justable. However, after comparing CB-splines and HB-splines, we found that a
CB-spline is located on one side of the B-spline, and the HB-spline is located on
the other side of the B-spline, see Figure 1. Therefore, one thinks whether the
two different curves can be unified. If we can unify them, then the new curve will
have more plentiful modeling power. In order to construct more flexible curves
for the surface modeling, Zhang et al. [9,10] proposed a curve family, named FB-
spline, that is the unification of CB-spline and HB-spline. However, the formulas
for the FB-splines were rather complicated. Hoffmann et al. [11] introduced prac-
tical shape modification algorithms of FB-spline curves and the geometrical effects
of the alteration of shape parameters, which are essential from the users’ point of
view. Wang and Fang[12] unified and extended three types of splines by a new kind
of spline (UE-spline for short) defined over the space {cosωt, sinωt, 1, t, ..., tl, ...},
where the type of a curve can be switched by a frequency sequence{ωi}.

Figure 1: CB-spline and HB-spline are located on the different sides of B-spline

In this paper, we present a set of new bases by unifying the trigonometric basis
and the hyperbolic basis using weight method, which inherits the most properties
of cubic uniform B-spline bases. Based on those bases, we introduce a new spline
curve, named CTH B-spline curve. This approach has the following features:
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• The introduced curves can cross the B-splines and reach the both sides of
cubic B-splines.

• The shape of the curves can be adjusted globally or locally.

• Without solving system of equations and letting weight parameters be (e −
1)2(2− π)/(2(e− 1)2 − 2π), the curves can interpolate certain control points
directly.

• With the weight parameters and control points chosen properly, the CTH B-
spline curves can be used to represent some conics and transcendental curves.

• The type of the curves can be switched by letting weight parameters λi = 0
or 1 easily. And, a blending curve can be composed of different type curve
segments.

The rest of this paper is organized as follows. In Section 2, the basis functions
unified by the trigonometric basis and the hyperbolic basis using weight method
are established and the properties of the basis functions are shown. In Section 3,
the CTH B-spline curves are given and some properties are discussed. It is pointed
out in Section 4 that some transcendental curves can be represented precisely with
the CTH B-spline curves and the applications of the curves are shown in Section
5. Finally, we conclude the paper in Section 6.

2. The construction of CTH B-spline basis functions

In order to construct CTH B-spline basis functions, we give two classes of basis
functions as follows.

Definition 2.1. The following functions,














T0,3(t) = 1−t
2 − 1

π
cosπ

2 t,
T1,3(t) = t

2 + 2
π
cosπ

2 t − 1
π
sinπ

2 t,
T2,3(t) = 1−t

2 + 2
π
sinπ

2 t − 1
π
cosπ

2 t,
T3,3(t) = t

2 − 1
π
sinπ

2 t,

are called CT B-spline basis functions.

Remark 2.2. The CT B-spline basis functions are the CB-spline basis functions
with α = π/2, see[3].

Definition 2.3. The following functions,






























H0,3(t) = − e
(e−1)2 (1 − t) + e

(e−1)2 sinh(1 − t),

H1,3(t) = − e
(e−1)2 + 1+e+e2

(e−1)2 (1 − t) + e+1
2(e−1) cosh(1 − t)

+ 1+4e+e2

(e−1)2π
sinh(1 − t),

H2,3(t) = − e
(e−1)2 + 1+e+e2

(e−1)2 t + e+1
2(e−1)cosht + 1+4e+e2

(e−1)2π
sinht,

H3,3(t) = − e
(e−1)2 t + e

(e−1)2 sinht,
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are called CH B-spline basis functions.

Remark 2.4. The CH B-spline basis functions are the AH B-spline basis functions
of order 4 with α = 1 for a uniform knot vector, see[7].

Obviously, the CT B-spline basis functions and CH B-spline basis functions
share the properties similar to cubic B spline basis functions, such as nonnegativity,
partition of unity and symmetry.

Note that shape of the CT B-spline curves and CH B-spline curves based on
the CT B-spline basis functions and CH B-spline basis functions are fixed relative
to their control polygons respectively, which is inconvenient to the user.

Next, we construct a set of new basis functions by unifying the CT B-spline
basis functions and CH B-spline basis functions using weight method.

Definition 2.5. The following functions,

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


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
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
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



















TH0,3(t) = 1
π
(λi − 1)cosπ

2 t + 1
(e−1)2 ((1 − e)2 − (1 + e2)λi)(1 − t)

+2eλisinh(1 − t)),

TH1,3(t) = 1
2 t + e2+1

2(e−1)2 ((λi+1 + 2λi)t − λi+1)) + 2
π
(1 − λi)cos

π
2 t−

1
π
(1 − λi+1)sin

π
2 t + (1+e)λi+1

2e−2 cosh(1 − t) − (1+e2)λi+1+4eλi

(e−1)2π
sinh(1 − t),

TH2,3(t) = 1
2 (1 − t) + e2+1

2(e−1)2 ((λi + 2λi+1)t − λi)) + 2
π
(1 − λi+1)sin

π
2 t

− 1
π
(1 − λi)cos

π
2 t + (1+e)λi

2e−2 cosht − (1+e2)λi+4eλi+1

(e−1)2π
sinht,

TH3,3(t) = 1
π
(λi+1 − 1)sinπ

2 t + 1
(e−1)2 ((1 − e)2 − (1 + e2)λi+1)t

+2eλi+1sinht),

(2.1)

are called CTH B-spline basis functions with weight parameter sequence {λk}.

Straightforward computation testifies that these CTH B-spline basis functions
possess the properties similar to the cubic B-Spline basis functions as follows.
(a)Partition of unity:

3
∑

j=0

THj,3(t) = 1. (2.2)

(b) Nonnegativity:

THj,3(t) > 0, j = 0, 1, 2, 3. (2.3)

(c) Symmetry:

TH0,3(t; λi) = TH3,3(1 − t; λi), TH1,3(t; λi, λi+1) = TH2,3(1 − t; λi+1, λi).(2.4)

According to the method of extending definition interval of C-curves in Ref.

[13], The interval [0, 1] of weight parameter values can be extended to [ e−1)2

(e−1)2−π
,

e−1)2π2

(e−1)2π2
−8e

], where e−1)2

(e−1)2−π
≈ −15.6134 and e−1)2π2

(e−1)2π2
−8e

≈ 3.9412.

For a uniform knot vector, Figure 2 shows cubic uniform B-spline basis functions
(dashed lines) and the CTH B-spline basis functions with all parameters being the
same (left)and with all parameters different from one another (right).
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Figure 2: CTH B-spline basis functions

3. CTH B-spline curves

3.1. Construction of the curves

Definition 3.1. Given control points Pi ∈ Rd(d = 2, 3, i = 0, 1, . . . , n) and knots
u1 < u2 < . . . < un−1, for u ∈ [ui, ui+1], i = 0, 1, . . . , n, the curves

r(u) =
3

∑

j=0

Pi+j−1THj,3(t) (3.1)

are defined to be piecewise CTH-B-spline curves, where ∆i = ui+1 − ui, u = u−ui

∆i

.

We can construct the open and closed curves similar to the cubic B-Spline
curves.

For open curves, we can expand the curve segment by setting e−1)2

(e−1)2−π
6

λ0, λn 6
e−1)2π2

(e−1)2π2
−8e

,u0 < u1, un−1 < un, P−1 = 2P0−P1, Pn+1 = 2Pn−Pn−1.This

assures that original points P0 and Pn are the points on the curves, i.e., r(u0) =
P0, r(un) = Pn. For closed curves, we can periodically assign control points by
setting Pn+1 = P0, Pn+2 = P1, Pn+3 = P2, and expand the knots by setting

un−1 < un < un+1 < un+2 and let λi ∈ [ e−1)2

(e−1)2−π
, e−1)2π2

(e−1)2π2−8e
],i = n, n + 1, n +

2, λ1 = λn+2. Thus, the parametric formulae for closed curves are defined on the
interval[u1, un+1].

3.2. Properties of the curves

3.2.1. Parametric continuity

Curves (3.1) are piecewise trigonometric hyperbolic polynomial curves. We need
to show the continuity of the curves.

Theorem 3.2. For [u1, un−1], curves (3.1) are GC2continuous. The uniform
curves (3.1) are C2 continuous.
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Proof. For i = 0, 1, . . . , n , We have

r(u+
i ) = (

π − 2

2π
+

λi

π
−

λi

(e − 1)2
)(Pi−1 + Pi+1) + (

2

π
−

2λi

π
+

2λi

(e − 1)2
)Pi,(3.2)

r(u−

i+1) = (
π − 2

2π
+

λi+1

π
−

λi+1

(e − 1)2
)(Pi + Pi+2) + (

2

π
−

2λi+1

π
+

2λi+1

(e − 1)2
)Pi+1,(3.3)

r′(u+
i ) =

1

2∆i

(Pi+1 − Pi−1), (3.4)

r′(u−

i+1) =
1

2∆i

(Pi+2 − Pi), (3.5)

r′′(u+
i ) =

(e − 1)π + ((e − 1)π − 2(e + 1))λi)

4(e − 1)∆2
i

(Pi−1 − 2Pi + Pi+1), (3.6)

r′′(u−

i+1) =
(e − 1)π + ((e − 1)π − 2(e + 1))λi+1)

4(e − 1)∆2
i

(Pi − 2Pi+1 + Pi+2), (3.7)

Thus, we obtain

r(k)(u−

i ) = (
∆i

∆i−1
)kr(k)(u+

i ), k = 2, 3, i = 0, 1, . . . , n − 2. (3.8)

This implies the theorem. �

From (3.4) and (3.5), we know that the tangent line of curves r(u) at the
point r(ui) is parallel to the line segment Pi−1Pi+1 (for any λi ). This property
corresponds to the property of the cubic uniform B-spline curves.

Theorem 3.3. The curvature of the curves at u = ui is

K(ui) =
|(e − 1)π + ((e − 1)π − 2(e + 1))λi)|

e − 1

|(Pi − Pi−1) × (Pi+1 − Pi)|

‖Pi+1 − Pi−1‖3
(3.9)

Proof. According to (3.4) and (3.6),the curvature of the curves at u = ui is

K(ui) =
|r′(ui) × r′′(ui)|

‖r′(ui)‖3

=
|(e − 1)π + ((e − 1)π − 2(e + 1))λi)|

e − 1

|(Pi+1 − Pi−1) × (Pi−1 − 2Pi + Pi+1|

‖Pi+1 − Pi−1‖3

=
|(e − 1)π + ((e − 1)π − 2(e + 1))λi)|

e − 1

|(Pi − Pi−1) × (Pi+1 − Pi)|

‖Pi+1 − Pi−1‖3
.

�
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According to (3.9), the local parameter λi controls the curvature of the curves

r(u) at the end of the curve segments. When λi > (e−1)π
2(e+1)−(e−1)π , the curvature of

the curves at u = ui increases with the increase of λi. When λi < (e−1)π
2(e+1)−(e−1)π ,

the curvature of the curves at u = ui increases with the decrease of λi.

3.2.2. Local and global adjustable properties

By rewriting (3.1), for u ∈ [ui−1, ui], we have

ri−1(u) = TH0,3(t; λi−1)Pi−2 + TH1,3(t; λi−1, λi)Pi−1 +

TH2,3(t; λi−1, λi)Pi + TH3,3(t; λi)Pi+1. (3.10)

For u ∈ [ui, ui+1], we have

ri(u) = TH0,3(t; λi)Pi−1 + TH1,3(t; λi, λi+1)Pi +

TH2,3(t; λi, λi+1)Pi+1 + TH3,3(t; λi+1)Pi+2. (3.11)

Obviously, weight parameter λi only affect two curve segments ri−1(u) and
ri(u)without altering the remainder, namely, weight parameterλi only affect control

polygon ̂Pi−1PiPi+1. So we can adjust the curves locally by changing certain λi.
From Figure 3(a), we can see that increasing λi moves locally the curvesr(u)u ∈

[ui−1, ui+1]towards the control polygon ̂Pi−1PiPi+1 , or decreasing λi moves locally

the curves r(u)u ∈ [ui−1, ui+1]away the control polygon ̂Pi−1PiPi+1.

(a) Local adjustment (b) Global adjustment

Figure 3: Adjusting the shape of the curves

When all λi are the same, the curves can be adjusted globally. From Figure
3(b), we can see that when the control polygon is fixed, adjusting the value of the
weight parameters from -15.6134 to 3.9412, the CTH B-spline curves can cross the
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cubic B-spline curves (dashed lines) and reach the both sides of cubic B-splines,
in other words, the CTH B-spline curves can range from inside the cubic B-spline
curves to outside the cubic B-spline curves. And, the weight parameters are of
the property that the larger the weight parameter is, the more closely the curves
approximate the control polygon.

3.2.3. Local and global interpolation

Curve (3.1) can also be used for local interpolation. Let λi = (e−1)2(2−π)
2(e−1)2−2π) ≈ 8.91206,

from (3.2) and (3.3), we have r(ui) = Pi. This means that curve r(u) interpolates
point Pi atu = ui locally. Thus, we provide a GC2continuous local interpolation
method without solving a linear system or any additional control points. The
given piecewise CTH B-spline curves unify the representation of the curves for
interpolating and approximating the control polygons.

Obviously, when all λi = (e−1)2(2−π)
2(e−1)2−2π) , the curve can interpolate the control poly-

gon globally. Figure 4 shows global interpolation curves with all λi = (e−1)2(2−π)
2(e−1)2−2π)

(red lines) and local interpolation curves with allλi = −1exceptλ5 = (e−1)2(2−π)
2(e−1)2−2π)

(blue lines).

(a) The planar case (b) The space case

Figure 4: The local and global interpolation curves

4. The representations of cycloid, helix and catenary

Given uniform knots, when all λi = 0, curves r(u) are piecewise trigonometric
polynomial curves. In this case, for u ∈ [ui, ui+1], if we take Pi−1 = (π−2

2 a, a), Pi =
(0, 2−π

2 a), Pi+1 = (2−π
2 a, a), Pi+2 = (2a, 2+π

2 a) (a 6= 0),then the coordinates of r(u)
are

{

x = a(ti − sinπ
2 ti),

y = a(1 − cosπ
2 ti).
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This gives the parametric equation of cycloid. Hence r(u) is an arc of a cycloid,
see Figure 5.

Figure 5: The representation of cycloid by the CTH B-spline curves

If we take Pi−1 = (m, n − π
2 a,−b), Pi = (m + π

2 a, n, 0), Pi+1 = (m, n + π
2 a, b),

Pi+2 = (m − π
2 a, n, 2b) (ab 6= 0) , the coordinates of r(u) are







x = m + acosπ
2 ti,

y = n + asinπ
2 ti,

z = bti,

which is parametric equation of a helix. Hence r(u) is a helix segment, see Figure 6.

Figure 6: The representation of helix by the CTH B-spline curves

On the other hand, given uniform knots, when all λi = 1, curves r(u) are
piecewise hyperbolic polynomial curves. In this case, for u ∈ [ui, ui+1], if we take

Pi−1 = (2a, e4+1
e3

−e
a), Pi = (a, e2+1

e2
−1a), Pi+1 = (0, 2e

e2
−1a), Pi+2 = (−a, e2+1

e2
−1a) (a 6= 0)

, then the coordinates of r(u) are

{

x = ati,
y = acoshti.

This gives the parametric equation of catenary. Hence r(u) is an arc of a catenary,
see Figure 7.
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Figure 7: The representation of catenary by the CTH B-spline curves

Remark 4.1. By selecting proper control points and weight parameters, some
conics such as hyperbola, ellipse and some transcendental curves such as sine curve,
cosine curve and hyperbolic sine curves can also be represented via CTH B-spline
curves.

5. Application of the curves

As mentioned in section 4, the types of the curves can be changed by selecting
control points and parameters properly. So, as an application, we can construct
a blending curve using different type curve segments flexibly. For example, given
a uniform knot vector, let control points as follows,P0 = (−2, π

4 ), P1 = (π−4
2 , 0),

P2 = (−2,−π
4 ), P3 = (−π+4

4 , 0), P4 = (− e2+1
2 , e4+e3

−e+1
e3

−e
), P5 = (−1, 2e2

e2
−1 ), P6 =

(0, e2+2e−1
e2−1 ), P7 = (1, 2e2

e2−1 ), P8 = (2, e4+e3
−e+1

e3−e
), P9 = (1, 6), P10 = (2, π+12

2 ),

P11 = (3, 6), P12 = (4, 12−π
2 ), P13 = (4, e2+1

e
), P14 = (3, 1), P15 = (2, 0), P16 =

(1,−1), P17 = (π−2
2 , 1), P18 = (0, 2−π

2 ), P19 = (2−π
2 , 1), P20 = (2, 2+π

2 ). so we
obtain a blending curve composed of different type curve segments, which is C2

continuous, see Figure 8.

6. Conclusions

CTH B-spline curves inherited nearly all the properties that CB-spline curves and
CH-spline curves and cubic B-spline curves have, such as variation diminishing
property, convex hull property, geometric invariance and so on. In this paper, we
focus on some special properties of the introduced curves. For example, the shape of
the curves can be adjusted globally or locally without adjusting the corresponding
control polygon. Without solving system of equations, the curves can interpolate
certain control points with proper parameter values. Also, the types of the curves
can be switched by weight parameters λi = 0 or 1, which are easier to determine
than the FB-spline or the UE-spline.
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Figure 8: A C2 continuous blending curve

(a) Adjusting surfaces locally (b) Adjusting surfaces globally

(c) Local interpolation surfaces (d) Global interpolation surfaces

Figure 9: CTH B-spline surfaces
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Both rational methods (NURBS or Rational Bézier curves) [15] and CTH B-
spline curves can deal with both free form curves and most important analytical
shapes for the engineering. However, CTH B-spline curves are simpler in structure
and more stable in calculation .The weight parameters of CTH B-spline curves
have geometric meaning and are easier to determine than the rational weights in
rational methods. Also, CTH B-spline curves can represent the helix, the cycloid,
and the catenary precisely, but NURBS can not. Therefore, CTH B-spline curves
would be useful for engineering.

Just as in the construction of cubic B-spline tensor product surfaces from cubic
B-spline curves, CTH B-spline surfaces can be constructed from CTH B-spline
curves easily. And many properties of the curves can be extended to the surfaces.
Figure 9 shows an example of the CTH B-spline tensor product surfaces, where
surface shapes are adjusted locally and globally (see (a) and (b)), and surfaces can
also interpolate the control mesh locally and globally (see(c) and (d)).
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