An almost sure limit theorem for α-mixing random fields

Tibor Tómács
Department of Applied Mathematics
Eszterházy Károly College, Eger, Hungary

Submitted 15 September 2009; Accepted 3 November 2009

Abstract

An almost sure limit theorem with logarithmic averages for α-mixing random fields is presented.

Keywords: Almost sure limit theorem, multiindex, random field, α-mixing random field, strong law of large numbers
MSC: 60F15, 60F17

1. Introduction

Let \mathbb{N} be the set of the positive integers, \mathbb{R} the set of real numbers and \mathcal{B} the σ-algebra of Borel sets of \mathbb{R}. Let δ_{x} be the unit mass at point x, that is $\delta_{x}: \mathcal{B} \rightarrow \mathbb{R}$, $\delta_{x}(B)=1$ if $x \in B$ and $\delta_{x}(B)=0$ if $x \notin B$. Denote $\xrightarrow{\mathrm{w}} \mu$ the weak convergence to the probability measure μ. In the following all random variables defined on a fixed probability space $(\Omega, \mathcal{F}, \mathrm{P})$. Almost sure (a.s.) limit theorems state that

$$
\frac{1}{D_{n}} \sum_{k=1}^{n} d_{k} \delta_{\zeta_{k}(\omega)} \xrightarrow{\mathrm{w}} \mu \quad \text { as } \quad n \rightarrow \infty, \quad \text { for almost every } \quad \omega \in \Omega
$$

where $\zeta_{k}(k \in \mathbb{N})$ are random variables. The simplest form of it is the so-called classical a.s. central limit theorem, in which $\zeta_{k}=\left(X_{1}+\cdots+X_{k}\right) / \sqrt{k}$, where X_{1}, X_{2}, \ldots are independent identically distributed (i.i.d.) random variables with expectation 0 and variance 1 , moreover $d_{k}=1 / k, D_{n}=\log n$ and μ is the standard normal distribution $\mathcal{N}(0,1)$. (See Berkes [1] for an overview.)

Let \mathbb{N}^{d} be the positive integer d-dimensional lattice points, where d is a fixed positive integer. In this paper $\mathbf{k}=\left(k_{1}, \ldots, k_{d}\right), \mathbf{n}=\left(n_{1}, \ldots, n_{d}\right), \ldots \in \mathbb{N}^{d}$. Relations \leqslant, \nless, min, max,\rightarrow etc. are defined coordinatewise, i.e. $\mathbf{n} \rightarrow \infty$ means that
$n_{i} \rightarrow \infty$ for all $i \in\{1, \ldots, d\}$. Let $|\mathbf{n}|=\prod_{i=1}^{d} n_{i}$ and $|\log \mathbf{n}|=\prod_{i=1}^{d} \log _{+} n_{i}$, where $\log _{+} x=\log x$ if $x \geqslant e$ and $\log _{+} x=1$ if $x<e$. The general form of the multiindex version of the a.s. limit theorems is

$$
\frac{1}{D_{\mathbf{n}}} \sum_{\mathbf{k} \leqslant \mathbf{n}} d_{\mathbf{k}} \delta_{\zeta_{\mathbf{k}}(\omega)} \xrightarrow{\mathbf{w}} \mu \quad \text { as } \quad \mathbf{n} \rightarrow \infty, \quad \text { for almost every } \quad \omega \in \Omega
$$

where $\left\{\zeta_{\mathbf{k}}, \mathbf{k} \in \mathbb{N}^{d}\right\}$ is a random field (multiindex sequence of random variables). In the multiindex version of the classical a.s. central limit theorem $X_{\mathbf{i}}, \mathbf{i} \in \mathbb{N}^{d}$ i.i.d. random variables with expectation 0 and variance $1, \zeta_{\mathbf{k}}=\sum_{\mathbf{i} \leqslant \mathbf{k}} X_{\mathbf{i}} / \sqrt{|\mathbf{k}|}$, $d_{\mathbf{k}}=1 /|\mathbf{k}|, D_{\mathbf{n}}=1 /|\log \mathbf{n}|$ and $\mu=\mathcal{N}(0,1)$. It is well-known that generally the multiindex cases are not direct consequences of the corresponding theorems for ordinary sequences.

Fazekas and Rychlik proved in [5] a general a.s. limit theorem for multiindex sequences of metric space valued random elements. Tómács proved in [8] an a.s. central limit theorem for m-dependent random fields. In this paper we shall prove an a.s. limit theorem with logarithmic averages for α-mixing random fields (Theorem 2.5). Its onedimension version for $\mu=\mathcal{N}(0,1)$ is proved by Fazekas and Rychlik (see [4, Proposition 3.2]). In the proof of Theorem 2.5 we shall use a multiindex strong law of large numbers (Theorem 2.1). In the proof of Theorem 2.3 we shall follow ideas of Berkes and Csáki [2].

Throughout the paper we use the following notation. Let \mathbb{R}_{+}be the set of the positive real numbers. If $a_{1}, a_{2}, \ldots \in \mathbb{R}$ then in case $A=\emptyset$ let $\max _{k \in A} a_{k}=0$ and $\sum_{k \in A} a_{k}=0$. Let $[A]$ be the closure of $A \subset \mathbb{R}$ and $\partial A=[A] \cap[\bar{A}]$.

If ξ is a random variable, then let μ_{ξ} denote the distribution of $\xi,\|\xi\|_{\infty}=$ $\inf \{c \in \mathbb{R}: \mathrm{P}(|\xi| \leqslant c)=1\}$ and $\sigma(\xi)=\left\{\xi^{-1}(B): B \in \mathcal{B}\right\}$.

In the following let $\left\{c_{k}^{(i)} \in \mathbb{R}_{+}, k \in \mathbb{N}\right\}$ be increasing sequences with $c_{k+1}^{(i)} / c_{k}^{(i)}=$ $O(1), \lim _{n \rightarrow \infty} c_{n}^{(i)}=\infty$ for each $i=1, \ldots, d$, and the sequences $\left\{d_{k}^{(i)} \in \mathbb{R}_{+}, k \in \mathbb{N}\right\}$ have the next properties: $d_{k}^{(i)} \leqslant \log \left(c_{k+1}^{(i)} / c_{k}^{(i)}\right)$ for all $k \in \mathbb{N}$ and $i=1, \ldots, d$, moreover $\sum_{k=1}^{\infty} d_{k}^{(i)}=\infty$ for each $i=1, \ldots, d$. Let $d_{\mathbf{k}}=\prod_{i=1}^{d} d_{k_{i}}^{(i)}, D_{\mathbf{n}}=\sum_{\mathbf{k} \leqslant \mathbf{n}} d_{\mathbf{k}}$ and $D_{n_{i}}^{(i)}=\sum_{k=1}^{n_{i}} d_{k}^{(i)}$.

2. Results

Theorem 2.1. Let $\left\{\xi_{\mathbf{i}}, \mathbf{i} \in \mathbb{N}^{d}\right\}$ be a uniformly bounded random field, namely there exists $c \in \mathbb{R}_{+}$such that $\left|\xi_{\mathbf{i}}\right| \leqslant c$ a.s. for all $\mathbf{i} \in \mathbb{N}^{d}$. Assume that there exist $c_{1}, c_{2}, \varepsilon \in \mathbb{R}_{+}$and $\alpha_{\mathbf{k}, \mathbf{l}} \in \mathbb{R}\left(\mathbf{k}, \mathbf{l} \in \mathbb{N}^{d}\right)$ such that

$$
\begin{equation*}
\sum_{1 \leqslant \mathbf{n}} \sum_{\mathbf{k} \leqslant \mathbf{n}} d_{\mathbf{k}} d_{\mathbf{1}} \alpha_{\mathbf{k}, \mathbf{1}} \leqslant c_{1} D_{\mathbf{n}}^{2} \prod_{i=1}^{d}\left(\log D_{n_{i}}^{(i)}\right)^{-1-\varepsilon} \tag{2.1}
\end{equation*}
$$

for all enough large $n_{i} \in \mathbb{N}$, and

$$
\begin{equation*}
\left|\mathrm{E} \xi_{\mathbf{k}} \xi_{\mathbf{1}}\right| \leqslant c_{2}\left(\prod_{i=1}^{d}\left(\log _{+} \log _{+} \frac{c_{m_{i}}^{(i)}}{c_{h_{i}}^{(i)}}\right)^{-1-\varepsilon}+\alpha_{\mathbf{k}, \mathbf{1}}\right) \tag{2.2}
\end{equation*}
$$

for each $\mathbf{k}, \mathbf{l} \in \mathbb{N}^{d}$, where $\mathbf{h}=\min \{\mathbf{k}, \mathbf{l}\}$ and $\mathbf{m}=\max \{\mathbf{k}, \mathbf{l}\}$. Then

$$
\frac{1}{D_{\mathbf{n}}} \sum_{\mathbf{k} \leqslant \mathbf{n}} d_{\mathbf{k}} \xi_{\mathbf{k}} \rightarrow 0 \quad \text { as } \quad \mathbf{n} \rightarrow \infty \quad \text { a.s. }
$$

Definition 2.2. The α-mixing coefficient of the random variables ξ and η is

$$
\alpha(\xi, \eta)=\alpha(\sigma(\xi), \sigma(\eta))=\sup _{\substack{A \in \sigma(\xi) \\ B \in \sigma(\eta)}}|\mathrm{P}(A B)-\mathrm{P}(A) \mathrm{P}(B)|
$$

Theorem 2.3. Let $\left\{\zeta_{\mathbf{k}}, \mathbf{k} \in \mathbb{N}^{d}\right\}$ be a random field. Assume that there exist random variables $\zeta_{\mathbf{h}, \mathbf{1}}(\mathbf{h} \leqslant \mathbf{l})$ and $c_{1}, c_{2}, c_{3}, \varepsilon \in \mathbb{R}_{+}$such that

$$
\begin{align*}
& \left|\zeta_{\mathbf{k}}-\zeta_{\mathbf{h}, \mathbf{k}}\right| \geqslant c_{1} \quad \text { a.s. } \quad \forall \mathbf{h}, \mathbf{k} \in \mathbb{N}^{d} \quad \text { for which } \quad \mathbf{h} \leqslant \mathbf{k}, \tag{2.3}\\
& \operatorname{E} \min \left\{\left(\zeta_{1}-\zeta_{\mathbf{h}, \mathbf{1}}\right)^{2}, 1\right\} \leqslant c_{2} \prod_{i=1}^{d}\left(\log _{+} \log _{+} \frac{c_{l_{i}}^{(i)}}{c_{h_{i}}^{(i)}}\right)^{-2-2 \varepsilon} \tag{2.4}
\end{align*}
$$

for all $\mathbf{h}, \mathbf{l} \in \mathbb{N}^{d}$ for which $\mathbf{h} \leqslant \mathbf{1}$, and

$$
\begin{equation*}
\sum_{1 \leqslant \mathbf{n}} \sum_{\mathbf{k} \leqslant \mathbf{n}} d_{\mathbf{k}} d_{\mathbf{1}} \alpha_{\mathbf{k}, 1} \leqslant c_{3} D_{\mathbf{n}}^{2} \prod_{i=1}^{d}\left(\log D_{n_{i}}^{(i)}\right)^{-1-\varepsilon} \tag{2.5}
\end{equation*}
$$

for all enough large $n_{i} \in \mathbb{N}$, where $\alpha_{\mathbf{k}, \mathbf{l}}=\alpha\left(\zeta_{\mathbf{k}}, \zeta_{\mathbf{t}, \mathbf{l}}\right)$ with $\mathbf{t}=\min \{\mathbf{k}, \mathbf{l}\}$. Then for any probability distribution μ the following two statements are equivalent:
(1) $\frac{1}{D_{\mathbf{n}}} \sum_{\mathbf{k} \leqslant \mathbf{n}} d_{\mathbf{k}} \delta_{\zeta_{\mathbf{k}}(\omega)} \xrightarrow{\mathbf{w}} \mu$ as $\mathbf{n} \rightarrow \infty$, for almost every $\omega \in \Omega$;
(2) $\frac{1}{D_{\mathbf{n}}} \sum_{\mathbf{k} \leqslant \mathbf{n}} d_{\mathbf{k}} \mu_{\zeta_{\mathbf{k}}} \xrightarrow{\mathrm{w}} \mu$ as $\mathbf{n} \rightarrow \infty$.

Definition 2.4. The α-mixing coefficient of the random field $\left\{X_{\mathbf{n}}, \mathbf{n} \in \mathbb{N}^{d}\right\}$ is

$$
\alpha(\mathbf{k})=\sup _{\mathbf{n}} \alpha\left(\bigcup_{\mathbf{i} \leqslant \mathbf{n}} \sigma\left(X_{\mathbf{i}}\right), \bigcup_{\mathbf{i} \nless \mathbf{n}+\mathbf{k}} \sigma\left(X_{\mathbf{i}}\right)\right), \quad \mathbf{k} \in \mathbb{N}^{d} .
$$

Theorem 2.5. Let $\left\{X_{\mathbf{n}}, \mathbf{n} \in \mathbb{N}^{d}\right\}$ be an α-mixing random field with mixing coefficient

$$
\begin{equation*}
\alpha(\mathbf{k}) \leqslant \frac{c}{|\log \mathbf{k}|} \tag{2.6}
\end{equation*}
$$

for all $\mathbf{k} \in \mathbb{N}^{d}$, where $c \in \mathbb{R}_{+}$is fixed. Let $S_{\mathbf{n}}=\sum_{\mathbf{k} \leqslant \mathbf{n}} X_{\mathbf{k}}$ and $\sigma_{\mathbf{n}}^{2}=\mathrm{E} S_{\mathbf{n}}^{2}>0$. Assume that $\mathrm{E} X_{\mathbf{i}}=0$ and $\mathrm{E} X_{\mathbf{i}}^{2}<\infty$ for all $\mathbf{i} \in \mathbb{N}^{d}$, moreover there exist $c_{1}, c_{2} \in$ \mathbb{R}_{+}and $\beta>2 / \log 2$ such that

$$
\begin{equation*}
\left|S_{\mathbf{l}}\right| \geqslant c_{1} \sigma_{\mathbf{k}} \quad \text { a.s. } \quad \forall \mathbf{l}, \mathbf{k} \in \mathbb{N}^{d} \quad \text { for which } \quad \mathbf{l} \leqslant \mathbf{k} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Emin}\left\{\frac{S_{\mathbf{r}}^{2}}{\sigma_{1}^{2}}, 1\right\} \leqslant c_{2}\left(\frac{|\mathbf{h}|}{|\mathbf{l}|}\right)^{\beta} \quad \forall \mathbf{h}, \mathbf{l} \in \mathbb{N}^{d} \quad \text { for which } \quad \mathbf{h} \leqslant \mathbf{l} \tag{2.8}
\end{equation*}
$$

where $\mathbf{r}=2 \mathbf{h}$ if $2 \mathbf{h}<\mathbf{1}$ and $\mathbf{r}=1$ otherwise. If $\mu_{\zeta_{\mathbf{n}}} \xrightarrow{\mathbf{w}} \mu$ as $\mathbf{n} \rightarrow \infty$, where $\zeta_{\mathbf{n}}=S_{\mathbf{n}} / \sigma_{\mathbf{n}}$ and μ is a probability distribution, then

$$
\frac{1}{|\log \mathbf{n}|} \sum_{\mathbf{k} \leqslant \mathbf{n}} \frac{1}{|\mathbf{k}|} \delta_{\zeta_{\mathbf{k}}(\omega)} \xrightarrow{\mathbf{w}} \mu \quad \text { as } \quad \mathbf{n} \rightarrow \infty, \quad \text { for almost every } \quad \omega \in \Omega \text {. }
$$

3. Lemmas

You can find the proof of the next lemma in [6].
Lemma 3.1 (Covariance inequality). If ξ and η are bounded random variables, then

$$
|\operatorname{cov}(\xi, \eta)| \leqslant 4 \alpha(\xi, \eta)\|\xi\|_{\infty}\|\eta\|_{\infty}
$$

The proof of the next lemma follows from that of Theorem 11.3.3 and Corollary 11.3.4 in [3].

Lemma 3.2. Let $B L$ denote the set of all bounded, real-valued Lipshitz function on \mathbb{R}. If μ and μ_{n} are distributions $(n \in \mathbb{N})$, then there exists a countable set $M \subset B L$ (depending on μ) such that the following are equivalent:
(1) $\mu_{n} \xrightarrow{\mathrm{w}} \mu$ as $n \rightarrow \infty$;
(2) $\int g \mathrm{~d} \mu_{n} \rightarrow \int g \mathrm{~d} \mu$ as $n \rightarrow \infty$ for all $g \in M$.

Lemma 3.3 (Theorem 1 of [7], p. 309). If μ and μ_{n} are distributions $(n \in \mathbb{N})$, then the following are equivalent:
(1) $\mu_{n} \xrightarrow{\mathrm{w}} \mu$ as $n \rightarrow \infty$;
(2) $\mu_{n}(A) \rightarrow \mu(A)$ as $n \rightarrow \infty$ for all $A \in \mathcal{B}$ for which $\mu(\partial A)=0$.

Lemma 3.4. If μ and $\mu_{\mathbf{n}}$ are distributions $\left(\mathbf{n} \in \mathbb{N}^{d}\right)$ and $\mu_{\mathbf{n}} \xrightarrow{\mathrm{w}} \mu$ as $\mathbf{n} \rightarrow \infty$, then

$$
\frac{1}{D_{\mathbf{n}}} \sum_{\mathbf{k} \leqslant \mathbf{n}} d_{\mathbf{k}} \mu_{\mathbf{k}} \xrightarrow{\mathbf{w}} \mu \quad \text { as } \quad \mathbf{n} \rightarrow \infty .
$$

Proof. By $\sum_{k_{i}=1}^{\infty} d_{k_{i}}^{(i)}=\infty$ we have

$$
\frac{1}{D_{\mathbf{n}}} \sum_{\mathbf{m} \leqslant \mathbf{k} \leqslant \mathbf{n}} d_{\mathbf{k}}=\prod_{i=1}^{d} \frac{\sum_{m_{i} \leqslant k_{i} \leqslant n_{i}} d_{k_{i}}^{(i)}}{\sum_{k_{i} \leqslant n_{i}} d_{k_{i}}^{(i)}} \rightarrow 1 \quad \text { as } \quad \mathbf{n} \rightarrow \infty \quad \forall \mathbf{m} \in \mathbb{N}^{d}
$$

which implies, that

$$
\begin{equation*}
\frac{1}{D_{\mathbf{n}}} \sum_{\substack{\mathbf{k} \leqslant \mathbf{n} \\ \mathbf{k} \neq \mathbf{m}}} d_{\mathbf{k}}=1-\frac{1}{D_{\mathbf{n}}} \sum_{\mathbf{m} \leqslant \mathbf{k} \leqslant \mathbf{n}} d_{\mathbf{k}} \rightarrow 0 \quad \text { as } \quad \mathbf{n} \rightarrow \infty \quad \forall \mathbf{m} \in \mathbb{N}^{d} . \tag{3.1}
\end{equation*}
$$

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded and continuous function and $K=\sup _{x \in \mathbb{R}}|f(x)|$. Then

$$
\begin{equation*}
\left|\int f \mathrm{~d} \mu_{\mathbf{n}}-\int f \mathrm{~d} \mu\right| \leqslant \int K \mathrm{~d} \mu_{\mathbf{n}}+\int K \mathrm{~d} \mu=2 K \tag{3.2}
\end{equation*}
$$

moreover by $\mu_{\mathbf{n}} \xrightarrow{\mathrm{w}} \mu$ and (3.1), for any $\varepsilon>0$ there exists $\mathbf{n}(\varepsilon) \in \mathbb{N}^{d}$ such that

$$
\begin{equation*}
\left|\int f \mathrm{~d} \mu_{\mathbf{n}}-\int f \mathrm{~d} \mu\right|<\frac{\varepsilon}{2} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{D_{\mathbf{n}}} \sum_{\substack{\mathbf{k} \leqslant \mathbf{n} \\ \mathbf{k} \neq \mathbf{n}(\varepsilon)}} d_{\mathbf{k}}<\frac{\varepsilon}{4 K} \tag{3.4}
\end{equation*}
$$

for all $\mathbf{n} \geqslant \mathbf{n}(\varepsilon)$. With notation $\gamma_{\mathbf{n}}=\frac{1}{D_{\mathbf{n}}} \sum_{\mathbf{k} \leqslant \mathbf{n}} d_{\mathbf{k}} \mu_{\mathbf{k}}$ the inequalities (3.2), (3.3) and (3.4) imply, that

$$
\begin{aligned}
& \left|\int f \mathrm{~d} \gamma_{\mathbf{n}}-\int f \mathrm{~d} \mu\right| \leqslant \frac{1}{D_{\mathbf{n}}} \sum_{\mathbf{k} \leqslant \mathbf{n}} d_{\mathbf{k}}\left|\int f \mathrm{~d} \mu_{\mathbf{k}}-\int f \mathrm{~d} \mu\right| \\
& =\frac{1}{D_{\mathbf{n}}} \sum_{\substack{\mathbf{k} \leqslant \mathbf{n} \\
\mathbf{k} \neq \mathbf{n}(\varepsilon)}} d_{\mathbf{k}}\left|\int f \mathrm{~d} \mu_{\mathbf{k}}-\int f \mathrm{~d} \mu\right|+\frac{1}{D_{\mathbf{n}}} \sum_{\mathbf{n}(\varepsilon) \leqslant \mathbf{k} \leqslant \mathbf{n}} d_{\mathbf{k}}\left|\int f \mathrm{~d} \mu_{\mathbf{k}}-\int f \mathrm{~d} \mu\right| \\
& <\frac{1}{D_{\mathbf{n}}} \sum_{\substack{\mathbf{k} \leqslant \mathbf{n} \\
\mathbf{k} \ngtr \mathbf{n}(\varepsilon)}} d_{\mathbf{k}} \cdot 2 K+\frac{1}{D_{\mathbf{n}}} \sum_{\mathbf{n}(\varepsilon) \leqslant \mathbf{k} \leqslant \mathbf{n}} d_{\mathbf{k}} \cdot \frac{\varepsilon}{2}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

for all $\mathbf{n} \geqslant \mathbf{n}(\varepsilon)$. This fact implies the statement.

4. Proof of the theorems

Proof of Theorem 2.1. By (2.2) and (2.1) we have

$$
\mathrm{E}\left(\sum_{\mathbf{k} \leqslant \mathbf{n}} d_{\mathbf{k}} \xi_{\mathbf{k}}\right)^{2} \leqslant \sum_{\mathbf{k} \leqslant \mathbf{n}} \sum_{1 \leqslant \mathbf{n}} d_{\mathbf{k}} d_{\mathbf{l}}\left|\mathrm{E} \xi_{\mathbf{k}} \xi_{\mathbf{l}}\right|
$$

$$
\begin{align*}
& \leqslant c_{2} \sum_{\mathbf{k} \leqslant \mathbf{n}} \sum_{1 \leqslant \mathbf{n}} \prod_{i=1}^{d} d_{k_{i}}^{(i)} d_{l_{i}}^{(i)}\left(\log _{+} \log _{+} \frac{c_{m_{i}}^{(i)}}{c_{h_{i}}^{(i)}}\right)^{-1-\varepsilon}+c_{2} \sum_{\mathbf{k} \leqslant \mathbf{n}} \sum_{1 \leqslant \mathbf{n}} d_{\mathbf{k}} d_{\mathbf{l}} \alpha_{\mathbf{k}, \mathbf{l}} \\
& \leqslant 2 c_{2} \prod_{i=1}^{d} \sum_{k_{i} \leqslant l_{i} \leqslant n_{i}} d_{k_{i}}^{(i)} d_{l_{i}}^{(i)}\left(\log _{+} \log _{+} \frac{c_{l_{i}}^{(i)}}{c_{k_{i}}^{(i)}}\right)^{-1-\varepsilon}+c_{2} c_{1} D_{\mathbf{n}}^{2} \prod_{i=1}^{d}\left(\log D_{n_{i}}^{(i)}\right)^{-1-\varepsilon} \tag{4.1}
\end{align*}
$$

for all enough large n_{i}. Now assume that $\left(k_{i}, l_{i}\right) \in A_{n_{i}}^{(i)}$, where

$$
A_{n_{i}}^{(i)}=\left\{\left(k_{i}, l_{i}\right): k_{i} \leqslant l_{i} \leqslant n_{i} \text { and } c_{l_{i}}^{(i)} / c_{k_{i}}^{(i)} \geqslant \exp \left(\sqrt{D_{n_{i}}^{(i)}}\right)\right\} .
$$

Then $\log _{+} \log _{+}\left(c_{l_{i}}^{(i)} / c_{k_{i}}^{(i)}\right) \geqslant \frac{1}{2} \log D_{n_{i}}^{(i)}$, which implies, that

$$
\begin{align*}
& \sum_{\left(k_{i}, l_{i}\right) \in A_{n_{i}}^{(i)}} d_{k_{i}}^{(i)} d_{l_{i}}^{(i)}\left(\log _{+} \log _{+} \frac{c_{l_{i}}^{(i)}}{c_{k_{i}}^{(i)}}\right)^{-1-\varepsilon} \\
\leqslant & 2^{1+\varepsilon}\left(\log D_{n_{i}}^{(i)}\right)^{-1-\varepsilon} \sum_{\left(k_{i}, l_{i}\right) \in A_{n_{i}}^{(i)}} d_{k_{i}}^{(i)} d_{l_{i}}^{(i)} \leqslant 2^{1+\varepsilon}\left(D_{n_{i}}^{(i)}\right)^{2}\left(\log D_{n_{i}}^{(i)}\right)^{-1-\varepsilon} . \tag{4.2}
\end{align*}
$$

If $\left(k_{i}, l_{i}\right) \in B_{n_{i}}^{(i)}$, where

$$
B_{n_{i}}^{(i)}=\left\{\left(k_{i}, l_{i}\right): k_{i} \leqslant l_{i} \leqslant n_{i} \text { and } c_{l_{i}}^{(i)} / c_{k_{i}}^{(i)}<\exp \left(\sqrt{D_{n_{i}}^{(i)}}\right)\right\}
$$

then with notation $M_{i}=\sup _{k}\left(c_{k+1}^{(i)} / c_{k}^{(i)}\right)$, we get

$$
\log \frac{c_{l_{i}+1}^{(i)}}{c_{k_{i}}^{(i)}}=\log \frac{c_{l_{i}+1}^{(i)}}{c_{l_{i}}^{(i)}}+\log \frac{c_{l_{i}}^{(i)}}{c_{k_{i}}^{(i)}}<\log M_{i}+\sqrt{D_{n_{i}}^{(i)}} .
$$

Thus we have the following inequality, where $B_{n_{i}, k_{i}}^{(i)}=\left\{l_{i}:\left(k_{i}, l_{i}\right) \in B_{n_{i}}^{(i)}\right\}$.

$$
\begin{aligned}
& \sum_{\left(k_{i}, l_{i}\right) \in B_{n_{i}}^{(i)}} d_{k_{i}}^{(i)} d_{l_{i}}^{(i)}\left(\log _{+} \log _{+} \frac{c_{l_{i}}^{(i)}}{c_{k_{i}}^{(i)}}\right)^{-1-\varepsilon} \leqslant \sum_{\left(k_{i}, l_{i}\right) \in B_{n_{i}}^{(i)}} d_{k_{i}}^{(i)} d_{l_{i}}^{(i)} \\
& \leqslant \sum_{\left(k_{i}, l_{i}\right) \in B_{n_{i}}^{(i)}} d_{k_{i}}^{(i)} \log \frac{c_{l_{i}+1}^{(i)}}{c_{l_{i}}^{(i)}}=\sum_{k_{i}=1}^{n_{i}} \sum_{l_{i} \in B_{n_{i}, k_{i}}^{(i)}} d_{k_{i}}^{(i)} \log \frac{c_{l_{i}+1}^{(i)}}{c_{l_{i}}^{(i)}} \leqslant \sum_{k_{i}=1}^{n_{i}} d_{k_{i}}^{(i)} \sum_{l_{i}=k_{i}}^{\max B_{n_{i}, k_{i}}^{(i)}} \log \frac{c_{l_{i}+1}^{(i)}}{c_{l_{i}}^{(i)}} \\
&= \sum_{k_{i}=1}^{n_{i}} d_{k_{i}}^{(i)} \log \prod_{l_{i}=k_{i}}^{\max B_{n_{i}, k_{i}}^{(i)}} \frac{c_{l_{i}+1}^{(i)}}{c_{l_{i}}^{(i)}}=\sum_{k_{i}=1}^{n_{i}} d_{k_{i}}^{(i)} \log \frac{c^{(i)}}{\max B_{n_{i}, k_{i}}^{(i)}} \\
& c_{k_{i}}^{(i)} \\
&< \sum_{k_{i}=1}^{n_{i}} d_{k_{i}}^{(i)}\left(\log M_{i}+\sqrt{D_{n_{i}}^{(i)}}\right) \leqslant \sum_{k_{i}=1}^{n_{i}} d_{k_{i}}^{(i)} 2 \sqrt{D_{n_{i}}^{(i)}}=2\left(D_{n_{i}}^{(i)}\right)^{3 / 2}
\end{aligned}
$$

for all enough large n_{i}. It follows from this inequality and (4.2) that

$$
\begin{align*}
& \sum_{k_{i} \leqslant l_{i} \leqslant n_{i}} d_{k_{i}}^{(i)} d_{l_{i}}^{(i)}\left(\log _{+} \log _{+} \frac{c_{l_{i}}^{(i)}}{c_{k_{i}}^{(i)}}\right)^{-1-\varepsilon} \\
\leqslant & 2^{1+\varepsilon}\left(D_{n_{i}}^{(i)}\right)^{2}\left(\log D_{n_{i}}^{(i)}\right)^{-1-\varepsilon}+2\left(D_{n_{i}}^{(i)}\right)^{3 / 2} \\
\leqslant & 2^{1+\varepsilon}\left(D_{n_{i}}^{(i)}\right)^{2}\left(\left(\log D_{n_{i}}^{(i)}\right)^{-1-\varepsilon}+\left(D_{n_{i}}^{(i)}\right)^{-1 / 2}\right) \\
\leqslant & 2^{2+\varepsilon}\left(D_{n_{i}}^{(i)}\right)^{2}\left(\log D_{n_{i}}^{(i)}\right)^{-1-\varepsilon} \tag{4.3}
\end{align*}
$$

for all enough large n_{i}. In the last step we use the inequality $\left(D_{n_{i}}^{(i)}\right)^{-1 / 2} \leqslant$ $\left(\log D_{n_{i}}^{(i)}\right)^{-1-\varepsilon}$, which follows from $\left(D_{n_{i}}^{(i)}\right)^{1 / 2} /\left(\log D_{n_{i}}^{(i)}\right)^{1+\varepsilon} \rightarrow \infty$ as $n_{i} \rightarrow \infty$. By (4.1) and (4.3) we get

$$
\begin{equation*}
\mathrm{E}\left(\sum_{\mathbf{k} \leqslant \mathbf{n}} d_{\mathbf{k}} \xi_{\mathbf{k}}\right)^{2} \leqslant \mathrm{const} . \prod_{i=1}^{d}\left(D_{n_{i}}^{(i)}\right)^{2}\left(\log D_{n_{i}}^{(i)}\right)^{-1-\varepsilon} \tag{4.4}
\end{equation*}
$$

for all enough large n_{i}. Let

$$
n_{i}(t)=\min \left\{n_{i}: D_{n_{i}}^{(i)} \leqslant \exp \left(t^{\frac{1+\varepsilon / 2}{1+\varepsilon}}\right)\right\}
$$

and $\mathbf{n}(\mathbf{t})=\left(n_{1}\left(t_{1}\right), \ldots, n_{d}\left(t_{d}\right)\right)$. Since $n_{i}\left(t_{i}\right) \rightarrow \infty$ as $t_{i} \rightarrow \infty$, thus by (4.4) there exists $\mathbf{T} \in \mathbb{N}^{d}$, such that

$$
\begin{aligned}
& \mathrm{E} \sum_{\mathbf{t} \geqslant \mathbf{T}}\left(\frac{1}{D_{\mathbf{n}(\mathbf{t})}} \sum_{\mathbf{k} \leqslant \mathbf{n}(\mathbf{t})} d_{\mathbf{k}} \xi_{\mathbf{k}}\right)^{2} \leqslant \sum_{\mathbf{t} \geqslant \mathbf{T}} \frac{1}{D_{\mathbf{n}(\mathbf{t})}^{2}} \text { const. } \prod_{i=1}^{d}\left(D_{n_{i}\left(t_{i}\right)}^{(i)}\right)^{2}\left(\log D_{n_{i}\left(t_{i}\right)}^{(i)}\right)^{-1-\varepsilon} \\
& \leqslant \sum_{\mathbf{t} \geqslant \mathbf{T}} \frac{1}{D_{\mathbf{n}(\mathbf{t})}^{2}} \text { const. } \prod_{i=1}^{d}\left(D_{n_{i}\left(t_{i}\right)}^{(i)}\right)^{2} t_{i}^{-1-\varepsilon / 2}=\text { const. } \prod_{i=1}^{d} \sum_{t_{i}=T_{i}}^{\infty} t_{i}^{-1-\varepsilon / 2}<\infty,
\end{aligned}
$$

which implies

$$
\begin{equation*}
\frac{1}{D_{\mathbf{n}(\mathbf{t})}} \sum_{\mathbf{k} \leqslant \mathbf{n}(\mathbf{t})} d_{\mathbf{k}} \xi_{\mathbf{k}} \rightarrow 0 \quad \text { as } \quad \mathbf{t} \rightarrow \infty \quad \text { a.s. } \tag{4.5}
\end{equation*}
$$

For all $\mathbf{n} \in \mathbb{N}^{d}$ there exists $\mathbf{t} \in \mathbb{N}^{d}$ such that $\mathbf{n}(\mathbf{t}) \leqslant \mathbf{n} \leqslant \mathbf{n}(\mathbf{t}+\mathbf{1})$, where $\mathbf{1}=$ $(1, \ldots, 1) \in \mathbb{N}^{d}$. Thus the uniformly bounding implies

$$
\left|\frac{1}{D_{\mathbf{n}}} \sum_{\mathbf{k} \leqslant \mathbf{n}} d_{\mathbf{k}} \xi_{\mathbf{k}}\right| \leqslant\left|\frac{1}{D_{\mathbf{n}(\mathbf{t})}} \sum_{\mathbf{k} \leqslant \mathbf{n}(\mathbf{t})} d_{\mathbf{k}} \xi_{\mathbf{k}}\right|+\frac{1}{D_{\mathbf{n}}} \sum_{\substack{\mathbf{k} \leqslant \mathbf{n} \\ \mathbf{k} \nless \mathbf{n}(\mathbf{t})}} d_{\mathbf{k}}\left|\xi_{\mathbf{k}}\right|
$$

$$
\begin{align*}
& \leqslant\left|\frac{1}{D_{\mathbf{n}(\mathbf{t})}} \sum_{\mathbf{k} \leqslant \mathbf{n}(\mathbf{t})} d_{\mathbf{k}} \xi_{\mathbf{k}}\right|+\frac{1}{D_{\mathbf{n}}} \sum_{\substack{\mathbf{k} \leqslant \mathbf{n} \\
\mathbf{k} \nless \mathbf{n}(\mathbf{t})}} d_{\mathbf{k}} \cdot c \\
& \leqslant\left|\frac{1}{D_{\mathbf{n}(\mathbf{t})}} \sum_{\mathbf{k} \leqslant \mathbf{n}(\mathbf{t})} d_{\mathbf{k}} \xi_{\mathbf{k}}\right|+c\left(1-\frac{D_{\mathbf{n}(\mathbf{t})}}{D_{\mathbf{n}(\mathbf{t}+\mathbf{1})}}\right) \quad \text { a.s. } \tag{4.6}
\end{align*}
$$

The reader can easy verify that $D_{\mathbf{n}(\mathbf{t})} / D_{\mathbf{n}(\mathbf{t}+\mathbf{1})} \rightarrow 1$ as $\mathbf{t} \rightarrow \infty$, so by (4.5) and (4.6) imply the statement of Theorem 2.1.

Proof of Theorem 2.3. Let $g \in M$, where M is defined in Lemma 3.2. Then there exists $K \geqslant 1$ such that

$$
\begin{equation*}
|g(x)| \leqslant K \quad \text { and } \quad|g(x)-g(y)| \leqslant K|x-y| \quad \forall x, y \in \mathbb{R} . \tag{4.7}
\end{equation*}
$$

We shall prove, that with notation $\xi_{\mathbf{k}}=g\left(\zeta_{\mathbf{k}}\right)-\mathrm{E} g\left(\zeta_{\mathbf{k}}\right)$ the conditions of Theorem 2.1 hold true. By (2.5) we get (2.1), moreover by (4.7) we have

$$
\left|\xi_{\mathbf{k}}\right| \leqslant\left|g\left(\zeta_{\mathbf{k}}\right)\right|+\mathrm{E}\left|g\left(\zeta_{\mathbf{k}}\right)\right| \leqslant 2 K
$$

thus $\left\{\xi_{\mathbf{k}}, \mathbf{k} \in \mathbb{N}^{d}\right\}$ is a uniformly bounded random field. Now we turn to (2.2). Let $\mathbf{t}=\min \{\mathbf{k}, \mathbf{l}\}$. Lemma 3.1 and (4.7) imply

$$
\begin{equation*}
\left|\mathrm{E} \xi_{\mathbf{k}}\left(g\left(\zeta_{\mathbf{t}, \mathbf{l}}\right)-\mathrm{E} g\left(\zeta_{\mathbf{l}}\right)\right)\right|=\left|\operatorname{cov}\left(g\left(\zeta_{\mathbf{l}}\right), g\left(\zeta_{\mathbf{t}, \mathbf{l}}\right)\right)\right| \leqslant 4 K^{2} \alpha_{\mathbf{k}, \mathbf{l}} \tag{4.8}
\end{equation*}
$$

On the other hand with notation $\eta_{\mathbf{k}, \mathbf{l}}=g\left(\zeta_{\mathbf{l}}\right)-g\left(\zeta_{\mathbf{t}, \mathbf{1}}\right)$

$$
\begin{equation*}
\left|\mathrm{E} \xi_{\mathbf{k}} \eta_{\mathbf{k}, \mathbf{1}}\right|=\left|\operatorname{cov}\left(g\left(\zeta_{\mathbf{k}}\right), \eta_{\mathbf{k}, 1}\right)\right| \leqslant\left(\mathrm{E} g^{2}\left(\zeta_{\mathbf{k}}\right) \mathrm{E} \eta_{\mathbf{k}, 1}^{2}\right)^{1 / 2} \tag{4.9}
\end{equation*}
$$

It is easy to see that $(g(x)-g(y))^{2} \leqslant 4 K^{2} \min \left\{(x-y)^{2}, 1\right\}$, thus

$$
\begin{equation*}
\mathrm{E} \eta_{\mathbf{k}, \mathbf{1}}^{2} \leqslant 4 K^{2} \min \left\{\left(\zeta_{\mathbf{l}}-\zeta_{\mathbf{t}, \mathbf{l}}\right)^{2}, 1\right\} . \tag{4.10}
\end{equation*}
$$

By (4.7) and (2.3) we have $g^{2}\left(\zeta_{\mathbf{k}}\right) \leqslant K^{2}\left(1+1 / c_{1}\right)^{2}$ and

$$
g^{2}\left(\zeta_{\mathbf{k}}\right)<K^{2}\left(c_{1}+1\right)^{2}=K^{2}\left(1+\frac{1}{c_{1}}\right)^{2} \cdot c_{1}^{2} \leqslant K^{2}\left(1+\frac{1}{c_{1}}\right)^{2}\left(\zeta_{\mathbf{k}}-\zeta_{\mathbf{t}, \mathbf{k}}\right)^{2}
$$

which imply $g^{2}\left(\zeta_{\mathbf{k}}\right) \leqslant$ const. $\min \left\{\left(\zeta_{\mathbf{k}}-\zeta_{\mathbf{t}, \mathbf{k}}\right)^{2}, 1\right\}$ a.s. Using this inequality, (4.10), (4.9) and (2.4) we get the following.

$$
\begin{align*}
\left|\mathrm{E} \xi_{\mathbf{k}} \eta_{\mathbf{k}, \mathbf{l}}\right| & \leqslant \text { const. }\left(\mathrm{E} \min \left\{\left(\zeta_{\mathbf{k}}-\zeta_{\mathbf{t}, \mathbf{k}}\right)^{2}, 1\right\} \mathrm{E} \min \left\{\left(\zeta_{\mathbf{l}}-\zeta_{\mathbf{t}, \mathbf{1}}\right)^{2}, 1\right\}\right)^{1 / 2} \\
& \leqslant \text { const. }\left(\prod_{i=1}^{d} \log _{+} \log _{+} \frac{c_{k_{i}}^{(i)}}{c_{t_{i}}^{(i)}} \cdot \log _{+} \log _{+} \frac{c_{l_{i}}^{(i)}}{c_{t_{i}}^{(i)}}\right)^{-1-\varepsilon} \\
& =\text { const. }\left(\prod_{i=1}^{d} \log _{+} \log _{+} \frac{c_{m_{i}}^{(i)}}{c_{t_{i}}^{(i)}}\right)^{-1-\varepsilon} \tag{4.11}
\end{align*}
$$

where $\mathbf{m}=\max \{\mathbf{k}, \mathbf{l}\}$. Since $\left|\mathrm{E} \xi_{\mathbf{k}} \xi_{\mathbf{l}}\right| \leqslant\left|\mathrm{E} \xi_{\mathbf{k}} \eta_{\mathbf{k}, \mathbf{l}}\right|+\left|\mathrm{E} \xi_{\mathbf{k}}\left(g\left(\zeta_{\mathbf{t}, \mathbf{l}}\right)-\mathrm{E} g\left(\zeta_{\mathbf{l}}\right)\right)\right|$, using (4.11) and (4.8) we have (2.2). Now applying Theorem 2.1 we get

$$
\begin{equation*}
\frac{1}{D_{\mathbf{n}}} \sum_{\mathbf{k} \leqslant \mathbf{n}} d_{\mathbf{k}} \xi_{\mathbf{k}} \rightarrow 0 \quad \text { as } \quad \mathbf{n} \rightarrow \infty \quad \text { a.s. } \tag{4.12}
\end{equation*}
$$

Let $\mu_{\mathbf{n}}=\frac{1}{D_{\mathbf{n}}} \sum_{\mathbf{k} \leqslant \mathbf{n}} d_{\mathbf{k}} \mu_{\zeta_{\mathbf{k}}}$ and $\mu_{\mathbf{n}, \omega}=\frac{1}{D_{\mathbf{n}}} \sum_{\mathbf{k} \leqslant \mathbf{n}} d_{\mathbf{k}} \delta_{\zeta_{\mathbf{k}}(\omega)}(\omega \in \Omega)$.
First assume that (2) is true, that is $\mu_{\mathbf{n}} \xrightarrow{\mathbf{w}} \mu$ as $\mathbf{n} \rightarrow \infty$. Then Lemma 3.2 implies

$$
\begin{equation*}
\int g \mathrm{~d} \mu_{\mathbf{n}} \rightarrow \int g \mathrm{~d} \mu \quad \text { as } \quad \mathbf{n} \rightarrow \infty \tag{4.13}
\end{equation*}
$$

and (4.12) implies

$$
\begin{equation*}
\int g \mathrm{~d} \mu_{\mathbf{n}, \omega}-\int g \mathrm{~d} \mu_{\mathbf{n}}=\frac{1}{D_{\mathbf{n}}} \sum_{\mathbf{k} \leqslant \mathbf{n}} d_{\mathbf{k}} \xi_{\mathbf{k}}(\omega) \rightarrow 0 \tag{4.14}
\end{equation*}
$$

as $\mathbf{n} \rightarrow \infty$, for almost every $\omega \in \Omega$. By (4.13) and (4.14) we get $\int g \mathrm{~d} \mu_{\mathbf{n}, \omega} \rightarrow \int g \mathrm{~d} \mu$ as $\mathbf{n} \rightarrow \infty$, for almost every $\omega \in \Omega$, thus by Lemma 3.2 we get (1).

Finally assume that (1) is true, that is $\mu_{\mathbf{n}, \omega} \xrightarrow{\mathbf{w}} \mu$ as $\mathbf{n} \rightarrow \infty$, for almost every $\omega \in \Omega$. Let $A \in \mathcal{B}$ and $\mu(\partial A)=0$. Then by Lemma $3.3 \mu_{\mathbf{n}, \omega}(A) \rightarrow \mu(A)$ as $\mathbf{n} \rightarrow \infty$, for almost every $\omega \in \Omega$. It follows that $\mu_{\mathbf{n}}(A)=\int \mu_{\mathbf{n}, \omega}(A) \mathrm{d} \mathrm{P}(\omega) \rightarrow \mu(A)$ as $\mathbf{n} \rightarrow \infty$. Thus using Lemma 3.3 we get (2). This completes the proof of Theorem 2.3.

Proof of Theorem 2.5. Let $d_{k}^{(i)}=1 / k, c_{k}^{(i)}=k^{1 / \log 2}, \varepsilon=(\beta \log 2-2) / 2, \zeta_{\mathbf{k}, \mathbf{1}}=$ $\zeta_{\mathbf{l}}-S_{2 \mathbf{k}} / \sigma_{\mathbf{l}}$ if $2 \mathbf{k}<\mathbf{l}$ and $\zeta_{\mathbf{k}, \mathbf{l}}=0$ if $\mathbf{k} \leqslant \mathbf{l}$ and $2 \mathbf{k} \nless \mathbf{l}$. We shall prove that conditions of Theorem 2.3 hold. It is easy to see that $\alpha_{\mathbf{k}, 1} \leqslant \alpha(\mathbf{k})$ for all $\mathbf{k}, \mathbf{l} \in \mathbb{N}^{d}$, where $\alpha_{\mathbf{k}, \mathbf{l}}$ is defined in Theorem 2.3. Therefore by (2.6) we have

$$
\begin{align*}
\sum_{\mathbf{1} \leqslant \mathbf{n}} \sum_{\mathbf{k} \leqslant \mathbf{n}} d_{\mathbf{k}} d_{\mathbf{l}} \alpha_{\mathbf{k}, \mathbf{1}} & \leqslant \sum_{\mathbf{1} \leqslant \mathbf{n}} \sum_{\mathbf{k} \leqslant \mathbf{n}} \frac{c}{|\mathbf{k}| \cdot|\mathbf{l}| \cdot|\log \mathbf{k}|} \\
& =c \prod_{i=1}^{d}\left(\sum_{k=1}^{n_{i}} \frac{1}{k \log _{+} k}\right)\left(\sum_{l=1}^{n_{i}} \frac{1}{l}\right) . \tag{4.15}
\end{align*}
$$

It is well-known that $\sum_{k=1}^{n} \frac{1}{k} \sim \log n$ and $\sum_{k=1}^{n} \frac{1}{k \log _{+} k} \sim \log \log n$, where $a_{n} \sim b_{n}$ iff $\lim _{n \rightarrow \infty} a_{n} / b_{n}=1$. So by (4.15) we have

$$
\begin{aligned}
\sum_{1 \leqslant \mathbf{n}} \sum_{\mathbf{k} \leqslant \mathbf{n}} d_{\mathbf{k}} d_{\mathbf{l}} \alpha_{\mathbf{k}, \mathbf{1}} & \leqslant \text { const. } \prod_{i=1}^{d} \log \log n_{i} \cdot \log n_{i} \leqslant \text { const. } \prod_{i=1}^{d}\left(\log n_{i}\right)^{2}\left(\log \log n_{i}\right)^{-1-\varepsilon} \\
& \leqslant \text { const. } \prod_{i=1}^{d}\left(\log n_{i}\right)^{2}\left(\log D_{n_{i}}^{(i)}\right)^{-1-\varepsilon} \leqslant \text { const. } D_{\mathbf{n}}^{2} \prod_{i=1}^{d}\left(\log D_{n_{i}}^{(i)}\right)^{-1-\varepsilon}
\end{aligned}
$$

for all enough large n_{i}, which implies (2.5). Using (2.8)

$$
\mathrm{E} \min \left\{\left(\zeta_{\mathbf{l}}-\zeta_{\mathbf{h}, \mathbf{1}}\right)^{2}, 1\right\}=\mathrm{E} \min \left\{S_{\mathbf{r}}^{2} / \sigma_{\mathbf{l}}^{2}, 1\right\} \leqslant \text { const. } \prod_{i=1}^{d}\left(\log _{+} \log _{+} \frac{c_{l_{i}}^{(i)}}{c_{h_{i}}^{(i)}}\right)^{-2-2 \varepsilon}
$$

for all $\mathbf{h}, \mathbf{l} \in \mathbb{N}^{d}$ for which $\mathbf{h} \leqslant \mathbf{l}$, where $\mathbf{r}=2 \mathbf{h}$ if $2 \mathbf{h}<\mathbf{l}$ and $\mathbf{r}=\mathbf{l}$ if $\mathbf{h} \leqslant \mathbf{l}$ and $2 \mathbf{h} \nless \mathbf{l}$, so we get (2.4). The reader can readily verify that (2.3) is hold as well. Now applying Lemma 3.4 and Theorem 2.3, we have

$$
\frac{1}{\sum_{\mathbf{k} \leqslant \mathbf{n}} \frac{1}{|\mathbf{k}|}} \sum_{\mathbf{k} \leqslant \mathbf{n}} \frac{1}{|\mathbf{k}|} \delta_{\zeta_{\mathbf{k}}(\omega)} \xrightarrow{\mathbf{w}} \mu \quad \text { as } \quad \mathbf{n} \rightarrow \infty, \quad \text { for almost every } \quad \omega \in \Omega .
$$

Since $\sum_{\mathbf{k} \leqslant \mathbf{n}} \frac{1}{|\mathbf{k}|} \sim|\log \mathbf{n}|$, we get the statement.

References

[1] Berkes, I., Results and problems related to the pointwise central limit theorem, In: Szyszkowicz, B. (Ed.) Asymptotic results in probability and statistics, Elsevier, Amsterdam, (1998), 59-96.
[2] Berkes, I., Csáki, E., A universal result in almost sure central limit theory, Stoch. Proc. Appl., 94(1) (2001), 105-134.
[3] Dudley, R.M., Real Analysis and Probability, Cambridge University Press, (2002).
[4] Fazekas, I., Rychlik, Z., Almost sure functional limit theorems, Annales Universitatis Mariae Curie-Skłodowska Lublin, Vol. LVI, 1, Sectio A, (2002) 1-18.
[5] Fazekas, I., Rychlik, Z., Almost sure central limit theorems for random fields, Math. Nachr., 259, (2003), 12-18.
[6] Lin, Z., Lu, C., Limit theory for mixing dependent random variables, Science Press, New York-Beijing and Kluwer, Dordrecht-Boston-London (1996).
[7] Shiryayev, A.N., Probability, Springer-Verlag New York Inc. (1984).
[8] Tómács, T., Almost sure central limit theorems for m-dependent random fields, Acta Acad. Paed. Agriensis, Sectio Mathematicae, 29 (2002) 89-94.

Tibor Tómács

Department of Applied Mathematics
Eszterházy Károly College
P.O. Box 43

H-3301 Eger
Hungary
e-mail: tomacs@ektf.hu

