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Abstract

Hyper tableau calculi are well-known as attempts to combine hyper-res-
olution and tableaux. Besides their soundness and completeness, it is also
important to give an appropriate redundancy criterion. The task of such
a criterion is to filter out “unnecessary” clauses being attached to a given
tableau. This is why we investigate what redundancy criteria can be defined
for clausal tableaux, in general.

This investigation leaded us to a general idea for combining resolution
calculi and tableaux. The goal is the same as in the case of hyper-tableau
calculi: to split (hyper-)resolution derivations into branches. We propose
a novel method called resolution tableaux. Resolution tableaux are more
general than hyper tableaux, since any resolution calculus (not only hyper-
resolution) can be applied, like, e.g., binary resolution, input resolution, or
lock resolution etc. We prove that any resolution tableau calculus inherits the
soundness and the completeness of the resolution calculus which is being ap-
plied. Hence, resolution tableaux can be regarded as a kind of parallelization
of resolution.

1. Introduction

Hyper tableau calculi (e.g., hyper tableaux [2, 3], constrained hyper tableaux
[6], rigid hyper tableaux [11], and hyperS tableaux [8, 9] etc.) are well-known as
attempts to combine hyper-resolution and tableaux. Besides their soundness and

85



86 G. Kovásznai, G. Kusper

completeness1, it is also important to give an appropriate redundancy criterion.
The task of such a criterion is to filter out “unnecessary” clauses being attached
to a given tableau. This is why we investigate what redundancy criteria can be
defined for clausal tableaux, in general. A clausal tableau is actually a tableau
whose vertices are labeled with literals. Besides hyper tableau calculi, there are
other well-known tableau calculi which apply clausal tableaux as well, like, e.g.,
clause tableaux [7] and connection tableaux [12]. We give a detailed investigation
on appropriate redundancy criteria for clausal tableaux, and propose two possible
candidates. As it will be seen, the second criterion is more general than the first
one, and is also more general than the redundancy criterion for (purified) hyper
tableaux [2]. We illustrate how to employ our redundancy criteria, by examples.

Investigation on redundancy leaded us to a general idea for combining resolution
calculi and tableaux. The goal is the same as in the case of hyper-tableau calculi: to
split (hyper-)resolution derivations into branches. First, we propose a general way
of representing any resolution calculus (and illustrate it by examples), and then
we introduce a novel method called resolution tableaux. Resolution tableaux are
more general than hyper tableaux, since any resolution calculus (not only hyper-
resolution) can be applied, like, e.g., binary resolution, input resolution, or lock
resolution etc. We prove that any resolution tableau calculus inherits the soundness
and the completeness of the resolution calculus which is being applied. By the use
of resolution tableaux, any resolution derivation can be split into separate branches,
hence resolution tableaux can be regarded as a kind of parallelization of resolution,
as it will be illustrated by an example.

The structure of the paper is as follows. In Section 2, basic definitions and
concepts are introduced. After this, let us depart from the logical order written
above. First, let us propose resolution tableaux in Section 3, and then introduce
our results on redundancy criteria for clausal tableaux, in Section 4. As it will be
seen, the latter topic is in close connection with resolution tableaux, as detailed in
Section 5.

2. Preliminaries

In the followings, we assume that the reader is familiar with the basic concepts
of first-order logic. Nevertheless, let us present a few crucial concepts.

A literal is a formula either A or ¬A where A is an atomic formula. A is
classified as a positive, ¬A as a negative literal.

A clause is a formula L1 ∨ L2 ∨ . . . ∨ Ln where n > 0 and each Li is a literal
(i = 1, . . . , n). A clause can also be regarded as the set of its literals. The empty
clause is denoted by ⊥.

A clause is positive (negative) iff it consists of solely positive (negative) literals.
Two clauses are independent iff there is no variable that occurs in both of them.

1Constrained hyper tableaux and hyperS tableaux are sound and complete in first-order logic.
Hyper tableaux [2] without purifying substitutions are complete only in Horn logic (c.f. [3] for
improvement). Rigid hyper tableaux have not been proven to be complete yet.
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Cσ is called an instance of a clause C where σ is a variable substitution. Cσ
is a new instance if σ is a variable renaming and its range consists solely of new
variables.

A clause C subsumes a clause D iff C has an instance Cσ such that Cσ ⊆ D.
Given a formula A, let ∀A denote the universal closure of A.
As usual, M |= A denotes the fact that a formula A is satisfied by a model M .

In the case of A being open, M |= A iff M |= ∀A.
Two formulas A and B are equivalent (denoted by A ∼ B) iff for any model M :

M |= A iff M |= B.
As it is well-known, the most general unifier (MGU) of two atomic formulas

A and B is the most general variable substitution σ such that Aσ = Bσ. Let us
generalize the definition of MGUs, as follows. The MGU of (A1, B1), (A2, B2), . . . ,
(An, Bn), where all Ai and Bi are atomic formulas, is the most general variable
substitution σ such that Aiσ = Biσ for all i = 1, . . . , n.

Tableaux are regarded as trees whose which vertices are labeled with formulas
[15, 7]. Sometimes, for the sake of briefness, we regard a tableau as the set of all
its branches. Similarly, a branch is often regarded as the sequence or the set of all
the vertices in the branch. Furthermore, let us introduce the following notation:

Notation 2.1. Let N be a vertex set from a tableau.
(1) Let N̂ denote the conjunction of all the labels (formulas) in N .
(2) Let

̂

N denote the disjunction of all the labels (formulas) in N .

Sometimes it is needed to regard a tableau as a sole formula. This is why we
need the following definition:

Definition 2.2 (Formula Represented by a Tableau). The formula F (T ) repre-
sented by a tableau T is defined inductively as follows:
(1) If T consists of one single vertex labeled with a formula L, then

F (T ) = L

(2) If T is a compound tableau, i.e., it is in the form as can be seen in Figure 1,
where L is a formula and each Ti is a tableau, then

F (T ) = L ∧

(
n∨

i=1

F (Ti)

)

T1 T2
. . . Tn

L

Figure 1: Compound tableau.

Let us note the following obvious fact, which says that any tableau can be
regarded as the disjunction of its branches (as conjunctions).
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Lemma 2.3. For any tableau T ,

F (T ) =
∨

B∈T

B̂

3. Resolution tableaux

The aim is to introduce a general method for combining resolution calculi and
tableaux. This is why a general way of representing resolution calculi is required.
We regard a resolution calculus as a set of inference rules, which act on clauses.
Each resolution inference rule is represented as a function which can assign a clause
to one or more clauses. Every time when applying such a rule, it is needed to specify
a clause set (denoted by I and called the input clause set) and a sequence of clauses
(denoted by d and called the resolution derivation).

Definition 3.1 (Resolution Inference Rule). A resolution inference rule is a func-
tion resI,d : Dom 7→ C, where

• I is a finite set of clauses;

• d is a finite sequence of clauses;

• C is the set of all the clauses;

• Dom ⊆ P (C).

Let us illustrate by examples how well-known resolution calculi can be repre-
sented in this form. Of course, other resolution calculi could be represented in a
similar way2.

Example 3.2 (Binary Resolution). The resolution calculus, as was introduced by
Robinson [13], can be represented by the set of the following resolution inference
rules [1]:

(1) Binary Resolution:

binresI,d

(
A ∨ C , ¬B ∨ D

)
= (C ∨ D)σ

where σ is the most general unifier (MGU) of the atomic formulas A and B.

(2) (Positive) Factoring:

factorI,d

(
C ∨ A ∨ B

)
= (C ∨ A)σ

where σ is the MGU of the atomic formulas A and B.

2It is to be remarked that I may be defined as a clause sequence (instead of a clause set) in
the case of some resolution calculi, where the order of input clauses should not be neglected, like
in SLD-resolution [10] and in lock resolution [4, 1, 5].
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Example 3.3 (Linear Input Resolution). The linear input resolution calculus [5]
can be represented by the same resolution inference rules as binary resolution, but
the rule “Binary Resolution” is restricted as follows:

• one of the clauses C ∨ A and D ∨ ¬B must be the last element of d;

• the other one must be an element of I.

Example 3.4 (Hyper-Resolution). The (positive) hyper-resolution calculus, as
was introduced by Robinson [14], can be represented by the following resolution
inference rule:

hypresI,d( A1 ∨ C1 , . . . , An ∨ Cn , ¬B1 ∨ . . . ∨ ¬Bn ∨ D )

‖

(C1 ∨ . . . ∨ Cn ∨ D)σ

where

• n > 1;

• Ci is a positive or empty clause (i = 1, . . . , n);

• D is a positive or empty clause;

• Ai and Bi are atomic formulas (i = 1, . . . , n);

• σ is the MGU of (A1, B1), . . . , (An, Bn).

When a resolution calculus (as a set of resolution inference rules) is given, an
appropriate tableau can be constructed for a given input clause set I. Such a
tableau is called a resolution tableau, and can be constructed in a quite simple way.
In every deduction steps, some clauses are to be selected, each either from a given
branch of the tableau or from the input clause set I. To the selected clauses a
resolution inference rule is applied, resulting in a clause D. First D must be split
into independent subclauses, and then these subclauses are attached to the given
branch, forming distinct new branches.

Let us define resolution tableaux inductively, as follows:

Definition 3.5 (Resolution Tableaux). Let R be a set of resolution inference ru-
les. Let I be a clause set.

(1) One single vertex labeled with ⊤ is a resolution tableau for I w.r.t. R.

(2) – Let T be a resolution tableau for I w.r.t. R.

– Let B be a branch of T .

– Let C1, . . . , Cn be new instances of clauses in I ∪ B.

– Let res ∈ R such that resI,B is defined on C1, . . . , Cn, and let

D = resI,B(C1, . . . , Cn)
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– Let D = D1∨. . .∨Dk such that each distinct Di and Dj are independent
clauses (i, j = 1, . . . , k).3

The tableau that can be seen in Figure 2 is a resolution tableau for I w.r.t. R.

T
B

D1 D2
. . . Dk

Figure 2: Attaching a clause to a branch B of a resolution
tableau T .4

Let us point out that it is mandatory to generate new instances of the clauses
which have been selected. Note that resolution tableau branches can be regarded
(and are used) as separate resolution derivations.

A tableau calculus is regarded sound and complete in the following case: any
clause set I is unsatisfiable iff a closed tableau exists for I. A closed resolution
tableau is defined as follows:

Definition 3.6 (Closed Resolution Tableaux). A resolution tableau is closed iff
each of its branches contains ⊥.

Assume a resolution calculus R which is sound and complete in first-order logic
(or in a fragment of first-order logic). It is quite obvious that the resolution
tableau calculus applying R inherits soundness and completeness. For example,
since hyper-resolution is sound and complete in first-order logic, so is the hyper-
resolution tableau calculus5. The linear input resolution tableau calculus6 is sound
and complete in Horn logic.

Theorem 3.7. If a resolution calculus R is sound and complete (in a fragment of
first-order logic), then so is the resolution tableau calculus applying R.

Proof. Soundness: It is to show that if there is a closed resolution tableau for I
w.r.t. R, then I is unsatisfiable.

If R is sound, then each inference rule res ∈ R preserves satisfiability. Let

res(C1, . . . , Cn) = D1 ∨ . . . ∨ Dk

where each distinct Di and Dj are independent. It can be seen that for any model
M :

3Furthermore, one can additionally demand that no Di can further be split into independent
subclauses (i = 1, . . . , k). In this case, decomposition of clauses is unique, and can easily be solved
algorithmically.

4New vertices labeled with D1, . . . , Dk are attached to the leaf of B.
5I.e., the resolution tableau calculus applying hyper-resolution.
6I.e., the resolution tableau calculus applying linear input resolution.
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if M |= C1, . . . , Cn, then M |= D1 ∨ . . . ∨ Dk.

Because of independence:

∀ (D1 ∨ . . . ∨ Dk) ∼ ∀D1 ∨ . . . ∨ ∀Dk

Summing up, for any model M :

if M |= C1, . . . , Cn, then M |= D1 or M |= D2 or . . . or M |= Dk.

Hence, if I was satisfiable, then at least one branch could not be closed.

Completeness: It is to show that if I is unsatisfiable, then there is a closed
resolution tableau for I w.r.t. R. This fact is even more obvious than in the case
of soundness. Since R is complete, there is a resolution refutation from I. Each
tableau branch can actually be regarded as a “simplified” variant of that refutation,
i.e., only subclauses occuring in the refutation can occur in the branch. Since ⊥
is deduced in the refutation and all literals of the clauses can be resolved out,
obviously ⊥ can occur in each branch. �

Note that the fact that D1, . . . , Dk are pairwise independent has been employed
only in the soundness proof.

Example 3.8 (Linear Input Resolution Tableaux). Consider the following input
clause set:

I =






M(a, s(c), s(b))
P (a)

M(x, x, s(x)) ∨ D(y, x)
¬M(x, y, z) ∨ D(x, z)

¬P (x) ∨ ¬M(y, z, u) ∨ ¬D(x, u) ∨ D(x, y) ∨ D(x, v)
¬D(a, b)






a, b, c are constants, u, v, x, y, z are variables.

In Figure 3, a closed resolution tableau for I w.r.t. linear input resolution (c.f.
Example 3.3) can be seen.

First, the input clauses ¬P (x)∨¬M(y, z, u)∨¬D(x, u)∨D(x, y)∨D(x, v) and
¬D(a, b) are selected; the atomic formulas D(x′, y′) and D(a, b) are resolved upon
by MGU {x′/a, y′/b}. As can be seen, the resolvent is split into four independent
subclauses. Three branches can obviously get closed by resolving with the unit
input clauses P (a) and ¬D(a, b).

Let us focus on the branch which contains ¬M(b, z′, u′) ∨ ¬D(a, u′). Since the
basis is linear input resolution, this clause (as the label of the last vertex in the
branch) must be resolved with an input clause. Currently, that input clause is
M(x, x, s(x)) ∨ D(y, x). The resolvent is split into two subclauses.

The consequent steps can be similarly performed.
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⊤

¬P (a)

⊥

¬M(b, z′, u′) ∨ ¬D(a, u′) D(a, v′)

⊥¬D(a, s(b))

¬M(a, y′′, s(b))

⊥

D(y′, b)

⊥

1

2

3

Selected input clauses:

1: M(x, x, s(x)) ∨ D(y, x)
2: ¬M(x, y, z) ∨ D(x, z)
3: M(a, s(c), s(b))

Figure 3: Closed linear input resolution tableau.

4. Redundancy criteria for clausal tableaux

Hyper tableau calculi (e.g., hyper tableaux [2, 3], rigid hyper tableaux [11], con-
strained hyper tableaux [6], and hyperS tableaux [8, 9]) are well-known in theorem
proving. They combine hyper-resolution and tableaux. Why hyper-resolution? Be-
cause hyper-resolution is long known to be a key ingredient to success in theorem
proving (as written in [7]). Why tableaux? Because of the same purpose as in
resolution tableau calculi: to split hyper-resolution derivations into branches.

Hyper tableau calculi apply clausal tableaux as data structures representing the
branches of derivations. A clausal tableau is actually a tableau whose vertices are
labeled with literals. Besides hyper tableau calculi, there are other well-known
tableau calculi which apply clausal tableaux as well, like, e.g., clause tableaux [7]
and connection tableaux [12].

As usual, a clausal tableau is constructed by repeatedly “attaching” clauses to
its branches. Clausal tableaux can be defined inductively, as follows:

Definition 4.1 (Clausal Tableaux).

(1) One single vertex labeled with ⊤ is a clausal tableau.

(2) – Let T be a clausal tableau, and B a branch of T .

– Let E = L1 ∨ L2 ∨ . . . ∨ Lk be a clause.

The tableau that can be seen in Figure 4 is denoted by T +BE, and is also a
clausal tableau.
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T
B

L1 L2
. . . Lk

Figure 4: Attaching a clause to a branch B of a clausal
tableau T .7

When a clause E is being attached to a branch B, the following question is
essential to be answered: is it “unnecessary” to attach E to B? In other words:
is E redundant w.r.t. B? Some clausal tableau calculi define so-called redundancy
criteria in order to give a precise answer, by regarding only E and B (and maybe T ).

Example 4.2 (Redundancy Criterion for Hyper Tableaux). Hyper tableaux have
the following redundancy criterion [2]: a clause E is redundant w.r.t. a branch B
iff

∃L1 ∈ E and ∃L2 ∈ B such that L1 is an instance of a new instance of L2.

We are trying to investigate what redundancy criteria can be applied in con-
nection with clausal tableaux, in general. Besides we are extending our preceding
results [8, 9], we are going to show that this problem is in close connection with
resolution tableaux.

4.1. Preliminaries

First, it is essential to give a precise definition of redundancy for clausal table-
aux. Note that the definition regards tableaux as formulas, as it has been intro-
duced in Definition 2.2.

Definition 4.3 (Redundant Clause).

• Let T be a clausal tableau, and B a branch of T .

• Let E be a clause.

E is redundant w.r.t. B in T iff

F (T ) ∼ F
(
T +BE

)

Let us prove two lemmas which will be essential for proving the soundness of the
redundancy criteria in the following sections.

Lemma 4.4 (Reducing Lemma).

7The only difference between Figure 4 and Figure 2 is that new vertices are now labeled only
with literals.
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• Let T be a clausal tableau, and B a branch of T .

• Let M be a model.

• Let E be a clause.

It holds that

if M |= F
(
T +BE

)
, then M |= F (T ).

Proof. It is to prove that M |= F
(
T +B E

)
θ implies M |= F (T ) θ, for any valua-

tion θ. Assume, by Lemma 2.3, we have M |= (B̂∧E)θ (the opposite case is obvious

to prove), i.e., M |= B̂θ ∧ Eθ. Thus, M |= B̂θ, which implies that M |= F (T ) θ,
by Lemma 2.3. �

Lemma 4.5 (Extending Lemma).

• Let T be a clausal tableau, and B a branch of T .

• Let M be a model.

• Let E be a clause such that M |= E.

It holds that

if M |= F (T ), then M |= F
(
T +B E

)
.

Proof. It is to prove that M |= F (T ) θ implies M |= F
(
T +BE

)
θ, for any valua-

tion θ. Assume, by Lemma 2.3, we have M |= B̂θ (the opposite case is obvious to

prove). Since M |= E, it holds that M |= B̂θ ∧ E. Hence, M |= (B̂ ∧ E)θ, which
implies that M |= F

(
T +BE

)
θ, by Lemma 2.3. �

Note that E is an arbitrary clause in the Reducing Lemma in contrast with the
Extending Lemma, where E must fulfill the following stipulation: M |= E.

4.2. Redundancy Criterion I

When checking if a clause E is redundant w.r.t. a tableau branch, an appropri-
ate clause C is needed to be “extracted” from the tableau in order to “compare” C
with E via instantiation. A so-called branch clause is a suitable candidate for this
role.

Definition 4.6 (Branch Clause).

• Let T be a clausal tableau.

• Let N be a vertex set from T such that each branch of T contains exactly
one element of N .

The clause

̂

N is a branch clause in T .
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The Extending Lemma is to be applied in the redundancy criterion proposed later
in this section. Therefore, each model of a clausal tableau T should be proven to
satisfy any branch clause in T .

Lemma 4.7 (Branch Clause Lemma).

• Let T be a clausal tableau.

• Let M be a model.

• Let C be a branch clause in T .

It holds that

if M |= F (T ), then M |= C.

Proof. The statement can be proven by induction, as follows:
(1) If T consists of one single vertex, then the statement obviously holds.
(2) If T is a compound tableau (cf. Figure 1), then

F (T ) ∼ L ∧

(
n∨

i=1

F (Ti)

)
(4.1)

There are two cases:
(a) If C = L, then the statement obviously holds.
(b) Otherwise, C = C1 ∨ . . . ∨ Cn where each Ci is a branch clause in Ti. By the
inductive hypothesis, if M |= F (Ti), then M |= Ci, for all i = 1, . . . , n. Thus,

if M |=
n∨

i=1

F (Ti), then M |= C.

By (4.1), the statement holds. �

The significance of the previous lemma is that a branch clause can be instanti-
ated “without restriction”, i.e., any instance (even a new instance) of a branch clause
is satisfied by any model of the given tableau. Based on this fact, the following
theorem on redundancy can be proven.

Theorem 4.8 (Redundancy Theorem I).

• Let T be a clausal tableau, and B a branch of T .

• Let C be a branch clause in T .

• Let C′ be a new instance of C, and E a clause such that C′ subsumes E.

It holds that

F (T ) ∼ F
(
T +BE

)
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Proof. The equivalence in the right-to-left direction is a direct consequence of the
Reducing Lemma. Let us prove the equivalence in the left-to-right direction, i.e.,
prove that for any model M :

if M |= F (T ), then M |= F
(
T +B E

)
.

Assume that M |= F (T ). By Lemma 4.7, M |= C. Thus, M |= C′ also holds. So
does M |= E. By the Extending Lemma, the proof is complete. �

Using this theorem, the following redundancy criterion can be proposed:

Definition 4.9 (Redundancy Criterion I). A clause E is redundant w.r.t. a clau-
sal tableau T iff there is a branch clause C in T such that E is subsumed by a new
instance of C.

Example 4.10 (Redundancy Criterion I). Let T be the clausal tableaux in Fig-
ure 5.

⊤

P (x) ¬Q(x)

R(y) P (y)

¬R(u)

¬Q(f(y)) P (z)

Figure 5: A clausal tableau.

When checking if a clause E is redundant w.r.t. T , Redundancy Criterion I
can be applied only if E consists of at least three literals, since any branch clause
instance in T consists of at least three literals (except for ⊤). For example, if

E = P (a) ∨ R(a) ∨ ¬Q(f(a))

then E is redundant w.r.t. T since the new branch clause instance

P (x′) ∨ R(y′) ∨ P (y′) ∨ ¬Q(f(y′)) ∨ P (z′)

subsumes E, via the variable substitution σ = {x′/a, y′/a, z′/a}.

Note that none of all the other branch clauses subsumes E, neither P (x) ∨
¬Q(x)∨¬R(u) nor P (x)∨R(y)∨P (y)∨¬R(u) nor P (x)∨¬Q(x)∨¬Q(f(y))∨P (z).

Note that Redundancy Criterion I is not very practicable. The problem is that a
branch clause usually contains a lot of literals, and a clausal tableau may have lots
of branch clauses. A more sophisticated redundancy criterion is needed.
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4.3. Redundancy Criterion II

A restricted variant of a branch clause is needed, which can also be applied by
the Extending Lemma. The wanted clause is a subclause of a branch clause (hence,
it does not probably consist of too many literals) and does not have a common
variable with a considerable part of the tableau (hence, there exist probably not
too many such clauses). Let us define this clause as follows:

Definition 4.11 (Separate Branch Clause).

• Let T be a clausal tableau, and B a branch of T .

• Let N be a vertex set from T such that

– each branch of T contains at most one element of N ;

– B contains one element of N ;

– there is no variable occurring both in N and in a branch which does not
contain any element of N .

The clause

̂

N is a separate branch clause of B in T .

Such a clause is “separate” from the branches which do not contain it, by demanding
it not to share any variable with them. As proven in the following theorem, a
separate branch clause can also be used in redundancy criteria, similarly as a
branch clause was.

Theorem 4.12 (Redundancy Theorem II).

• Let T be a clausal tableau, and B a branch of T .

• Let C be a separate branch clause of B in T .

• Let C′ be a new instance of C, and E a clause such that C′ subsumes E.

It holds that

F (T ) ∼ F
(
T +BE

)

Proof. Similarly as in the proof of Theorem 4.8, it is the most important to prove
that for any model M :

if M |= F (T ), then M |= F
(
T +BE

)

The branches of T can be divided into two groups – those which contain any of the
nodes included by C, and those which do not. Let t denote the set of the branches
in the first group, and t the set of the ones in the second group8. First of all, notice
the following obvious facts:

F (T ) ∼ F
(
t
)
∨ F (t) (4.2)

8t and t are subtableaux of T . It is important that the branches of t and t are also branches
in T .
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F (T +BE) ∼ F
(
t
)
∨ F

(
t+BE

)
(4.3)

Assume that M |= F (T ). Since C is a branch clause in t, (4.2) and Lemma 4.7
together imply that

M |= F
(
t
)
∨ C

I.e., M |= ∀
(
F
(
t
)
∨ C

)
. By the assumption that t and C do not share any variable

(since C is a separate branch clause), it holds that

M |= ∀F
(
t
)
∨ ∀C

Thus, there are two cases:

(1) M |= F
(
t
)
: It is obvious that M |= F

(
T +B E

)
, by (4.3).

(2) M |= C: Thus, M |= C′, and hence M |= E. Thus, M |= F
(
T +BE

)
, by the

Extending Lemma. �

The redundancy criterion based on this theorem can be formulated as follows:

Definition 4.13 (Redundancy Criterion II). A clause E is redundant w.r.t. a
branch B of a clausal tableau T iff there is a separate branch clause C of B in
T such that E is subsumed by a new instance of C.

Example 4.14 (Redundancy Criterion II). Consider the clausal tableau T in Fig-
ure 5. Check if

E = P (f(a)) ∨ ¬Q(f(f(a)))

is redundant w.r.t. T . When applying Redundancy Criterion I, the answer is no.
However, by applying Redundancy Criterion II, E can be shown to be redundant
w.r.t. the rightmost branch, since the new separate branch clause instance P (z′)
subsumes E, via the variable substitution z′/f(a).

Note that none of all the other separate branch clauses subsumes E, e.g., neither
P (x) ∨ ¬Q(x) (lack of an appropriate variable substitution) nor R(y) ∨ P (y) ∨
¬Q(f(y)). Note that E is redundant w.r.t. only the rightmost branch.

The following fact is quite interesting, and shows that some redundancy criteria in
literature are specialized variants of Redundancy Criterion II.

Example 4.15 (Redundancy Criterion II for Hyper Tableaux). Let us focus on
the redundancy criterion for hyper tableaux (c.f. Example 4.2, [2]). Note that
it can be regarded as a special case of Redundancy Criterion II. The literal L2 is a
separate branch clause because of the use of purifying substitutions [2].



Introducing general redundancy criteria for clausal tableaux. . . 99

5. Conclusion

Note that Theorem 4.12 is actually applied in resolution tableaux. In a reso-
lution tableau (however it is actually not a clausal tableau), each vertex label can
be regarded as a separate branch clause in itself, this is why its new instances can
be generated and used in any resolution inference step. Of course, Redundancy
Criterion II (c.f. Definition 4.13) is also appropriate to be used by any resolution
tableau calculus, and can be applied in a very direct way. The key is the fact that
any tableau literal belongs to exactly one separate branch clause (this fact does
not in general hold for clausal tableaux).

One can say that resolution tableaux have been defined according to plan. It is
not accidental that vertices can be labeled not solely with literals but clauses. It
is not accidental either that vertex labels are independent from each other. This
solution can be regarded as the golden mean between resolution calculi and clausal
tableau calculi, according to 4.12.

By the use of resolution tableaux, a resolution derivation can be split into
branches, and branches (as separate derivations) can be continued simultaneously.
I.e., resolution tableaux can be regarded as a kind of parallelization of resolution.
Nevertheless, one can ask if it is worth to apply an additional task (namely the
splitting of clauses into independent subclauses) in comparison with the advantage
of shortening resolution derivations. This question could only be answered by
empirical investigations.

5.1. Empirical investigations

In order to examine the practical usefulness of resolution tableaux, we imple-
mented four different resolution calculi: binary resolution, linear resolution, linear
input resolution, and hyper-resolution. Let us emphasize that purely the basic
variants of those calculi have been implemented. We also implemented improved
variants of the aforementioned calculi, only by applying resolution tableaux.

Then, we tested all the original and improved calculi on 1642 TPTP problems
[16] (from 232 files). As it had been expectable, those calculi could not solve most
of the problems in a reasonable time limit. What we primarily tried to investigate
are the following questions:

• How often an improved calculus can solve such a problem that the original
calculus cannot solve?

• If both an original calculus and its improved variant can solve a problem,
how much time is gained by using the improved calculus?

Table 1 contains all the statistical data we have collected. Let us give an overview
on the columns of the table:

• In connection with those cases when either an original calculus or its improved
variant does not provide a solution (in a reasonable time limit) for the same
problem, let us summarize the following data:



100 G. Kovásznai, G. Kusper

Solution Time
gained lost gained lost gained/lost

Binary 0.49% 0.59% 10.91% 29.09% 2.93%
Linear 12.3% 0% 7.45% 0.62% 626.67%
Linear input 27.57% 0% 4.48% 0% –
Hyper 2.01% 0.97% 46.46% 18.77% 310.43%

Table 1: Empirical results.

1. Gained answers: The frequency of those cases when the original cal-
culus does not provide a solution, but the improved calculus does.

2. Lost answers: The frequency of those cases when the original calculus
provides a solution, but the improved calculus does not.

• In connection with those cases when both an original calculus and its im-
proved variant provide a solution for the same problem, let us summarize the
following data:

1. Gained time: The frequency of those cases when the improved calculus
provides a solution in less time than the original calculus.

2. Lost time: The frequency of those cases when the improved calculus
provides a solution in more time than the original calculus.

3. Gained time/Lost time: We calculated the ratio of the length of the
gained time to the length of the lost time in order to illustrate how it is
worth to apply the improved calculus, in respect to execution time.

As it can be noticed, binary resolution tableaux do not seem very practical, in
contrast with linear resolution tableaux and linear input resolution tableaux, which
are absolutely worth to apply.

The conclusion in the case of hyper-resolution tableaux is quite ambiguous.
Since hyper-resolution itself can be regarded as a quite powerful proof method, only
in a few cases can hyper-resolution tableaux provide extra solutions. Nevertheless,
the frequency of the cases when hyper-resolution tableaux shorten execution time
is extremely high.
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