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Abstract
There are many ways to construct hierarchical decompositions of trans-
formation semigroups. The holonomy algorithm is especially suitable for
computational implementations and it is used in our software package. The
structure of the holonomy decomposition is determined by the action of the
semigroup on certain subsets of the state set. Here we focus on this struc-
ture, the skeleton, and investigate some of its properties that are crucial for

understanding and for efficient calculations.
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1. Introduction

The holonomy decomposition [11, 12, 6, 8, 9, 3| is an important proof technique
for the Krohn-Rhodes theory [1, Chapter 5|, as it works with transformation semi-
groups, instead of abstract ones, and it is relatively close to the computer scientist’s
way of thinking. Our computer algebra package, SgpDec [5] is now a mature piece
of software, so we can study the holonomy decompositions of semigroups with tens
of thousands of elements. Here we concentrate on simpler examples and study the
underlying structure of the holonomy decomposition, namely the skeleton of the
transformation semigroup [6, 9]. It is important to note that this notion is different
from the skeleton of an abstract semigroup (biordered set of idempotents) and from
the topological concept with the same name.
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Mathematical preliminaries

A transformation semigroup (X,S) is a finite nonempty set X (the state set) to-
gether with a set S of total transformations of X closed under function compo-
sition. A semigroup is a monoid if it contains the identity element, the identity
map in case of transformations. The action on the points (states) z € X natu-
rally extends to set of points: P-s={p-s|p € P}, PC X, s € S. The set
O(X) ={X-s| s e S} is the orbit of the state set. For finite transformations
we use two different notations. The traditional matrix notation uses two rows, one
for the elements of X and the second for their corresponding images. We also use
the linear (one-line) notation defined in [7] with slight modifications described in
[4]. The linear notation is a generalization of the cyclic notation for permutations,
therefore the cycle decomposition works as usual. However, for collapsing states we
use [Zi,, ..., Z;,; ¥;) meaning that x;, — x; for all j € {1,...,k}. These expressions
can be nested recursively and blended with the cycle notation. This mirrors the
fact that graphically a finite transformation is a bunch of cycles decorated with
trees (incoming collapses). Examples are abundant in Section 3. The linear nota-
tion is proved to be very useful in software implementations and it is expected to
soon have widespread use.

2. The skeleton

From now on we consider transformation monoids instead of transformation semi-
groups. From a categorical viewpoint this is a dangerous step (see [10, p22]), but
in a computational setting it is natural. The augmented orbit of the state set under
the action of the semigroup is O'(X) = O(X) U{X}U {{z} | z € X}, i.e. we add
the state set itself and the singletons. In case of a monoid, X is already in the
orbit.

Definition 2.1 ([6, 9]). The skeleton of a transformation monoid (X, M) is the
augmented orbit equipped with a preorder relation (O'(X), Cjs). This relation is
the generalized inclusion defined by

PCyQ < JseMsuchthat PCQ-s PQe0(X), (2.1)
i.e. we can transform @ to include P under the action of M.

The skeleton is a feature of the monoid action, it does not depend on the
actual generating set, therefore it is justified to talk about the skeleton of the
transformation monoid.

It is easy to see that Cj; is a preorder: it is reflexive, since P C P -1, and it is
transitive, since if P C @ - s;1 and Q C R - sg then P C R - 8981, thus P Cys R.
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We also define an equivalence relation on O'(X) by taking the generalized inclusion
in both directions: P =) @@ <= P Cyp Q and Q Cjpy P. These equivalence
classes are the strong orbits of the transformation monoid and are denoted by
O1,...,0,,. For each equivalence class there will be a component in the hierarchical
decomposition.

Height and depth of sets

The height of a set Q € O'(X) is given by the function h : O'(X) — N, which is
defined by h(Q) = 0 if Q is a singleton, and for |Q| > 1, h(Q) is defined by the
length of the longest strict generalized inclusion chain(s) in the skeleton starting
from a non-singleton set and ending in Q:

h(Q) = m?X(Ql Cum - Cum Qi =Q),

where |Q1| > 1. The height of (X, M) is h = h(X).
It is also useful to speak of depth values, which are derived from the height
values:

The top level is depth 1.
Calculating the height values establishes the hierarchical levels in the decom-

position, i.e. the number of coordinate positions in the holonomy decomposition is
h(X).

Covers

Considering the inclusion relation (O'(X), C), the set of (lower) covers of a subset
P € O'(X) is denoted by C(P). These are the maximal subsets of P. The com-
ponent of the holonomy decomposition corresponding to a set P is derived from
those elements of M that act on C(P), given that P is a chosen representative of
some equivalence class. This action is a restriction of the action of M on O'(X).
Obvious properties of covers are:

k
P=|JpP, PCP— P=F
i=1

where P; € C(P) and k = |C(P)|.
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3. Skeletons with salient features

Nonimage covers

Generalized inclusion by definition allows for the existence of (lower) covers of a
set that are not images of the set, i.e. P; € C(P) but there is no s € M such that
P; = P-s. However, we still have to show that these nonreachable maximal subsets
are indeed possible. Let’s consider the following generator set:
a=(1331%9%)=1[4,5,6;1] has the image {1,2, 3},
b= (133278) = (1,2.34],5) and ¢ = (133429) = ([1,2,3:4],5,6) produce
the image {4,5,6} and form a generator set (a transposition and a cycle) for the
symmetric group Ss acting on the image,
d=(12332%)=11,2,3;4][6;5] together with these point collapsings S3 produce
the images with cardinality 2,
e=(42313%) = (1,[[5;2],[6; 3];4]) maps {4,5,6} to {1,2,3} (and permutes 1
and 4),
F=(03%343%)=1(1,2,3)[5,6;4] is just a cycle on {1,2,3}.

The skeleton of the monoid they generate contains a set {1,2,3} which has
nonimage covers, see Fig. 1.

Unfortunately, the existence of nonimage covers makes a computational implemen-
tation slightly more complicated, as we really have to calculate with the generalized
inclusion, which is the same as dealing with two relations (inclusion, and ’image
of” relation).

Width

It is important to know the bound for the number of states in a component of a
decomposition. These states are determined by the number of covering sets of the
component’s underlying set.

Proposition 3.1. Let C(Q) be the set of covers of Q and |Q| = m, then

Q) < (L%‘J).

Proof. (29, C) has a maximal antichain (a set of mutually incomparable elements)
consisting of all subsets with | % | elements. We then apply Dilworth’s Theorem [2],
which says that the width (the size of a largest antichain) of a partially ordered set
is the same as the minimum number of chains whose union is the partially ordered
set itself. This theorem implies that the number of chains needed to cover (29, C)

is equal to (LZLJ). Since O(X) does not necessarily equal 29 (it is a subset of it),
2

we need the same number of or less chains to cover the elements of O(X) below
@ in the inclusion relation, i.e. the subsets of Q). The number of chains covering
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Figure 1: The skeleton of a monoid acting on 6 points (see text
for the generators). The nodes are the elements of the augmented
orbit. The boxes are the equivalence classes, the rectangular nodes
the chosen representatives of a class. The box of the equivalence
class is grey if there is a nontrivial subgroup of the monoid acting on
the elements of the equivalence class (these groups are isomorphic
on equivalent elements). The arrows point to the covers of a set.
Dotted arrows indicate nonimage covers. On the side depth values

are indicated.

O(X) below Q is at least the number of the maximal subsets of @), which are the

covers of @) by definition.

O

We show that the maximum value can be achieved, so we have a sharp bound.

We need the generators of the symmetric group S,,:

(23 ...n—11),(213 ... n)

and an arbitrary transformation ¢ which collapses [ %] states, thus its rank is [ ].

For instance a transformation ¢ given by:

= {1y L]

[ 5] otherwise.

For a concrete example see Fig. 2.
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Figure 2: The skeleton of the monoid generated by
{(1,2),(1,2,3,4,5),[4,5;3] = (1 234 3)}. The top node 5-element
set has 10 covering sets.

Maximum height skeletons

Previous examples may suggest that height could be bounded by the size of the
state set. This is far from being true. For instance the semigroup generated
by {(3376897) = [[l[31];2:41,5:6]; 7, (35438 %) = [[(1:7:5), (1353387) =
[4;3]} gives rise to a skeleton with height 21. It is easy to see why these high
skeletons exist: it is possible to have strict generalized inclusion between sets of
the same cardinality. For instance {3,4} Cp {1,2} if M is generated by s; =
(1234) =[3,4;1] and s2 = (3323%) = [1;3][2;4], where s; produces the image
{1,2}, s takes it to {3,4}, but there is no transformation for the reverse direction.

We do not know an exact bound for the length of the holonomy decompositions
yet, but we can summarize the observations of computational experiments.

Experimental observation 3.2. High skeletons tend to have a low number of
nontrivial holonomy group components with small cardinality.

It seems that in order to build a high skeleton, we need sufficiently many ele-
ments in O(X), and that is provided by the nontrivial group components’ permu-
tations. But on the other hand, if we have a group component with high order,
then its subgroups might also be components on lower levels, thus collapsing the
hierarchy.

It has been shown [6, Chapter XI by Bret Tilson, pp. 287-312] that the length of
the longest essential (containing a nontrivial group) [J-class chain in the semigroup
(see cited reference for detailed definitions) is a lower bound for the length of the
holonomy decomposition. Then the obvious guess would be that it is the same as
the length of the longest J-class chains in the semigroups. Again, computational
experiments show that this is not the case. The length of the longest J-chain can
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be smaller, equal to or bigger than the levels of the holonomy decomposition. This
is due to the fact that in general we do not act on the semigroup itself but on
another set.

4. Conclusions and future work

We carried out an initial analysis of hierarchical decompositions of transformation
semigroups using the holonomy algorithm. We showed that when working with
the components’ state sets we have to deal with covers that are not images of the
covered set. We also found a sharp upper bound for the width of the decomposition.
However, other properties of the holonomy decomposition, including its height, still
need further investigation.
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