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Abstract

The aim of this paper is to investigate the zeros of the general polynomials

q
(i,t)
n (x) =

n
∑

k=0

Ri+ktx
n−k = Rix

n + Ri+tx
n−1 + · · · + Ri+(n−1)tx + Ri+nt,

where i > 1 and t > 1 are fixed integers.
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1. Introduction

The the second order linear recursive sequence

R = {Rn}
∞

n=0

is defined by the following manner: let R0 = 0, R1 = 1, A and B be fixed positive
integers. Then for n > 2

Rn = ARn−1 + BRn−2. (1.1)

According to the known Binet-formula, for n > 0

Rn =
αn − βn

α − β
,
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where α and β are the zeros of the characteristic polynomial x2 − Ax − B of the
sequence R. We can suppose that α > 0 and β < 0.

In the special case A = B = 1 we can get the wellknown Fibonacci-sequence,
that is, with the usual notation

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 (n > 2).

According to D. Garth, D. Mills and P. Mitchell [1] the definition of the Fibonacci-
coefficient polynomials pn(x) is the following:

pn(x) =

n
∑

k=0

Fk+1x
n−k = F1x

n + F2x
n−1 + · · · + Fnx + Fn+1.

In [3] we delt the zeros of the polynomials qn(x), where

qn(x) =

n
∑

k=0

Rk+1x
n−k = R1x

n + R2x
n−1 + · · · + Rnx + Rn+1,

that is, our results concerned to a family of the linear recursive sequences of second
order.

The aim of this revisit of the theme is to investigate the zeros of the much more

general polynomials q
(i)
n (x) and q

(i,t)
n (x), where i > 1 and t > 1 are fixed integers:

q(i)
n (x) =

n
∑

k=0

Ri+kxn−k = Rix
n + Ri+1x

n−1 + · · · + Ri+n−1x + Ri+n, (1.2)

q(i,t)
n (x) =

n
∑

k=0

Ri+ktx
n−k = Rix

n +Ri+tx
n−1 +Ri+2tx

n−2 · · ·+Ri+(n−1)tx+Ri+nt.

2. Preliminary and known results

At first we mention that the polynomials q
(i)
n (x) can easily be rewritten in a

recursive manner. That is, if q
(i)
0 (x) = Ri then for n > 1

q(i)
n (x) = xq

(i)
n−1(x) + Ri+n.

We need the following three lemmas:

Lemma 2.1. For n > 1 let g
(i)
n (x) = (x2 − Ax − B)q

(i)
n (x). Then

g(i)
n (x) = Rix

n+2 + BRi−1x
n+1 − Ri+n+1x − BRi+n.

Proof. Using (1.2) we get q
(i)
1 (x) = Rix + Ri+1 and by (1.1) g

(i)
1 (x) = (x2 −Ax−

B)q
(i)
1 (x) = (x2−Ax−B)(Rix+Ri+1) = · · · = Rix

3 +BRi−1x
2−Ri+2x−BRi+1.
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Continuing the proof with induction on n, we suppose that the statement is true
for n − 1 and we prove it for n. Applying (1.2) and (1.1), after some numerical
calculations one can get that

g(i)
n (x) = (x2 − Ax − B)q(i)

n (x)

= xg
(i)
n−1(x) + (x2 − Ax − B)Ri+n = · · ·

= Rix
n+2 + BRi−1x

n+1 − Ri+n+1x − BRi+n.

�

Lemma 2.2. If every coefficients of the polynomial f(x) = a0+a1x+· · ·+anxn are
positive numbers and the roots of equation f(x) = 0 are denoted by z1, z2, . . . , zn,
then

γ 6 |zi| 6 δ

hold for every 1 6 i 6 n, where γ is the minimal, while δ is the maximal value in
the sequence

a0

a1
,
a1

a2
, . . . ,

an−1

an

.

Proof. Lemma 2.2 is known as theorem of S. Kakeya [4]. �

Lemma 2.3. Let us consider the sequence R defined by (1.1). The increasing order
of the elements of the set

{

Rj+1

Rj

: 1 6 j 6 n

}

is
R2

R1
,
R4

R3
,
R6

R5
, . . . ,

R7

R6
,
R5

R4
,
R3

R2
.

Proof. Lemma 2.3 can be found in [2]. �

3. Results and proofs

At first we deal with the number of the real zeros of the polynomial q
(i)
n (x)

defined in (1.2), that is

qn((i)x) =

n
∑

k=0

Ri+kxn−k = Rix
n + Ri+1x

n−1 + · · · + Ri+n−1x + Ri+n.

Theorem 3.1. a) If n > 2 and even, then the polynomial q
(1)
n (x) has not any real

zero, while if i > 2 then q
(i)
n (x) has no one or has two negative real zeros, that is,

every zeros – except at most two – are non-real complex numbers.

b) If n > 3 and odd, then the polynomial q
(i)
n (x) has only one real zero and this

is negative. That is, every but one zeros are non-real complex numbers.
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Proof. Because of the definition (1.1) of the sequence R the coefficients of the poly-

nomials q
(i)
n (x) are positive ones, thus positive real root of the equation q

(i)
n (x) = 0

does not exist. That is, it is enough to deal with only the existence of negative roots

of the equation q
(i)
n (x) = 0. a) Since n is even, the coefficients of the polynomial

g(i)
n (−x) = Ri(−x)n+2 + BRi−1(−x)n+1 − Ri+n−1(−x) − BRi+n

= Rix
n+2 − BRi−1x

n+1 + Ri+n−1x − BRi+n

has only one change of sign if i = 1, thus according to the Descartes’ rule of

signs, the polynomial g
(i)
n (x) has exactly one negative real zero. But g

(i)
n (x) =

(x2 −Ax−B)q
(i)
n (x) implies that g

(i)
n (β) = 0, where β < 0, and so the polynomial

q
(i)
n (x) can not have any negative real zero if i = 1. But in the case i > 2 the

polynomial g
(i)
n (−x) has 3 changes of sign, that is, q

(i)
n (x) = 0 has no one or 2

negative roots.

b) Since n > 3 is odd, thus the existence of at least one negative real zero is
obvious. We have only to prove that exactly one negative real zero exists. The
polynomial

g(i)
n (−x) = Ri(−x)n+2 + BRi−1(−x)n+1 − Ri+n−1(−x) − BRi+n

= −Rix
n+2 + BRi−1x

n+1 + Ri+n−1x − BRi+n

shows that among its coefficients there are two changes of signs, thus according to

the Descartes’ rule of signs, the polynomial g
(i)
n (x) has either two negative real zeros

or no one. But g
(i)
n (x) = (x2 − Ax − B)q

(i)
n (x) implies that for β < 0 g

(i)
n (β) = 0.

Although, g
(i)
n (α) = 0 also holds, but α > 0. That is, an other negative real zero

of g
(i)
n (x) must exist. Because of g

(i)
n (x) = (x2 − Ax − B)q

(i)
n (x) this zero must be

the zero of the polynomial q
(i)
n (x).

This terminated the proof of the theorem. �

Remark 3.2. Some numerical examples imply the conjection that if n is even and

i > 2 then q
(i)
n (x) has no negative real root.

In the following part of this note we deal with the localization of the zeros of
the polynomials

q(i)
n (x) =

n
∑

k=0

Ri+kxn−k = Rix
n + Ri+1x

n−1 + · · · + Ri+n−1x + Ri+n.

Theorem 3.3. Let z ∈ C denote an arbitrary zero of the polynomial q
(i)
n (x) if

n > 1. Then
Ri+1

Ri

6 |z| 6
Ri+2

Ri+1
,
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if i is odd, while
Ri+2

Ri+1
6 |z| 6

Ri+1

Ri

,

if i is even.

Proof. To apply Lemma 2.2 for the polynomial q
(i)
n (x) we have to determine the

minimal and maximal values in the sequence

Ri+n

Ri+n−1
,
Ri+n−1

Ri+n−2
, . . . ,

Ri+1

Ri

.

Applying Lemma 2.3, one can get the above stated bounds. �

Remark 3.4. Even more there is an other possibility for further generalization.
Let i > 1 and t > 1 be fixed integers.

q(i,t)
n (x) :=

n
∑

k=0

Ri+ktx
n−k = Rix

n+Ri+tx
n−1+Ri+2tx

n−2 · · ·+Ri+(n−1)tx+Ri+nt.

The following recursive relation also holds if q
(i,t)
0 (x) = Ri then for n > 1

q(i,t)
n (x) = xq

(i,t)
n−1(x) + Ri+nt.

Using similar methods for the set

{

Ri+jt

Ri+(j−1)t
: 1 6 j 6 n

}

it can be proven that for any zero z of q
(i,t)
n (x) = 0:

if i and t are odd then:
Ri+t

Ri

6 |z| 6
Ri+2t

Ri+t

,

if i is even and t is odd then:

Ri+2t

Ri+t

6 |z| 6
Ri+t

Ri

,

if i and t are even then:
Ri+nt

Ri+(n−1)t
6 |z| 6

Ri+t

Ri

,

if i is odd and t is even then:

Ri+t

Ri

6 |z| 6
Ri+nt

Ri+(n−1)t
.
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