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Abstract

It is a famous result of Angluin (1982 [1]) that there exists a time poly-
nomial and space linear algorithm to identify the canonical automata of k-
reversible languages by using characteristic sample sets. This result has se-
veral applications. In this paper we characterise the class of all automata for
which her method is not applicable. In particular, the aim of this paper is to
characterise the family of finite automata which are not k-reversible for any
non-negative integer k.

Keywords: finite automata, k-reversible automata

MSC: 68Q45, 68T50

1. Introduction

Without any doubt, there is no formal model that can capture all aspects of
human learning. Nevertheless, the overall aim of researchers working in algorith-
mic learning theory has been to gain a better understanding of what learning really
is. Several models are on the basis of the so-called learning autamata. Learning
automata has a wide field of applications ranging over robotics and control sys-
tems, pattern recognition, computational linguistics, computational biology, data
compression, data mining, etc. (see [5], for an excellent survey). Recently, lear-
ning techniques have also become popular in the area of automatic verification.
They have been used [8] for minimizing (partially) specified systems and for model
checking black-box systems, proved helpful in compositional model checking and
in regular model checking. The general goal of learning algorithms employed in
verification is to identify a machine, usually of minimal size, that conforms with
an a priori fixed set of strings or a given machine. Nearly all algorithms learn
deterministic finite-state automata (DFA) or deterministic finite-state machines
(Mealy-/Moore machines), as the class of DFA has preferable properties in the
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setting of learning. For every regular language, there is a unique minimal DFA
accepting it [6], which can be characterized by Nerode’s right congruence [10, 9].
This characterization is at the base of most learning algorithms [5].

It is a famous result of Angluin [1] that there exists a time polynomial and
space linear algorithm to identify the canonical automata of k-reversible languages
by using characteristic sample sets. This result has various applications. (For
example, the song learning of birds has similarity to the grammatical inference
from positive samples [13] which works as Angluin’s algorithm. Certain linguistic
subsystems may also well be learnable by inductive inference method [12]. Her
method is applicable in the natural language processing, too [4]).

The aim of this paper is to show the limitations of her method. In particular,
we characterise the class of all automata which are not k-reversible for any non-
negative integer k. The author did not find any paper studying or characterising
the class of automata having this property. In other words, it has a high likehood
that there are no related works regarding our results.

2. Preliminaries

We start with some standard concepts and notations. All concepts not defined
here can be found in [3, 6].

By an automaton we mean a finite Rabin-Scott automaton, i.e. a deterministic
finite initial automaton without outputs supplied by a set of final states which is a
subset of the state set. In more details, an automaton is an algebraic structure A =
(A, a0, AF , Σ, δ) consisting of the nonempty and finite state set A, the nonempty
and finite input set Σ, a transition function δ : A×Σ → A, the initial state a0 ∈ A

and the (not necessarily nonempty) set AF ⊆ A of final states.
It is understood that δ is extended to δ∗ : A × X∗ → A with δ∗(a, λ) =

a, δ∗(a, xq) = δ(a, x)δ∗(δ(a, x), q), a ∈ A, x ∈ Σ, q ∈ Σ∗. In other words, δ∗(a, λ) =
a and for every nonempty input word x1x2 · · ·xs ∈ Σ+ (where x1, x2, . . . , xs ∈ Σ)
there are a1, . . . , as ∈ A with δ(a, x1) = a1, δ(a1, x2) = a2, . . . , δ(as−1, xs) = as

such that δ∗(a, x1 · · ·xs) = a1 · · ·as.

Moreover, for every a ∈ A, w ∈ Σ∗, denote by a · w the last letter of δ∗(a, w).
The concept of acceptor is a natural generalization of the concept of automaton.
By an acceptor we mean a system A = (A, I, F, Σ, δ) such that A is a finite (not
necessarily nonempty) set, the set of states, I ⊆ A is the set of initial states, F ⊆ A

is the set of final or accepting states and δ : A×Σ → 2A is the transition function.
A is called deterministic if |I| 6 1 and for every a ∈ A, x ∈ X, |δ(a, x)| 6 1.

Thus an automaton can be considered as a special deterministic acceptor. The
reverse of an acceptor A = (A, I, F, Σ, δ) is the acceptor A

r = (A, F, I, Σ, δr)
having δr(a, x) = {b ∈ A | a ∈ δ(b, x)} for all a ∈ A, x ∈ Σ. An acceptor A is
called zero reversible if both of A and A

r are deterministic. A is k-reversible for a
positive integer k if A is deterministic, moreover, for any pair a1, a2 ∈ A, a1 6= a2,

if a1, a2 ∈ F or a1, a2 ∈ δr(a, x) for some a ∈ A and x ∈ Σ, then for every
w ∈ Σ∗, |w| = k, at least one of δr(a1, w), δr(a2, w) should be ∅. It is said that the
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acceptor A accepts the empty word if there exists an a ∈ I with a ∈ F. Furthermore,
we say that A accepts a nonempty word x1 · · ·xs ∈ Σ+ (x1, . . . , xs ∈ Σ) if there
are a1, . . . , as+1 ∈ A with a1 ∈ I, as+1 ∈ F, and ai+1 ∈ δ(ai, xi), i = 1, . . . , s. The
language LA ⊆ Σ∗ consisting of all words in Σ∗ accepted by A is called the language
accepted by A. A language L ⊆ Σ∗ is said to be k-reversible for some nonnegative
integer k, if there exists a k-reversible acceptor A with L = LA. A deterministic
acceptor A = (A, I, F, Σ, δA) with |I| = 1 and ∀a ∈ A, x ∈ Σ : |δA(a, x)| = 1 can
be considered as the automaton A = (A, a0, AF , Σ, δA) with {a0} = I, AF = F,

∀a ∈ A, x ∈ Σ : {δA(a, x)} = δA(a, x) and vice versa. Thus we can extend the
concept of k-reversibility to automata in a natural way.

3. Results

The following statement can be derived directly from the definition of k-reversi-
bility of automata (with the notations a = a1, b = a2, u = w, c = δr(a1, w), d =
δr(a2, w)).

Lemma 3.1. Given a nonnegative integer k, the automaton A = (A, a0, AF , Σ, δ)
is k-reversible if and only if for every distinct a, b ∈ A, there do not exist c, d ∈ A,

u ∈ Σ∗ with |u| = k, having c·u = a, d·u = b whenever a, b ∈ AF or δ(a, x) = δ(b, x)
for some x ∈ Σ.

Next, we prove the following Theorem:

Theorem 3.2. Let A = (A, a0, AF , Σ, δ) be an arbitrary automaton. There does
not exist a nonnegative integer k for which A is k-reversible if and only if there
are distinct states a, b ∈ A, a nonempty input word u ∈ Σ+, an input word v ∈ Σ∗,

such that a · u = a, b ·u = b, a · v 6= b · v, and either a · v, b · v ∈ AF or a · vx = b · vx

for some x ∈ Σ.

Proof. First, we suppose that there are distinct states a, b ∈ A, a nonempty input
word u ∈ Σ+, an input word v ∈ Σ∗ such that a · u = a, b · u = b, a · v 6= b · v,

and either a · v, b · v ∈ AF or a · vx = b · vx for some x ∈ Σ. Assume that,
contrary of our statement, A is k-reversible for some nonnegative integer k. By
a · u = a, b · u = b, a 6= b, u 6= λ and Lemma 3.1, this is impossible if a, b ∈ AF .

Therefore, at least one of a and b should be a non-final state. Thus, by our
conditions, there is an x ∈ Σ with a·vx = b·vx. On the other hand, by a·vx = b·vx,

it is clear that k > 0. Now, let k > 0 and consider the minimal nonnegative integer
ℓ with |uℓv| > k. First, we prove that for every prefix w of uℓv, a · w 6= b · w.

If u = wz for some z ∈ Σ∗, then a · w = b · w implies δ(a · wz) = δ(b · wz)
which leads to (a =) a · u = b · u (= b), which is a contradiction. Now, let
i, j be nonnegative integers such that w = ui+jz and ujz is a prefix of v. First,
a · ui = a 6= b = b · ui holds, because of a · u = a, b · u = b with a 6= b. On the
other hand, v = ujzr for some r ∈ Σ∗, because ujz is a prefix of v. Therefore,
using a · ui = a, b · ui = b, if a · ui+jz = b · ui+jz, then a · ujz = b · ujz leading to
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a ·ujzr = b ·ujzr with ujzr = v, which is a contradiction. Consider w, z ∈ Σ∗ with
uℓv = wz and |z| = k. We have already proved a · w 6= b · w. On the other hand,
by our assumptions, a · wz 6= b · wz and δ(a · wzx) = δ(b · wzx). By Lemma 3.1,
considering a · w, b · w, a · wz, b · wz, z, x as c, d, a, b, u, x, we obtain that A is not
k-reversible. Now, we assume that for every nonnegative integer k, the automaton
A is not k-reversible. This means that A is not 0-reversible. Moreover, by Lemma
3.1, for every positive integer k, there are distinct a, b ∈ A, such that there exist
c, d ∈ A, u ∈ Σ∗ with |u| = k, c · u = a, d · u = b, where we have either a, b ∈ AF

or δ(a, x) 6= δ(b, x) for some x ∈ Σ. Without any restriction we may assume that
k > |A|2. Obviously, by a 6= b, for every prefix w of u, c · w 6= d · w. But then, by

(k =)|u| >
|A|(|A|−1)

2 , u = x1 · · ·xk with x1, . . . , xk ∈ Σ, there exists a repetition in
the sequence (c, d), (δ(c, x1), δ(d, x1)), (c·x1x2, d·x1x2), . . . , (c·x1 · · ·xk, d·x1 · · ·xk)
having c 6= d and c·x1 · · ·xi 6= d·x1 · · ·xi, i = 1, . . . , k. Thus, there are p, r ∈ Σ∗, q ∈
Σ+ with u = pqr and c · p = c · pq, d · p = d · pq, c · pq 6= d · pq, c · pqr 6= d · pqr and
either c · pqr, d · pqr ∈ AF or c · pqrx = d · pqrx for some x ∈ Σ. By Lemma 3.1, this
shows that A is not k-reversible. �

4. Conclusion

It is well-known that, by using characteristic sample sets, the canonical au-
tomata of k-reversible languages can be identified applying a time polynomial and
space linear algorithm (this is a famous result of Angluin). In this paper the li-
mitations of her method are shown. In other words, the characterisation is given
for automata which are not k-reversible for any non-negative integer k. It is an
interesting fact that this property was not investigated so far in the literature.
Further work is to characterise classes of automata and their languages for which
other learning algorithms can not be applied [2, 14, 7, 11].
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