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Abstract

We consider random processes defined on Banach sequence spaces. Then
we seek on conditions of M-regularity of bounded linear operators, where M

denotes any of the usual stochastic modes of convergence.
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1. Introduction

Non deterministic systems derived from applications of probability theory to a wide
real life situations give rise to the investigation of stochastic (or random) processes.
This setting allows a quote of indeterminacy that reasonably must be considered
according to the way the underlying process evolves in time. Among other basic
examples, Markov processes concern to possibly dependent random variables, while
Poisson processes concern events that occur continously and independent of one
another (cf. [7]).

Tests or experiments observed in discrete times amount to sequences of random
variables. The problematic of convergence acceleration methods has been studied
for many years with broad applications to numerical integration, to informatics,
in solving differential equations, etc. (cf. [15, 2]). Sequence transformations and
extrapolations were applied in order to accelerate the convergence of sequences in
some well known statistical procedures, for instance bootstrap or jacknife (cf. [5, 4]).

The notion of stochastic regularity under the action of linear transformations
applied to sequences of random elements in a Banach space was introduced by
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H. Lavastre in 1995 (see [6]). His approach was very general, considering sequences
{Xn}

∞
n=1 of random variables on a fixed probability space (Ω,A, P) with values in

a Banach space (E, ‖◦‖). Any such sequence induces a map

X : w → {Xn (w)}∞n=1

of Ω into the set S (E) of all sequences of elements of E. Let us suppose that S (E)
is a normed space and that X is a generalized random variable, i.e. X−1 (B) ∈ A
if B is any Borel subset of E. Given a linear functional T on S (E) it is natural
to ask whether T (X) : w → T [{Xn (w)}∞n=1] is still a generalized random variable.
If this is the case, the preservation of stochastic modes of convergence leaded to
several notions of stochastic regularity of the sequence {Xn}

∞
n=1 under the action

of T . From a theoretic point of view, besides its applications the determination
of conditions of stochastic regularity has its own interest. For the resolution of
this problem for E = Lp (Ω, F, P), where 1 6 p < ∞ and F is a Banach space,
the reader can see [6, Th. III, 3, p. 480]. Further, stochastic regularity under the
action of certain linear transformations defined by some infinite triangular matrices
of complex numbers is established in [6, Th. III, 6 and Th. III, 7, p. 482].

The purpose of this article is to initiate an extension of Lavastre’s reseach to
stochastic processes in other Banach spaces. Nevertheless, we are aware that this
goal is easy to state as well as difficult to fulfil. So, we will restrict its general-
ity to the case of bounded linear operators acting on separable Banach sequence
spaces. In order to be self-contained in Prop. 2.1 we will show that the set of
random variables X : Ω → E between a probability space (Ω,A, P) and a separable
Banach space E admits a complex vector space structure. It is known that if E

is separable and X : Ω → E is a random variable then ‖X‖ : Ω → [0,∞) is a ran-
dom variable (cf. [8]). Prop. 2.2 and Corollary 2.3 will motivate Definition 3.1 in
Section 3, giving a precise meaning to random processes defined by a sequence of
random variables on a Banach space E. In this section we will analize some con-
crete examples constructed on an underlying Hilbert space or on a Banach space
of continuous functions (see Ex. 3.3 and Ex. 3.4 below). In Section 4 we consider
conditions of stochastic regularity of linear bounded operators acting on a Banach
sequence space S (E). In particular, we will observe in Remark 3.2 that our ap-
proach is more general than the so called summation process defined in [6]. In
§4.1 we will establish precise conditions of stochastic regularity related to rather
general bounded operators, when E = C and S (E) is the uniform Banach space of
convergent sequences of complex numbers c (C). Finally, in §4.2 we will establish
conditions of stochastic regularity of a class of bounded operators for the Banach
space C [0, 1] and the Banach sequence space lp (C [0, 1]) , with 1 < p < ∞.

Besides some posed questions, we believe that possible ways for further investi-
gations will be open. In order of generality, the former will require some knowledge
about the structure of bounded linear operators on Banach sequence spaces. Among
a huge literature in this topic we only mention [1, 10, 9].
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2. Random variables and Banach sequence spaces

Throughout this article (Ω,A, P) will be a probability space, (E, ‖◦‖) will be a
separable Banach space and X will be a topological space. By MP (Ω,A, X) we
will denote the class of random variables X : Ω → X, i.e. those functions so that
X−1 (B) ∈ A for all sets B ∈ B (X) , where B (X) is the class of Borel subsets of
X. Indeed, MP (Ω,A, X) is really the quotient of all such random variables when
we identify those that differ on a set of P-measure zero.

Proposition 2.1. If the Banach space (E, ‖◦‖) is separable then MP (Ω,A, E) is
a complex vector space.

Proof. Clearly MP (Ω,A, E) is endowed with a natural complex vector space
structure, and it only remains to see that this structure is valid. Let {fn}

∞
n=1

be a dense sequence of elements of E. Then any open subset O of E × E can be
written as

O =
⋃

(n,m,r)∈N×N×Q>0:B∞((fn,fm),r)⊆O

B∞ ((fn, fm) , r) ,

where for (n, m, r) ∈ N × N × Q>0 is

B∞ ((fn, fm) , r) = {(g, h) ∈ E × E : max {‖fn − g‖ , ‖fm − h‖} < r} .

So, if X1, X2 ∈ MP (Ω,A, E) the set (X1, X2)
−1 (O) is realized as

⋃

(n,m,r)∈N×N×Q>0:B∞((fn,fm),r)⊆O

X−1
1 (B (fn, r)) ∩ X−1

2 (B (fm, r)) ,

i.e. (X1, X2)
−1

(O) ∈ A. Hence (X1, X2) ∈ MP (Ω,A, E × E). Since E is a topo-
logical vector space the conclusion now follows immediately. �

Proposition 2.2. Let {Xn}
∞
n=1 ⊆ MP (Ω,A, E).

(i) Let us write

Ω∞
E ({Xn}

∞
n=1) , {w ∈ Ω : {Xn (w)}∞n=1 ∈ l∞ (N,E)} ,

Ωc
E ({Xn}

∞
n=1) , {w ∈ Ω : {Xn (w)}∞n=1 ∈ c (N,E)} ,

Ωc0
E ({Xn}

∞
n=1) , {w ∈ Ω : {Xn (w)}∞n=1 ∈ c0 (N,E)} ,

Ωp
E ({Xn}

∞
n=1) , {w ∈ Ω : {Xn (w)}∞n=1 ∈ lp (N,E)} ,

with 1 6 p < +∞ . The above sets are A-measurable and

Ωp
E ({Xn}

∞
n=1) ⊆ Ωc0

E ({Xn}
∞
n=1) ⊆ Ωc

E ({Xn}
∞
n=1) ⊆ Ω∞

E ({Xn}
∞
n=1) . (2.1)

(ii) If Xn
a.e.
−−→ 0 then P (Ωc0

E ({Xn}
∞
n=1)) = 1.
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Proof. (i) It suffices to observe that

Ω∞
E ({Xn}

∞
n=1) =

∞
⋃

m=1

∞
⋂

p=1

{‖Xp‖ 6 m} ,

Ωc
E ({Xn}

∞
n=1) =

∞
⋂

m=1

∞
⋃

p=1

⋂

q>p,r>0

{‖Xq − Xq+r‖ 6 1/m} ,

Ωc0
E ({Xn}

∞
n=1) =

∞
⋂

m=1

lim inf
q→∞

{‖Xq‖ 6 1/m} .

Further,

Ωp
E ({Xn}

∞
n=1) =

{

w ∈ Ω : sup
m∈N

m
∑

n=1

‖Xn (w)‖p < +∞

}

and {
∑m

n=1 ‖Xn‖
p}m∈N

⊆ MP (Ω,A, R). Thus Ωp
E ({Xn}

∞
n=1) ∈ A, because

MP (Ω,A, R) is an order complete vector space and A is a σ-algebra. The in-
clusions (2.1) are trivial.
(ii) It is trivial. �

Corollary 2.3. Let {Xn}
∞
n=1 ⊆ MP (Ω,A, E) so that Xn

a.e.
−−→ 0. Then there are

induced well defined random variables

Xc0 (w) = {Xn (w)}∞n=1 , Xc (w) = {Xn (w)}∞n=1 , X∞ (w) = {Xn (w)}∞n=1 ,

where w ∈ Ω, with values in the Banach spaces c0 (N,E), c (N,E) and l∞ (N,E)
respectively.

Remark 2.4. Convergence in probability is not appropiate in general to derive
natural randon variables with values in classical Banach sequence spaces. For
instance, let n = k + 2υ, 0 6 k < 2υ, υ ∈ N0, and set Xn = nχ[k/2υ ,(k+1)/2υ].
The sequence {Xn}

∞
n=1 of random variables on the Lebesgue measure space [0, 1]

converges in probability to zero and Ω∞
R ({Xn}

∞
n=1) = ∅.

Remark 2.5. Previously to the main Definition 3.1 of this article, let us remember
the usual stochastic modes of convergence:

1. Convergence in distribution

Xn
d
−→ X if and only if given B ∈ B (E) so that P ({X ∈ ∂B}) = 0 then

P ({Xn ∈ B}) → P ({X ∈ B}).

2. Convergence in probability

Xn
P
−→ X if and only if ∀ε > 0, P ({‖Xn − X‖ > ε}) → 0.

3. Almost everywhere convergence

Xn
a.e.
−−→ X if and only if P ({Xn → X}) = 1.
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4. Almost complete convergence

Xn
a.c.
−−→ X if and only if ∀ε > 0,

∑∞
n=1 P ({‖Xn − X‖ > ε}) < +∞.

5. Convergence in the r-th mean

Xn
Lr

−→ X if and only if E (‖Xn − X‖r
) → 0.

6. Convergence in the mean

Xn
E
−→ X if and only if E (Xn − X) → 0. (See Remark 2.6 below).

It is well known that almost complete convergence implies almost everywhere
convergence, almost everywhere convergence implies convergence in probability and
convergence in probability implies convergence in distribution (cf. [12, pp. 240]).
Likewise, if r > s then convergence in the r-th mean implies convergence is the
s-th mean and the later implies convergence in probability. Further, by Lévy‘s
convergence theorem if Xn

a.e.
−−→ X in MP (Ω,A, R) and there is a random variable

Y so that for all n ∈ N is |Xn| 6 Y and E (Y ) < +∞ then Xn
Lr

−→ X (see [14,
pp. 187–188]).

Remark 2.6. If the Banach space E is separable the notion of expected value of
a random variable X ∈ MP (Ω,A, E) is well defined. Precisely, given a random
variable X its expected value is any element f ∈ E so that if ϕ ∈ E∗ then

〈f, ϕ〉 =

∫

Ω

〈X (w) , ϕ〉 d P (w) .

Since E∗ becomes a separating family if such an element exists it is necessarily
unique and it is denoting as E (X). For instance, E (X) exists if E (‖X‖) < +∞.
For further information the reader can see [11].

3. Random processes on Banach sequence spaces

Definition 3.1. A random process of MP (Ω,A, E) on a Banach sequence space
S (E) is a sequence {Xn}

∞
n=1 ∪ {X} ⊆ MP (Ω,A, E) so that:

(i) the set

ΩS(E) ({Xn − X}∞n=1)) , {w ∈ Ω : {Xn (w) − X (w)}∞n=1 ∈ S (E)}

belongs to A;
(ii) P

(

ΩS(E) ({Xn − X}∞n=1)
)

= 1. By [MP (Ω,A, E) ,S (E)] we will denote the
class of all such random processes.

Remark 3.2. By Prop. 2.2 any almost everywhere convergent sequence of random
variables with values in a Banach space E defines a random process on the classical
Banach sequence spaces c0 (N,E), c (N,E) and l∞ (N,E).
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Example 3.3. Let 1 6 p < ∞, T ∈ B(Lp [0, 1]). If n ∈ N let Xn (t) = T n
(

χ[0,t]

)

,
0 6 t 6 1. If 0 6 s, t 6 1 then

‖Xn(t) − Xn (s)‖p =
∥

∥T n
(

χ[0,t] − χ[0,s]

)∥

∥

p

6 ‖T n‖
∥

∥χ[0,t]△[0,s]

∥

∥

p

6 ‖T ‖n |s − t|1/p
,

i.e. Xn : [0, 1] → Lp [0, 1] becomes uniformly continuous and

{Xn}
∞
n=1 ⊆ Mdx ([0, 1] , L [0, 1] ,Lp [0, 1]) ,

where dx is the Lebesgue measure on [0, 1] and L [0, 1] is the Lebesgue σ−algebra

of subsets of [0, 1]. For instance, let Tf (t) =
∫ t

0 fdx if f ∈ Lp [0, 1]. It is easy to
see that T is a bounded linear operator and if n ∈ N and 0 6 t, τ 6 1 then

Xn (t) (τ) , T n
(

χ[0,t]

)

(τ) =

{

(τn − (τ − t)
n
) /n! if 0 6 t 6 τ,

τn/n! if τ 6 t 6 1.
(3.1)

Consequently, if t ∈ [0, 1] and n ∈ N the following inequality

‖Xn (t)‖p 6 1/
[

n! (1 + np)1/p
]

(3.2)

holds. From (3.2) we infer that Xn
a.c.
−−→ 0 and that {Xn}

∞
n=1 defines well random

process on any of the classical Banach sequence spaces on Lp [0, 1]. Further, if
n ∈ N from (3.1) we have that Xn : [0, 1] → C [0, 1] and

‖Xn (s) − Xn(t)‖∞ = max {|s − t|n , |(1 − t)
n − (1 − s)

n|} /n!

if 0 6 s, t 6 1, i.e. Xn is continuous and {Xn}
∞
n=1 ⊆ Mdx ([0, 1] , L [0, 1] , C [0, 1]).

Since
‖Xn (t)‖∞ = (1 − (1 − t)n) /n!

the same conclusions are true for the underlying Banach space C [0, 1]. In this
setting the sequence of random variables {Xn}

∞
n=1 converges to zero in the r-th

mean for all r ∈ N. For, if n ∈ N and s ∈ R we have

Fn (s) ,

∫

{‖Xn‖
∞

6s}
dx =







0 if s 6 0,

1 − (1 − sn!)
1/n

if 0 < s < 1/n!,
1 if s > 1/n!.

(3.3)

In particular, d− limn→∞ ‖Xn‖∞ = H, i.e. the sequence of random variables
{‖Xn‖∞}∞n=1 converges in distribution to the Heaviside function. Now, using (3.3)
we obtain

E (‖Xn‖
r
∞) =

∫ 1/n!

0

srdFn(s)
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= (n − 1)!

∫ 1/n!

0

sr (1 − sn!)1/n−1 ds

=
1

nn!r

∫ 1

0

ur (1 − u)1/n−1 du

=
1

nn!r
· Be (r + 1, 1/n)

=
1

nn!r
·
Γ (r + 1)Γ (1/n)

Γ(r + 1 + 1/n)

=
r!

nn!r
·

r
∏

j=0

(1/n + j)−1 6
r!

(n − 1)!r
,

i.e. limn→∞ E (‖Xn‖
r
∞) = 0. Further, if n ∈ N then

E (Xn) (τ) =
τn

n!
−

τn+1

(n + 1)!
. (3.4)

For, let φ ∈ BV [0, 1] be a complex valued function of bounded variation on [0, 1].
By the Fubini-Tonelli theorem and (3.1) we see that

∫∫

[0,1]×[0,1]

|Xn (t) (τ)| d |φ| (τ) × dt =

∫ 1

0

∫ 1

0

|Xn (t) (τ)| d |φ| (τ) dt

6

∫ 1

0

d |φ| (τ) /n! 6 ‖φ‖BV[0,1] < +∞,

where ‖φ‖BV[0,1] , |φ (0)| + V[0,1] (φ). As it is well known
(

BV [0, 1] , ‖◦‖BV[0,1]

)

becomes a Banach space isometrically isomorphic to (C [0, 1])
∗

(cf. [3, Th. 1.37, p.
16]). Hence,

〈

τn

n!
−

τn+1

(n + 1)!
, dφ (τ)

〉

=

∫ 1

0

(

τn

n!
−

τn+1

(n + 1)!

)

dφ (τ)

=

∫ 1

0

(
∫ τ

0

τn − (τ − t)
n

n!
dt +

τn

n!
(1 − τ)

)

dφ (τ)

=

∫ 1

0

∫ 1

0

Xn (t) (τ) dtdφ (τ)

=

∫ 1

0

∫ 1

0

Xn (t) (τ) dφ (τ) dt

=

∫ 1

0

〈Xn(t), dφ〉 dt.

By the uniqueness of the expected value of Xn as it was pointed in Remark 2.6 we
obtain (3.4). In particular, E (Xn) → 0 in C [0, 1].



28 A. L. Barrenechea

Example 3.4. Let Ω = {00, 010, 0110, . . .} ∪ {11, 101, 1001, . . .} and if 0 < p < 1
let q = 1 − p. Given w ∈ Ω we put P(w) = paqb if w contains a zeros and b ones.
Hence (Ω, P) becomes a discrete probability space. For instance, Ω can be seen as
the set of all possible random events in a game consisting in throwing a possible non
calibrated coin successively, assuming that the play ends when the first result occurs
again. Let us consider a separable Hilbert space H endowed with an orthonormal
basis {en}

∞
n=1. We can represent any element w ∈ Ω as a sequence w = {wm}∞m=1 ,

where wm = 0 except a possible finite number of indices. For instance, we write
010 = {0, 1, 0, 0, 0, . . .} , 1001 = {1, 0, 0, 1, 0, 0, 0, . . .}, etc. Now, for w ∈ Ω and
n ∈ N we will write Yn (w) =

∑n
m=1 wm · em. Then {Yn}

∞
n=1 ⊆ MP (Ω,P (Ω) ,H).

Further, if for w ∈ Ω we set

Y (w) =

∞
∑

m=1

wm · em (3.5)

then Y : Ω → H is a well defined random variable since any series in (3.5) is
reduced to a finite sum. If Xn , Yn − Y , n ∈ N, clearly Ωp

H

(

{Xn}n∈N

)

= Ω.
Indeed, {Xn}

∞
n=1 converges to zero in the r-th mean for all r ∈ N. For, if n ∈ N

then

P ({‖Xn‖ = 0}) = P

({

00, 010, . . . , 01 . . .1
(n+1)

0 , 11, 101, . . . , 10 . . .0
(n)

1

})

(3.6)

= p2
n−1
∑

j=0

qj + q2
n−2
∑

j=0

pj

= 1 − pqn − pn−1q,

P ({‖Xn‖ = 1}) = P

({

01 . . .
(n)

1 10, 10 . . .
(n)

0 1, 10 . . .
(n)

0 01, . . .

})

= p2qn + pn−1q2 + pnq2 + . . .

= p2qn + pn−1q.

For an integer m > 2 we see that

P
({

‖Xn‖ = m1/2
})

= P

({

01 . . .
(n)

1 1 . . .
(n+m)

1

})

= p2qn+m−1. (3.7)

Using the identities (3.6) and (3.7) we evaluate

E (‖Xn‖
r
) =

∞
∑

m=0

mr/2 P
({

‖Xn‖ = m1/2
})

(3.8)

= p2qn + pn−1q + p2qn−1
∞
∑

m=2

mr/2qm.
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Letting n → ∞ in (3.8) the claim follows. With the notation of Ex. 3.4 we will
show that

lim
n→∞

E (Xn) = 0. (3.9)

For, we will prove that if n ∈ N then

E (Xn) = −
∞
∑

υ=n+1

(

pqυ−1 + pυ−2q2
)

eυ (3.10)

and later (3.9) will follows at once. As 0 < p, q < 1 the above series is absolutely
convergent. If g ∈ H the random variable w → 〈Xn (w) , g〉 maps Ω onto the

set
{

∑k
s=1 〈g, en+s〉

}∞

k=1
. If m ∈ N set Ωm = {w ∈ Ω : wυ = 0 if υ > m}. Thus

{Ωm}∞m=1 is an increasing sequence of sets and Ω = ∪Ωm. If m ∈ N and m > n we
have

∫

Ω

〈Xn (w) , g〉χΩm (w) d P (w) = −

∫

Ωm

m
∑

υ=n+1

wυ 〈eυ, g〉d P (w) (3.11)

= −
m
∑

s=1

〈

s
∑

t=1

en+t, g

〉

p2qn+s−1

−
m
∑

υ=n+1

〈eυ, g〉 pυ−2q2

= −p
m
∑

t=1

〈en+t, g〉
(

qn+t−1 − qn+m
)

−
m
∑

υ=n+1

〈eυ, g〉 pυ−2q2.

Since the series
∑∞

m=1 qmm1/2 converges we conclude that

0 6 lim sup
m→∞

qn+m
m
∑

t=1

|〈en+t, g〉| 6 lim sup
m→∞

qn+m ‖g‖m1/2 = 0. (3.12)

From (3.11) and (3.12) we get

lim
m→∞

∫

Ω

〈Xn (w) , g〉χΩm (w) d P (w) = −p

∞
∑

t=1

〈en+t, g〉 qn+t−1 (3.13)

−
∞
∑

υ=n+1

〈eυ, g〉 pυ−2q2

= −
∞
∑

υ=n+1

〈eυ, g〉
(

pqυ−1 + pυ−2q2
)
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=

〈

−
∞
∑

υ=n+1

(

pqυ−1 + pυ−2q2
)

eυ, g

〉

.

But for m ∈ N and w ∈ Ω we see that

|〈Xn (w) , g〉|χΩm (w) 6 |〈Xn (w) , g〉| . (3.14)

Moreover,

∫

Ω

|〈Xn (w) , g〉| d P (w) = |〈g, en+1〉|P

({

10 . . .0
(n+1)

1 , 01 . . .
(n+1)

1 0

})

(3.15)

+

∞
∑

k=2

∣

∣

∣

∣

∣

k
∑

s=1

〈g, en+s〉

∣

∣

∣

∣

∣

P

({

01 . . .
(n+1)

1 . . .
(n+k)

1 0

})

= |〈g, en+1〉|
(

pn−1q2 + pqn
)

+
∞
∑

k=2

∣

∣

∣

∣

∣

k
∑

s=1

〈g, en+s〉

∣

∣

∣

∣

∣

pqn+k−1.

Further,
∞
∑

k=1

∣

∣

∣

∣

∣

k
∑

s=1

〈g, en+s〉

∣

∣

∣

∣

∣

qk 6 ‖g‖
∞
∑

k=1

k1/2qk < +∞. (3.16)

Thus, by (3.15) and (3.16) the random variable w → 〈Xn (w) , g〉 becomes abso-
lutely integrable on Ω. Finally, using (3.14) and the Lebesgue dominated conver-
gence theorem in (3.13) we obtain

∫

Ω

〈X (w) , g〉d P (w) =

〈

−
∞
∑

υ=n+1

(

pqυ−1 + pυ−2q2
)

eυ, g

〉

and (3.10) follows.

4. Random processes and stochastic regularity

Definition 4.1. With the notation of Definition 3.1, let A ∈ B [S (E)]. Then
A is called M-regular for {Xn − X}∞n=1 on the Banach sequence space S (E) if
it preserves its M-stochastic mode of convergence, i.e. if M-limn→∞ Xn = X
then M-limm→∞ ‖Am ({Xn − X}∞n=1)‖ = 0. A subset R of S (E) is called M-
regular for the sequence {Xn − X}∞n=1 on S (E) if each element of R is M-regular
for it. Indeed, R will be called simply M-regular on MP (Ω,A, E) and S (E) if
each element of R preserves the M-stochastic mode of convergence of any random
process of [MP (Ω,A, E) ,S (E)].

Remark 4.2. The well known shift operator W ((fn)∞n=1) = (fn+1)
∞
n=1 is linear

and bounded on any of the classical Banach sequences spaces lp (N,C) , c0 (N,C),
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c (N,C) and l∞ (N,C). For conditions concerning to the M-regularity of p (W )
when p is any polynomial the reader can see [6]. That approach could be improved
in various directions, for instance: (1st) What can be said about the M-regularity
of general bounded operators on Banach sequence spaces over C? (2nd) What
happens if we state the same problem replacing C by any other Banach space? The
first question already has its own interest since Banach sequence spaces of complex
or real numbers offer a natural frame to modeling a huge variety of statistical and
numerical analysis processes. Even in this case the determination of the structure
and characterization of bounded operators sometimes constitute a difficult matter.
In particular, the characterization of bounded operators on c (N,C) is a celebrated
result of I. Schur (cf. [13]). For more information on these topics the reader can
see [9], [10]. For a proof of Schur‘s theorem and the characterization of bounded
operators on Banach sequence spaces of complex series see [1].

4.1. M-regularity on [MP (Ω,A, C) , c (N,C)]

If A ∈ B (c (N,C)) there is a unique complex matrix {an,m}∞n,m=0 so that for z ∈

c (N,C) we have

A(z) =

{

an,0λ (z) +

∞
∑

m=1

an,m · zm

}∞

n=1

,

where λ (z) = limn→∞ zn. Further,

‖A‖ = sup
n∈N

∞
∑

m=0

|an,m| , (4.1)

a0,0 = lim
n→∞

∞
∑

m=1

an,m,

a0,m = lim
n→∞

an,m if m ∈ N

and {a0,m}∞m=1 ∈ l1 (N,C) (cf. [1], Corollary 2, p. 20). Let us consider the random
process on c (N,C) induced by Xn = χ[n,+∞), n ∈ N on the probability space
(R,L (R) , P) , where L (R) is the class of Lebesgue measurable subsets of R and
P (E) =

∫

E∩(0,+∞)
exp (−x) dx if E ∈ L (R). Let A ∈ B (c (N,C)) be defined by the

infinite matrix whose nm-entry is

an,m =







1 if n = m = 0,
0 if n = 0, m ∈ N,

(1 + n)−m if n, m ∈ N.

Then A is ac-regular for the sequence {Xn}
∞
n=1. For, let ε > 0, m ∈ N. Then

m
∑

n=1

P ({|Xn| > ε}) =

m
∑

n=1

∫ +∞

n

exp(−x)dx =

m
∑

n=1

exp (−n)
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i.e.
∑∞

n=1 P ({|Xn| > ε}) = 1/ (e−1) and Xn
a.c.
−−→ 0. If A ({Xn}

∞
n=1) = {Yn}

∞
n=1

then

Yn =
∞
∑

m=1

(1 + n)−m χ[m,+∞) if n ∈ N. (4.2)

Consequently, for n ∈ N and w ∈ R it is easy to see that

Yn (w) =
1

n

(

1 −
1

(1 + n)
[w]

)

χ[0,+∞) (w) .

Thus {|Yn| > ε} = ∅ if n > 1/ε and so ac-limn→∞ Yn = 0. However, c (N,C) is not
ac-regular for {Xn}

∞
n=1. For, if B ∈ B (c (N,C)) is defined by the infinite matrix

whose nm-entry is 2−m−1 we write B ({Xn}
∞
n=1) = {Zn}

∞
n=1. For w ∈ R we now

evaluate that Zn(w) =
(

1 − 2−[w]
)

/2 for all n ∈ N. If 0 < ε < 1/2 let us choose
υ ∈ N so that ε < (1 − 2−υ) /2. Then,

{|Zn| > ε} ⊇
{

Zn > 2−1 − 2−υ−1
}

= [υ, +∞) ,

i.e. P ({|Zn| > ε}) > exp (−υ). Therefore ac-limn→∞ |Zn| 6= 0 and B is not ac-
regular for the sequence {Xn}

∞
n=1. Since obviously B is not a d-regular operator

for {Xn}
∞
n=1 it is also not p-regular nor not ae-regular for it. Finally, if r > 0 then

A becomes Lr-regular for {Xn}
∞
n=1. For,

Lr - lim
n→∞

Xn = lim
n→∞

E (|Xn|
r) = lim

n→∞
exp (−m) = 0.

If n ∈ N using (4.2) Yn becomes a discrete random variable and

E (|Yn|
r
) =

1

nr

∞
∑

m=1

(

1 −
1

(n + 1)m

)r

P ([m − 1, m))

6
1

nr

∞
∑

m=1

[exp (−m) − exp (−m − 1)] =
1

e nr
,

i.e. Lr-limn→∞ Yn = 0. However, it is evident that B is not Lr-regular for {Xn}
∞
n=1.

Problem 4.3. Is it possible to characterize the subclasses of M-regular operators
of B (c (N,C)) for the sequence {Xn}

∞
n=1? In the general case, what relevant

properties can be developed concerning to those classes? Can be determinated
some subsets of B (c (N,C)) that are M-regular for all random process on any
unrestricted probability space (Ω,A,P)? A partial answer to the last question is
given in the following Th. 4.5. To this end remember the following.

Definition 4.4. A covering of a non empty set X is a subset U of P (X) so that
X = ∪U . It is said that the covering U of X is locally finite if any element of X
belongs to a finite number of elements of U . Further, a locally finite covering U of
X is called bounded if

η = sup {card {U ∈ U : x ∈ U} : x ∈ X} < ∞.

Then η ∈ N and we will say that η is the least upper bound of U .
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Theorem 4.5. (i) Let U = {Un}
∞
n=1 be a locally finite bounded covering of N

with a least upper bound η. If A ∈ B (c (N,C)) is defined by any infinite matrix
{an,m}∞n,m=0 so that an,m = 0 if m /∈ Un then A is ac-regular for any random

process on the Banach space sequence c (N,C).

(ii) Let A ∈ B (c (N,C)) induced by an infinite matrix of non negative coefficients
{an,m}∞n,m=0 with a0,0 = 0. Then A is Lr- regular if 1 6 r < +∞.

Proof. (i) If {Xn}
∞
n=1 ∪ {X} ⊆ MP (Ω,A, E) and X = ac-limn→∞ Xn we know

that X = ae-limn→∞ Xn and by Corollary 2.3 it is defined a random process on
c0 (N,C). If n ∈ N let Yn ,

∑∞
m=1 an,m (Xm − X). So, if ε > 0 then {|Yn| > ε} = ∅

or

{|Yn| > ε} ⊆

{

∑

m∈Un

|an,m (Xm − X)| > ε

}

⊆

{

sup
m∈Un

|Xm − X |
∑

m∈Un

|an,m| > ε

}

⊆

{

sup
m∈Un

|Xm − X | > ε/ ‖A‖

}

⊆
⋃

m∈Un

{|Xm − X | > ε/ ‖A‖} .

Consequently, if N ∈ N we estimate

N
∑

n=1

P ({|Yn| > ε}) 6

N
∑

n=1

∑

m∈Un

P ({|Xm − X | > ε/ ‖A‖})

6
∑

m∈∪N
n=1Un

P ({|Xm − X | > ε/ ‖A‖}) card {n : m ∈ Un}

6 η
∞
∑

m=1

P ({|Xm − X | > ε/ ‖A‖}) .

Therefore,

∞
∑

n=1

P ({|Yn| > ε}) 6 η

∞
∑

m=1

P ({|Xm − X | > ε/ ‖A‖}) < ∞

and our claim follows.
(ii) Let A ∈ B (c (N,C)) defined by an infinite matrix {an,m}n,m∈N

with non neg-

ative coefficients and a0,0 = 0. Let {Zm}∞m=1 ∪ {Z} be a sequence of random

variables defining a Banach random process on c (N,C) so that Zm
Lr

−→ Z. Giving
n ∈ N set Wn , An ({Zm − Z}∞m=1). Of course we may assume that A 6= 0. Con-

sider the measure space (N,P (N) , µn) so that µn (S) , ‖A‖−1∑

m∈S an,m. Let us
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consider the function

F : N×Ω→ C, F (m, w) , Zm (w) − Z (w) .

Giving ζ ∈ C and r > 0 it is easy to see that

{|F − ζ| < r} =

∞
⋃

m=1

{m} × {|Zm − Z| < r} ,

i.e. {|F − ζ| < r} is clearly a measurable subset of N×Ω and since ζ and r are
arbitrary F is measurable. Indeed, for almost all w ∈ Ω and m ∈ N there is a
positive constant K (w) so that |Zυ (w)| 6 K(w) if υ ∈ N and we have

∫

{1,...,m}

|F (υ, w)| dµn(υ) = ‖A‖−1
m
∑

υ=1

an,υ |Zυ (w) − Z (w)| (4.3)

6 2K(w) ‖A‖−1
m
∑

υ=1

an,υ

6 2K(w).

By an easy application of the monotone convergence theorem in (4.3) we deduce
that F (◦, w) ∈ L1 (N, µn). Further,

F (◦, w) = lim
m→∞

m
∑

υ=1

(Zυ (w) − Z (w))χ{υ} (◦)

and if m ∈ N we have that
∣

∣

∣

∣

∣

m
∑

υ=1

(Zυ (w) − Z (w))χ{υ} (◦)

∣

∣

∣

∣

∣

6 |F (◦, w)|

on N. By Lebesgue’s dominated convergence theorem for almost all w ∈ Ω we get

Wn(w) =
∞
∑

m=1

an,m (Zm (w) − Z (w)) (4.4)

= ‖A‖
∞
∑

m=1

(Zm (w) − Z (w))µn ({m})

= ‖A‖
∞
∑

m=1

(Zm (w) − Z (w))

∫

N

χ{m} (υ) dµn (υ)

= ‖A‖

∫

N

F (υ, w) dµn(υ).

Using (4.4) and applying the Minkowski’s integral inequality we now write

E (|Wn|
r
)
1/r

=

(
∫

Ω

|Wn(w)|r d P(w)

)1/r

(4.5)
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= ‖A‖

(
∫

Ω

∣

∣

∣

∣

∫

N

F (m, w) dµn(m)

∣

∣

∣

∣

r

d P(w)

)1/r

6 ‖A‖

∫

N

(
∫

Ω

|F (m, w)|r d P(w)

)1/r

dµn(m)

= ‖A‖

∫

N

(
∫

Ω

|Zm(w) − Z(w)|r d P(w)

)1/r

dµn(m)

= ‖A‖

∫

N

E (|Zm − Z|r)
1/r

dµn(m)

=
∞
∑

m=1

an,m E (|Zm − Z|r)
1/r

.

Finally, the sequence {E (|Zm − Z|r)}
∞
m=1 is bounded and the claim follows letting

n → ∞ in (4.5), using (4.1) and that a0,0 = 0. �

4.2. M-regularity on [Mdt ([0, 1] ,L [0, 1] , C [0, 1]) , lp (C [0, 1])]

Theorem 4.6. Let U = {Un}n∈N be a disjoint bounded covering of N with a least
upper bound η. Given m ∈ N let n (m) be the unique positive integer so that
m ∈ Un(m). Let 1 < p, q < ∞ so that 1/p + 1/q = 1 and let a , {an,m}∞n,m=1 be a

set of complex numbers so that the series σ (a) ,
∑∞

m=1

∣

∣an(m),m

∣

∣

q
is finite. Given

x ∈ lp (C [0, 1]) set

Aa (x) =

{

∑

m∈Un

an,m · xm

}∞

n=1

.

Then
(i) Aa (x) ∈ lp (C [0, 1]).

(ii) Aa ∈ B [lp (C [0, 1])].

(iii) The class R , {Aa : σ (a) < ∞} is simply almost completely regular on

[Mdx ([0, 1] ,L [0, 1] , C [0, 1]) , lp (C [0, 1])] .

(iv) The class R , {Aa : σ (a) < ∞} is regular in the mean on any random process
{Xn}

∞
n=1 ∪ {X} so that

∑∞
n=1 ‖E (Xn − X)‖p

∞ < ∞.

Proof. (i) Since U is a bounded covering of N then Aa (x) →֒ C [0, 1] if x ∈
lp (C [0, 1]). Indeed, if a ∈ R and N ∈ N we obtain

[

N
∑

n=1

‖Aa
n (x)‖p

∞

]1/p

6

[

N
∑

n=1

(

∑

m∈Un

|an,m| ‖xm‖∞

)p]1/p

(4.6)

6
∑

m∈∪1∪···∪UN

‖xm‖∞

(

∑

n∈N:m∈Un

|an,m|p
)1/p
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=
∑

m∈∪1∪···∪UN

‖xm‖∞ ·
∣

∣an(m),m

∣

∣

6 σ (a)
1/q · ‖x‖lp(C[0,1])

Letting N → ∞ from (4.6) we see that Aa (x) ∈ lp (C [0, 1]) and

‖Aa(x)‖lp(C[0,1]) 6 σ (a)
1/q · ‖x‖lp(C[0,1]) .

(ii) It is now clear that Aa is linear and that ‖Aa‖ 6 σ (a)
1/q

.
(iii) Let {Xm}∞m=1 ∪ {X} be a random process of Mdx ([0, 1] ,L [0, 1] , C [0, 1]) on

the Banach sequence space lp (C [0, 1]) so that Xm
a.c.
−−→ X . Given a ∈ R we will

show that Aa
n ({Xm − X}∞m=1)

a.c
−−→ 0. For, evidently we can assume σ (a) > 0. If

ε > 0 and n ∈ N we write

{

‖Aa
n ({Xm − X}∞m=1)‖∞ > ε

}

=







∥

∥

∥

∥

∥

∑

m∈Un

an,m · (Xm − X)

∥

∥

∥

∥

∥

∞

> ε







⊆

{

σ (a)
1/q

∑

m∈Un

‖Xm − X‖∞ > ε

}

⊆
⋃

m∈Un

{

‖Xm − X‖∞ >
ε

σ (a)1/q · card (Un)

}

⊆
⋃

m∈Un

{

‖Xm − X‖∞ >
ε

σ (a)
1/q · η (a)

}

.

Consequently, if N ∈ N we see that

N
∑

n=1

∫ 1

0

χ{‖Aa
n({Xm−X}∞

m=1)‖
∞

>ε}dt 6
N
∑

n=1

∑

m∈Un

∫ 1

0

χ{
‖Xm−X‖

∞
> ε

σ(a)1/q
·η(a)

}dt

6
∞
∑

m=1

∫ 1

0

χ{
‖Xm−X‖

∞
> ε

σ(a)1/q
·η(a)

}dt < ∞,

and our claim follows.
(iv) Let Xn

E
−→ X , a ∈ R. If n ∈ N and

Yn , Aa
n ({Xm − X}∞m=1) ,

∑

m∈Un

an,m · (Xm − X)

it will suffice to show that
∞
∑

n=1

‖E (Yn)‖p
∞ < ∞. (4.7)

Indeed, we can assume X = 0 a.e. Thus, if υ ∈ N and

‖φ1‖BV[0,1] = · · · = ‖φυ‖BV[0,1] = 1
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we have
∣

∣

∣

∣

∣

υ
∑

n=1

〈E (Yn) , φn〉

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

υ
∑

n=1

∫ 1

0

(
∫ 1

0

Yn(t)(s)dφn (s)

)

dt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

υ
∑

n=1

∫ 1

0

(

∫ 1

0

∑

m∈Un

an,mXm (t) dφn (s)

)

dt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

υ
∑

n=1

∑

m∈Un

an,m 〈E(Xm), φn〉

∣

∣

∣

∣

∣

6

υ
∑

n=1

∑

m∈Un

|an,m| ‖E(Xm)‖∞

6

υ
∑

n=1

(

∑

m∈Un

‖E(Xm)‖p
∞

)1/p(
∑

m∈Un

|an,m|q
)1/q

6

(

∞
∑

n=1

‖E (Xn)‖p
∞

)1/p

σ (a)1/q .

But lp (C [0, 1])
∗ ≈ lq (BV [0, 1]) , where ≈ denotes an isometric isomorphism of

Banach spaces. Therefore,

(

υ
∑

n=1

‖E (Yn)‖p
∞

)1/p

= sup
‖φ1‖BV[0,1]=···=‖φυ‖BV[0,1]=1

∣

∣

∣

∣

∣

υ
∑

n=1

〈E (Yn) , φn〉

∣

∣

∣

∣

∣

6

(

∞
∑

n=1

‖E (Xn)‖p
∞

)1/p

σ (a)1/q ,

and (4.7) follows since υ is arbitrary. �
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