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Abstract

In this paper, we present some inequalities for q-polygamma functions and
ζq-Riemann Zeta functions, using a q-analogue of Holder type inequality.
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1. Introduction and preliminaries

In this section, we provide a summary of notations and definitions used in this
paper. For details, one may refer to [3, 5].

For n = 1, 2, . . . we denote by ψn(x) = ψ(n)(x) the polygamma functions as the

n-th derivative of the psi function ψ(x) = Γ′(x)
Γ(x) , x > 0, where Γ(x) denotes the

usual gamma function.
Throughout this paper we will fix q ∈ (0, 1). Let a be a complex number. The

q-shifted factorials are defined by

(a; q)n =

n−1∏

k=0

(1 − aqk), n = 1, 2, . . . ,

(a; q)∞ = lim
n→∞

(a; q)n =
∏

k>0

(1 − aqk).
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Jackson [4] defined the q-gamma function as

Γq(x) =
(q; q)∞
(qx; q)∞

(1 − q)1−x, x 6= 0,−1, . . . (1.1)

It satisfies the functional equation

Γq(x + 1) = [x]qΓq(x), Γq(1) = 1, (1.2)

where for x complex [x]q = 1−qx

1−q
.

The q-gamma function has the following integral representation (see [2])

Γq(x) =

∫ 1
1−q

0

tx−1E−qt
q dqt =

∫ ∞

1−q

0

tx−1E−qt
q dqt, x > 0.

where Ex
q =

∑∞
j=0 q

j(j−1)
2

xj

[j]q ! = (1 + (1 − q)x)∞q , which is the q-analogue of the

classical exponential function.
The q-analogue of the ψ function is defined as the logarithmic derivative of the

q-gamma function

ψq(x) =
Γ′

q(x)

Γq(x)
, x > 0. (1.3)

The q-Jackson integral from 0 to a is defined by (see [4, 5])

∫ a

0

f(x)dqx = (1 − q)a

∞∑

n=0

f(aqn)qn. (1.4)

For a = ∞ the q-Jackson integral is defined by (see [4, 5])

∫ ∞

0

f(x)dqx = (1 − q)

∞∑

n=−∞

f(qn)qn (1.5)

provided that sums in (1.4) and (1.5) converge absolutely.
In [2] the q-Riemman zeta function is defined as follows (see Section 2.3 for the

definitions)

ζq(s) =

∞∑

n=1

1

{n}s
q

=

∞∑

n=1

q(n+α([n]q))s

[n]sq
. (1.6)

In relation to (1.3) and (1.6), K. Brahim [1], using a q-analogue of the generalized
Schwarz inequality, proved the following Theorems.

Theorem 1.1. For n = 1, 2 . . .,

ψq,n(x)ψq,m(x) > ψ2
q, m+n

2

(x),

where ψq,n = ψ
(n)
q is n-th derivative of ψq and m+n

2 is an integer.
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Theorem 1.2. For all s > 1,

[s+ 1]q
ζq(s)

ζq(s+ 1)
> q[s]q

ζq(s+ 1)

ζq(s+ 2)
.

The aim of this paper is to present some inequalities for q-polygamma functions
and q-zeta functions by using a q-analogue of Holder type inequality, similar to
those in [1].

2. Main results

2.1. A lemma

In order to prove our main results, we need the following lemma.

Lemma 2.1. Let a ∈ R+ ∪{∞}, let f and g be two nonnegative functions and let
p, t > 1 such that p−1 + t−1 = 1. The following inequality holds

∫ a

0

f(x)g(x)dqx 6

(∫ a

0

fp(x)dqx
) 1

p
(∫ a

0

gt(x)dqx
) 1

t

.

Proof. Let a > 0. By (1.4) we have that

∫ a

0

f(x)g(x)dqx = (1 − q)a

∞∑

n=0

f(aqn)g(aqn)qn. (2.1)

By the use of the Holder’s inequality for infinite sums, we obtain

( ∞∑

n=0

f(aqn)g(aqn)qn
)

6

( ∞∑

n=0

fp(aqn)qn
) 1

p

·
( ∞∑

n=0

gt(aqn)qn
) 1

t

. (2.2)

Hence

(1 − q)a
( ∞∑

n=0

f(aqn)g(aqn)qn
)

6 ((1 − q)a)
1
p

( ∞∑

n=0

fp(aqn)qn
) 1

p

· ((1 − q)a)
1
t

( ∞∑

n=0

gt(aqn)qn
) 1

t

. (2.3)

The result then follows from (2.1), (2.2) and (2.3). �

2.2. The q-polygamma function

From (1.1) one can derive the following series representation for the function

ψq(x) =
Γ′

q(x)

Γq(x) :

ψq(x) = − log(1 − q) + log q
∑

n>1

qnx

1 − qn
, x > 0, (2.4)
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which implies that

ψq(x) = − log(1 − q) +
log q

1 − q

∫ q

0

tx−1

1 − t
dqt. (2.5)

Theorem 2.2. For n = 2, 4, 6 . . . set ψq,n(x) = ψ
(n)
q (x) the n-th derivative of the

function ψq. Then for p, t > 1 such that 1
p

+ 1
t

= 1 the following inequality holds

ψq,n

(x
p

+
y

t

)
6 ψq,n(x)

1
p · ψq,n(y)

1
t . (2.6)

Proof. From (2.5) we deduce that

ψq,n(x) =
log q

1 − q

∫ q

0

(log u)nux−1

1 − u
dqu, (2.7)

hence

ψq,n

(x
p

+
y

t

)
=

log q

1 − q

∫ q

0

(log u)nu
x
p
+y

t
−1

1 − u
dqu.

By Lemma 2.1 with a = q we have

ψq,n

(x
p

+
y

t

)
=

log q

1 − q

∫ q

0

[ (log u)n

1 − u

] 1
p

u
x−1

p

[ (log u)n

1 − u

] 1
t

u
y−1

q dqu

6

( log q

1 − q

∫ q

0

(log u)nux−1

1 − u
dqu

) 1
p
( log q

1 − q

∫ q

0

(log u)nuy−1

1 − u
dqu

) 1
t

= (ψq,n(x))
1
p (ψq,n(y))

1
t

where f(u) =
(

(log u)n

1−u

)p

u
x−1

p and g(u) =
(

(log u)n

1−u

)t

u
y−1

t . �

For p = t = 2 in (2.6) one has the following result.

Corollary 2.3. We have

ψq,n

(x+ y

2

)
6

√
ψq,n(x) · ψq,n(y).

2.3. q-zeta function

For x > 0 we set α(x) = log x

log q
− E

(
log x

log q

)
and {x}q =

[x]q
qx+α([x]q) , where E

(
log x

log q

)
is

the integer part of log x

log q
.

In [2] the q-zeta function is defined as follows

ζq(s) =

∞∑

n=1

1

{n}s
q

=

∞∑

n=1

q(n+α([n]q))s

[n]sq
.
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There ([2]) it is proved that ζq is a q-analogue of the classical Riemman Zeta
function, and for all s ∈ C such that R(s) > 1, and for all u > 0 one has

ζq(s) =
1

Γ̃q(s)

∫ ∞

0

us−1Zq(u)dqu,

where Zq(t) =
∑∞

n=1 e
−{n}qt
q , Γ̃q(t) =

Γq(t)
Kq(t) , and

Kq(t) =
(1 − q)−s

1 + (1 − q)−1
·

(−(1 − q); q)∞(−(1 − q)−1; q)∞
(−(1 − q)qs; q)∞(−(1 − q)−1q1−s; q)∞

.

Theorem 2.4. For 1
p

+ 1
t

= 1 and x
p

+ y

t
> 1,

Γ̃q

(
x
p

+ y

t

)

Γ̃q

1
p
(x) · Γ̃q

1
t
(y)

6
ζ

1
p

q (x) · ζ
1
t
q (y)

ζq

(
x
p

+ y

t

) .

Proof. From Lemma 2.1 we have that∫ ∞

0

u
x
p
+ y

t
−1Zq(u)dqu =

∫ ∞

0

u
x−1

p · (Zq(u))
1
pu

y−1
t · (Zq(u))

1
t dqu.

6

(∫ ∞

0

ux−1 · (Zq(u))dqu
) 1

p

·
( ∫ ∞

0

uy−1 · (Zq(u))dqu
) 1

t

.

For f(u) = u
x−1

p · (Zq(u))
1
p and g(u) = u

y−1
t · (Zq(u))

1
t we obtain that

Γ̃q

(x
p

+
y

t

)
· ζq

(x
p

+
y

t

)
6 Γ̃

1
p

q (x) · Γ̃
1
t
q (y) · ζ

1
p

q (x) · ζ
1
t
q (y),

which completes the proof. �
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