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Abstract

An almost sure limit theorem with logarithmic averages for a-mixing ran-
dom fields is presented.
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1. Introduction

Let N be the set of the positive integers, R the set of real numbers and B the
o-algebra of Borel sets of R. Let ¢, be the unit mass at point x, that is 0,: B — R,
0.(B) =1if x € B and 0,(B) = 0 if z ¢ B. Denote — p the weak convergence
to the probability measure p. In the following all random variables defined on a
fixed probability space (€2, F,P). Almost sure (a.s.) limit theorems state that

1< .
Do de(ka(W) — 4 as n — oo, for almost every w € €,
" k=1

where (i (k € N) are random variables. The simplest form of it is the so-called
classical a.s. central limit theorem, in which ¢, = (X; + --- + X)/Vk, where
X1, X5, ... are independent identically distributed (i.i.d.) random variables with
expectation 0 and variance 1, moreover dy, = 1/k, D,, = logn and pu is the standard
normal distribution N (0,1). (See Berkes [1] for an overview.)

Let N¢ be the positive integer d-dimensional lattice points, where d is a fixed
positive integer. In this paper k = (kq,...,kq),n = (n1,...,n4),... € N Rela-
tions <, £, min, max, — etc. are defined coordinatewise, i.e. n — oo means that
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n; — oo forall ¢ € {1,...,d}. Let |n| = Hl 1 n; and |logn| = H?:l log, n;, where
log, z =logxifx >e and log, z =1 if < e. The general form of the multiindex
version of the a.s. limit theorems is

— Z dxd¢, (w) —~» 4 as n— oo, foralmostevery w €,
k<n

where {(x,k € N%} is a random field (multiindex sequence of random variables).
In the multiindex version of the classical a.s. central limit theorem Xj,i € N¢
i.i.d. random variables with expectation 0 and variance 1, (i = Zigk Xi/\/m,
dx = 1/|k|, Dn = 1/|logn| and p = N(0,1). It is well-known that generally the
multiindex cases are not direct consequences of the corresponding theorems for
ordinary sequences.

Fazekas and Rychlik proved in [5] a general a.s. limit theorem for multiindex
sequences of metric space valued random elements. Tomacs proved in [8] an a.s.
central limit theorem for m-dependent random fields. In this paper we shall prove
an a.s. limit theorem with logarithmic averages for a-mixing random fields (The-
orem 2.5). Its onedimension version for p = AN(0,1) is proved by Fazekas and
Rychlik (see [4, Proposition 3.2]). In the proof of Theorem 2.5 we shall use a mul-
tiindex strong law of large numbers (Theorem 2.1). In the proof of Theorem 2.3
we shall follow ideas of Berkes and Csaki [2].

Throughout the paper we use the following notation. Let R, be the set of the
positive real numbers. If a1, as,... € R then in case A = ) let maxge ar = 0 and

> kea@r = 0. Let [A] be the closure of A C R and 04 = [A] N[ A].

If ¢ is a random variable, then let pe denote the distribution of &, [|{|le =
inf{lc c R:P(|¢] <c¢) =1} and 0(¢) = {¢71(B) : B € B}.

In the following let {ckl) € R,k € N} be increasing sequences with ck+1/c
O(1), limy,— 00 ) = 0o for each i = 1,...,d, and the sequences {d;C eR,_,keN}
have the next properties: d,(j 1og(ck+1/c ) for all k € Nand i = 1,...,d,
moreover y - d,(:) =oo for each i =1,...,d. Let dyx = Hd d,(; , Zk<n
and DY) =S dl?,

2. Results

Theorem 2.1. Let {&,i € N} be a uniformly bounded random field, namely there
exists ¢ € R, such that |&| < ¢ a.s. for all i € N%.  Assume that there erist
c1,c2,¢ € R, and ax ) € R (k,1€ N9) such that

d — 11—
Z Z didione < 1Dy, H (1og DSL?) 1 (2.1)
i=1

1<n k<n
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for all enough large n; € N, and
d (4)

—1—¢
Crriy
|E€k§l| < e H (10g+ log, ?) + a1 (2'2)

i=1 ¢
for each k,1 € N¢, where h = min{k,1} and m = max{k,1}. Then

1
D—degk—>0 as n— oo a.s.

% k<n
Definition 2.2. The a-mizing coefficient of the random variables £ and 7 is

a(g,n) = a(a(€),a(n) = Aiu%) |P(AB) — P(A)P(B)|.
Bea(n)

Theorem 2.3. Let {(x,k € N} be a random field. Assume that there evist ran-
dom variables (ny (h <1) and ¢1,co,c3,6 € R, such that

|Gk — Caxl =1 as. YhkeN?  for which h <Kk, (2.3)
d ('L) —2—2¢
&8
Emin {(¢ — ¢n1)? 1} < e H <log+ log., %) (2.4)
i=1 Ch,

for all h,1 € N¢ for which h <1, and

1

d —1—¢
Z Z didioney < c3D2 H (1og DS}) (2.5)

I<Snk<n i=1

for all enough large n; € N, where a1 = a(lk, (1) with t = min{k,1}. Then for
any probability distribution p the following two statements are equivalent:

1 w
(1) o Z did¢, () — i as n — 0o, for almost every w € Q;
n k<n

1 w
(2) D_nkg;jdk'uCk — [t as N — 0.

Definition 2.4. The a-miring coefficient of the random field { Xy, n € N} is

ak) =swa | | Jo(Xi), |J o(Xi) ], keN.
” i<n iZn+k



126 T. Toémdcs

Theorem 2.5. Let {X,,n € N4} be an a-miving random field with mizing coeffi-
cient c
k) <
o) < Tiogw
for all k € N, where ¢ € R, is fived. Let Sy = > k<n Xk and o2 =ES2 > 0.

Assume that E X; = 0 and EXi2 < oo forallic€ N¢, moreover there exist c1,co €
R, and 8 > 2/log?2 such that

(2.6)

1S1| > cron  a.s. VL, ke N?  for which 1<k (2.7)
and

S2 [h[\” a
Emin{—g, 1} < e (W) Vh,1 € N* for which h <1, (2.8)
91

where v = 2h if 2h < 1 and r = 1 otherwise. If pc, — p as n — oo, where
Cn = Sn/on and p is a probability distribution, then

1 1 y
|logn| Z dek(w) — p as n— oo, foralmost every w €.
k<n

3. Lemmas

You can find the proof of the next lemma in [6].
Lemma 3.1 (Covariance inequality). If & and n are bounded random variables,
then
[ cov (&, m)| < 4§, m)lI€llso 17l -

The proof of the next lemma follows from that of Theorem 11.3.3 and Corol-
lary 11.3.4 in [3].

Lemma 3.2. Let BL denote the set of all bounded, real-valued Lipshitz function
on R. If u and p, are distributions (n € N), then there exists a countable set
M C BL (depending on 1) such that the following are equivalent:

(1) pn — p as n — oo;
(2) [gdpn — [gdp as n— oo for all g € M.
Lemma 3.3 (Theorem 1 of [7], p. 309). If u and p, are distributions (n € N),
then the following are equivalent:
(1) pn — p as n — oo;
(2) pn(A) — p(A) as n — oo for all A € B for which u(0A) = 0.
Lemma 3.4. If p and py are distributions (n € N%) and pn, — p as n — oo,
then .
D—deukLu as n — oo.

n k<n
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Proof. By > 7, d,(c? = oo we have
d (@)
1 <k <y Ape.
il E dkznw—’l as n—oo Vm e N%

(1)
" m<k<n i=1 Zkigni ks

which implies, that

1
—dezl—D— Z de —0 as n—oo VmeN (3.1)

n k<n ? m<k<n
k¢m
Let f: R — R be a bounded and continuous function and K = sup,cp | f(x)|. Then
}/fdun—/fdu‘</Kdun+/Kdu:2K, (3.2)
moreover by fin, — p and (3.1), for any € > 0 there exists n(¢) € N? such that
‘/fmm /fm4<— (3.3)
and
Z dx < & (3'4)
n k<n
k¥n(e)
for all n > n(e). With notation v, = D%, > k<n dpi the inequalities (3.2), (3.3)

and (3.4) 1mp1y, that

‘/fdvn /fdu} 1nzdk/fdﬂk_/fdu}

de/fduk—/fdﬂ‘+—n dx

/f@m—/f@‘

n

k<n n(e)<k<n
k;én e)
1 e € €
D Z dg - 2K + D_ Z dy 5 5 5 =&
k<n n(e)<k<n
k;én (e)
for all n > n(e). This fact implies the statement. O

4. Proof of the theorems

Proof of Theorem 2.1. By (2.2) and (2.1) we have
2

S odeb | <D0 dedi [E&|

k<n k<nI<n
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OB
< o Z Z H d(Z l <1og+ log+ ( ; ) + e Z Z dxdyox,1

k<nI<n i=1 k<nI<n

HORNE d o
202H Z dz)d(l <log+10g+ ()> —i—chlDf‘H(longﬁ) o (4.1)

i=1k;<l;< i=1
for all enough large n;. Now assume that (k;,[;) € ASfL) , where
Agfi):{(ki,li):ki l; <n; and cl)/c exp(\/Diﬁfj)}.
Then log, log, (cl(j) / c,(;)) > Llog DSfL) , which implies, that

—1—¢
(4)
(4) 4(0) i
Z dy. d;. <log+10g+ (l)>

(ki-,li)GAs;)

N —1l—¢ . . N\ 2 o\ —1l—e
<2 (10gD) Y ald) <2 (D) (10sDP) . (42)
(ki L) €A

If (ki 1) € nl), where
Bflii) = {(ki,li) t ki <1 <n;and cl(f)/cl(C < exp \/Dm }

then with notation M, = supk(c,iiil/c,(j)), we get

(i) (4) C(i)

log Lt = log Lt + log D()
(@ ) RO RO
Cr; ; Cr;

Thus we have the following inequality, where Bfl?) {l (ki ;) € l)}.

(’L —1—¢
i) (7 G i) (%
S dla? <log+10g+ (Z)> < > dPd?
(

(ki li)eBS) ki,li)eBS)
n maxBi)kv (1)
(z 1+ () z +1 ~ ) o Clit1
< D4 W g =i < > di) D, log—
(ki l;)€BS) ki=lyeB(), k=1 li=ki bi
n " max B( ) l(l X ni () CI('I?B.XBU)
_ % +1 2 nq kg
= Z dki log H (l = Z d,’ log 70( B
ki=1 li=k; , ki=1

<Zd”<1ogM+ ) ZdZ)Q\/DT—Q(D(Z)

ki=1 ki=1
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for all enough large n;. It follows from this inequality and (4.2) that

(i) 5(9) Cl@ o
> dldy 1og+1og+c(—;)

ki<li<n; ki

N2 N —1— N\ 3/2
<2+ (D) (1og D)) +2(DY)

<2 (0’ ((ngSf))_l_s - (DSJ?)_W)

—1—¢

< 92+ ( Dgl?)r“ (log D;;;)) (4.3)

for all enough large n;. In the last step we use the inequality (DSfL) )_1/ 2 L
(logD,(fiy)_l_E, which follows from (D,(fi))l/Q/(logD,(fi?)1+5 — 00 as n; — o0o. By
(4.1) and (4.3) we get

2
Z diéx | < const. ﬁ (D,(Z?)2 (log DSZ?) o (4.4)
i=1

k<n

for all enough large n;. Let
n;(t) = min {ni : D,(fi) < exp(tll;if)}

and n(t) = (n1(t1),...,na(tq)). Since n;(t;) — oo as t; — oo, thus by (4.4) there
exists T € N?, such that

d 1o
E Z Z A& | < Z DQl const. H (Df;)(t )) (log Dl )(t )) 1—¢
1=1

>T Dae) k<n(t) t>T n(t)
2
\Z constH( s (t2) ) o 5/2—constHZt_1 /2 < o,
t>T n(t i=14;=T;
which implies
Z diéx — 0 as t— o0 as. (4.5)
n(t) ()

For all n € N¢ there exists t € N? such that n(t) < n < n(t + 1), where 1 =
(1,...,1) € N% Thus the uniformly bounding implies

‘—deﬁk > | 5 Y e

A ‘
k<n )k<n(t n k<n

k&n(t)
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Z déx| + Z dy - c

‘ n(t) ()

k<n
k;(n t)
D,
‘ Z dyéx +c< D, —n® ) a.s. (4.6)
0(t) e <n(t) n(t+1)

The reader can easy verify that Dy4)/Dn+1) — 1 as t — 0o, so by (4.5) and
(4.6) imply the statement of Theorem 2.1. O

Proof of Theorem 2.3. Let g € M, where M is defined in Lemma 3.2. Then
there exists K > 1 such that

lg(z)] < K and |g(z) —g(y)| < K|z —y| Va,yeR. (4.7)

We shall prove, that with notation & = ¢((k) — E ¢((k) the conditions of Theo-
rem 2.1 hold true. By (2.5) we get (2.1), moreover by (4.7) we have

6kl < lg(G)l + Elg(Ge)| < 2K,

thus {&x, k € N9} is a uniformly bounded random field. Now we turn to (2.2). Let
t = min{k,1}. Lemma 3.1 and (4.7) imply

|E & (9(Gen) = Eg(Q)) ] = [cov(g(¢), 9(Gen)) | < 4K ay. (4.8)

On the other hand with notation k1 = g(G) — g(¢ea)

[E&amer] = |eov(9(G0)mer)| < (Bg*(G) Engy) " (49)
It is easy to see that (g(z) — g(y))2 < 4K?min {(z — y)?,1}, thus

Enjy <4K?min {(G - G1)? 1} (4.10)

By (4.7) and (2.3) we have ¢?((x) < K?(1+1/c1)? and

2 2
73 (G) < K*(cy +1)2 = K2 (1 + i) < K? (1 + é) (G — Cex)?,

C1

which imply ¢?((x) < const. min {((k — Ge.x)?, 1} a.s. Using this inequality, (4.10),
(4.9) and (2.4) we get the following.

| &eme| < const. (Emin { (G — ¢ex)?, 1} Emin { (G — Cen)?, 1})1/2

d (2) 0\ '
Cp. Q.
< const. <| | log. log., W -log, log, W)
c Cy,

=1 ti

d ORI
= const. <H log, log, %) , (4.11)
c

i=1 ti
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where m = max{k,1}. Since |E&&| < |E&ama| + [E&(9(¢en) — Eg(G))|, using
(4.11) and (4.8) we have (2.2). Now applying Theorem 2.1 we get
Z dyék — 0 as nm— oo as. (4.12)

k<n

Let un = D%. Zkgn dific, and pin o = D%. Zkgn i, (w) (W € Q).
First assume that (2) is true, that is gy, — g as n — oo. Then Lemma 3.2
implies

/gdunﬁ/gdu as n — oo, (4.13)

and (4.12) implies

/gdun,w - /gdun = Z i€ (w (4.14)

k<n

as n — oo, for almost every w € Q. By (4.13) and (4.14) we get [ g dpin,w — [ gdp
as n — oo, for almost every w € Q, thus by Lemma 3.2 we get (1).

Finally assume that (1) is true, that is pn . — g as n — oo, for almost every
w € N Let A € Band u(0A) = 0. Then by Lemma 3.3 pin,(A) — p(A) as
n — oo, for almost every w € Q. It follows that jin(A) = [ pn,w(A)dP(w) — p(A)
as n — o0o. Thus using Lemma 3.3 we get (2). This completes the proof of
Theorem 2.3. O

Proof of Theorem 2.5. Let d,(;) =1/k, c,(;) = k182 ¢ = (Blog2—2)/2, k1 =

—Sok/o1if 2k < land (k1 = 0if k <1and 2k £ 1. We shall prove that conditions
of Theorem 2.3 hold. It is easy to see that a1 < a(k) for all k,1 € N¢, where e 1
is defined in Theorem 2.3. Therefore by (2.6) we have

>3 dhon <33 G TiogH]

I<n k<n I<n k<n
n; 1
4.15
CH(;klog k) <Zl> (4.15)
It is well-known that Y_,_, 1 ~ logn and >, _, klo ~ loglog n, where a,, ~ b,

iff limy,— o0 @y /by, = 1. So by (4.15) we have

d d
Z Z dxdiax 1 < const. H loglogn; - logn; < const. H (logn;) (log logn;)~ I—e
1<n k<n i=1 i=1

d d

< const. H(log ni)*(log D,(fi))_l_‘S < const.D2 H(log Dﬁfi))_l_‘S

i=1 =1



132 T. Toémdcs

for all enough large n;, which implies (2.5). Using (2.8)

(i) —2—2¢
Emin {(( — (na)? 1} = Emm{SQ/al,l} cons‘cl_[<1og+log+ C()>

=1

for all h,1 € N? for which h < I, where r = 2h if 2h <l and r = 1if h < 1 and
2h £ 1, so we get (2.4). The reader can readily verify that (2.3) is hold as well.
Now applying Lemma 3.4 and Theorem 2.3, we have

= Z 5<k(w) as n — oo, for almost every w € Q.
P
Since >y < % ~ |logn|, we get the statement. O
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