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Abstract

In this paper we prove several results on connection between continued
fractions and rational approximations of the form |a — a/b| < k/b?, for a
positive integer k.
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1. Introduction
The classical Legendre’s theorem in Diophantine approximations states that if

a real number « and a rational number £ (we will always assume that b > 1),
satisfy the inequality

a 1
- - — 1.1
o= 3l < o D
then ¢ is a convergent of the continued fraction expansion of o = [ag; a1, ...]. This
result has been extended by Fatou [3] (see also [5, p.16]), who showed that if
a-31<
a— -l < =
b' b

+
then & = 2m oy Emt1=Pm
b qm gm+1Eqm
k

In 1981, Worley [12] generalized these results to the inequality ‘a — %‘ < 33
where £ is an arbitrary positive real number. Worley’s result was slightly improved

in [1].

, where Z—’“ denotes the m-th convergent of «.
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Theorem 1.1 (Worley [12], Dujella [1]). Let a be a real number and let a and b
be coprime nonzero integers, satisfying the inequality

(1.2)

where k is a positive real number. Then (a,b) = (rpm+1 £ $Pm, 'Gmt1 = $Gm), for
some m = —1 and nonnegative integers r and s such that rs < 2k.

The original result of Worley [12, Theorem 1] contains three types of solutions
to the inequality (1.2). Two types correspond to two possible choices for signs +
and — in (rpm41 £ SPm, "Gm+1 £ $Gm), while [1, Theorem 1] shows that the third
type (corresponding to the case a,,+2 = 1) can be omitted.

In Section 3 we will show that Theorem 1.1 is sharp, in the sense that the
condition rs < 2k cannot be replaced by rs < (2 — ¢)k for any £ > 0. However,
it appears that the coefficients r» and s show different behavior. So, improvements
of Theorem 1.1 are possible if we allow nonsymmetric conditions on r and s. In-
deed, already the paper of Worley [12] contains an important contribution in that
direction.

Theorem 1.2 (Worley [12], Theorem 2). If a is an irrational number, k > 5 and
7 is a rational approvimation to o (in reduced form) for which the inequality (1.2)
holds, then either ¢ is a convergent Zﬂ to o or § has one of the following forms:

r>s and rs<2k, or

(Z) a TPm+1+SPm 5

b rmy1tsam r<s and rs<k+ aTH,
(i) @ = Pt 1 —tDm s<t and st< 2k,t or

b Stmi1—tam s>t and st (1 — g) <k,

where r, s and t are positive integers.

Since the fraction a/b is in reduced form, it is clear that in the statements of
Theorems 1.1 and 1.2 we may assume that ged(r,s) = 1 and ged(s,t) = 1.

Worley [12, Corollary, p.206] also gave the explicit version of his result for
k=2 |a— % < 2 implies & = 2= Pmt1EPm  2Pmi1EPm  3Pmi1+Pm Pmi1E2pm
’ b b2 b m’ mt1Eqm’ 2qm+1Eqm . 3qmt1+tdm’ Gmt1E2qm

or ’mi:ggm. This result for £ = 2 has been applied for solving some Diophantine

equations. In [7], it was applied to the problem of finding positive integers a and
b such that (a? 4+ b?)/(ab + 1) is an integer, and in [2| it was used for solving the

family of Thue inequalities

|zt — deady + (6¢ + 2)2%y? + dexy® + vt < 6¢+ 4.

On the other hand, Theorem 1.1 has applications in cryptography, too. Namely, in
[1], a modification of Verheul and van Tilborg variant of Wiener’s attack ([10, 11])
on RSA cryptosystem with small secret exponent has been described, which is
based on Theorem 1.1.
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We will extend Worley’s work and give explicit and sharp versions of Theorems
1.1 and 1.2 for k = 3,4,5,...,12. We will list the pairs (r,s) which appear in the
expression of solutions of (1.2) in the form (a,b) = (rpm+1 £ SPm, Tqmt1 £ S¢m),
and we will show by explicit examples that all pairs from the list are indeed neces-
sary. We hope that our results will also find applications on Diophantine problems,
and in Section 4 we will present such an application. In such applications, it is
especially of interest to have smallest possible list of pairs (r, s). It is certainly pos-
sible to extend our result for k£ > 12. However, already our results make it possible
to reveal certain patterns, and they also suffice for our Diophantine applications.

2. Explicit versions of Worley’s theorem

We start by few details from the proof of Theorem 1.1 in [1], which will be
useful in our future arguments. In particular, we will explain how the integer m
appearing in the statement of Theorem 1.1 can be found. We assume that o < 7,
since the other case is completely analogous. Let m be the largest odd integer
satisfying

a
a< - < P
b gm
If 3> ’q’—i, we take m = —1, following the convention that p_; =1, ¢g_; = 0. Since

|Pm+1Gm — Pmdm+1| = 1, the numbers r and s defined by

a = TPm+1+ SPm,
b = r¢m+1+ 59m

< B2 we have that » > 0 and s > 0. From the

are integers, and since Zmtl
gm+1 qm

e
//

maximality of m, we find that

SGm+y2 =T _ |Pm+2 @ ’ a’ k

= ——|<la——| < . 2.1
qu+2 } dm—+2 b } b b2 ( )

From (2.1) we immediately have
Ao > — (2.2)

S

and we can derive the inequality

72 — STamao + k@pmiz >0 (2.3)

(see [1, proof of Theorem 1] for details, and note also that (2.3) is exactly the
inequality from Theorem 1.2 (i) - the second case).
Let us define a positive integer ¢ by ¢t = sa,+2 — 7. Then we have

4 = TPm+1+ SPm = SPm+2 — tPm+1,

b TGm+1 + 8¢m = Sqm+2 — tG@m+1,
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and s and t satisfy analogs of (2.2) and (2.3):
t
Amto > g, (24)

t? — stamyo + kamio > 0. (2.5)

If r > t, i.e. s > st, then we will represent a and b in terms of s and ¢ (which
corresponds to — sign in Theorem 1.1).

Let us consider now the case k = 3. Hence, we are considering the inequality
3

b_2.
By Theorem 1.1, we have that (a,b) = (rpm+1 + $Pm, ¢m+1 + S¢m) Or ($Pmi2 —
tPm+1, S¢mt2 — tqm+1), where rs < 6, st < 6, ged(r,s) = 1 and ged(s,t) = 1.
However, the inequalities (2.3) and (2.5) for » = 1, resp. t = 1, show that the pairs
(r,s) =(1,4),(1,5) and (s,t) = (4,1),(5,1) can be omitted. Therefore, we proved

a

Proposition 2.1. If a real number  and a rational number ¢ satisfy the inequality
(2.6), then - w, where
b rgm+1+ 5qm

(rys) € R = {(0,1),(1,1),(1,2),(1,3),(2,1),(3,1), (4, 1), (5, 1)},

a  SPpm+2 — tPma1
or - = ————————— where

b Sqm+2 = tqm+
(s,t) € T3 ={(1,1),(2,1),(3,1),(1,2),(1,3),(1,4),(1,5)}
(for an integer m > —1).

Our next aim is to show that Proposition 2.1 is sharp, i.e. that if we omit
any of the pairs (r,s) or (s,t) appearing in Proposition 2.1, the statement of the
proposition will no longer be valid. More precisely, if we omit a pair (1, s") € Rs,

then there exist a real number o and a rational number ¢ satisfying (2.6), but such
that ¢ cannot be represented in the form ¢ = 2mitfsPm oy o — SPmi2-Pmis
b b Tqm+1+Sqm b $qm+2—tqm+1
where m > —1, (r,s) € Rs\ {(+',¢")}, (s,t) € T5 (and similarly for an omitted pair
(s, 1) € Ty).
We will show that by giving explicit examples for each pair. Although we have
found many such examples of different form, in the next table we give numbers «

of the form v/d, where d is a non-square positive integer.

[ a [b[m][r[s]t] |

= a [ a [b][m]r][s]t]
\/@ 337 ; 8 (1] 1 g Vit 23557l o711
NG 5 Tt o 1 a3 NG 1180321
AT B s T 132 V8 | 37 131 ]2[3]1
T T o216 Vit 202149 0 |6]1]2
Vs s s [0 T3 117 Vo6 362|710 |7]1]3
V26 [l209 41| 0 a]1]6 v26 || 311610 ]6[1]4
T s e o 5117 V3Tl 5178 | o0 7]1]5
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For example, consider o = /8 = [2,1,4]. Its rational approximation 2 (the

forth row of the table) satisfies ‘\/_ — %3‘ ~ 0.046572875 < 8%. The convergents of
V8 are %, %, %, %, 2—3, %, ‘11—23, .... The only representation of the fraction %

; TPm+1+5Pm SPm42—tPmi1 e 23 _ 114433 _
in the form R (r,s) € Ry or PPy (s,t) € T3 is 3 = §555 =

%, which shows that the pair (1,3) cannot be omitted from the set Rs.
Proposition 2.2. Let k € {4,5,6,7,8,9,10,11,12}. If a real number o and a ra-
a T s
tional number ¢ satisfy the inequality (1.2), then - = M, where (r,s) €
. b rqm+1 + sqm
a s —
Ry = Ry_1 URj, or — = M, where (s,t) € Ty = Tp—1 UL}, (for an
b Sqmt2 — tgm41
integer m > —1), where the sets R}, and T}, are given in the following table. More-
over, if any of the elements in sets Ry, or Ty is omitted, the statement will no longer

be valid.

Lk Rj | T |

4 {(1,4),(3,2),(6,1), (7, 1)} {(4,1),(2,3),(1,6), (1, 7)}

5 {(1,5),(2,3), (8, 1), (9, 1)} {(5,1),3,2), (1,8), (1,9)}

6 {(1,6), (5,2), (10, 1), (11, 1)} {(6,1),(2,5), (1,10), (1,11)}

7 {(1,7),(2,5),(4,3),(12,1),(13,1)} {(7,1),(5,2), (3,4),(1,12),(1,13) }

8 {(1,8),(3,4),(7,2),(14,1),(15,1)} {(8,1),(4,3),(2,7),(1,14),(1,15)}

9 {(1,9),(5,3),(16,1),(17,1)} {(9,1),(3,5),(1,16),(1,17)}

10 {(1,10), (9,2), (18, 1), (19, 1)} {(10,1),(2,9), (1,18), (1,19)}

11 [ {(1,11),(2,7),(3,5), (20, 1), 21, D} | {(11,1),(7,2), (5,3), (1, 20), (1, 21)}

12 {(1,12), (5,4), (7, 3), {(12,1), (4,5), (3,7),
(11,2),(22,1),(23,1)} (2,11), (1,22), (1,23)}

Proof. By Theorem 1.1, we have to consider only pairs of nonnegative integers
(r,s) and (s,t) satisfying rs < 2k, st < 2k, ged(r,s) = 1 and ged(s,t) = 1.
Furthermore, as in the case k = 3, it follows directly from the inequalities (2.3)
and (2.5) for r = 1, resp. t = 1, that the pairs (r,s) = (1,s) and (s,t) = (s,1)
with s > k + 1 can be omitted. Similarly, for » = 2 or 3, resp. t = 2 or 3, we can
exclude the pairs (r,s) = (2,s) and (s,t) = (s,2) with s > £ 4+ 2, and the pairs
(r,s) =(3,s) and (s,t) = (s,3) with s > £ + 3.

Now we show that all remaining possible pairs which are not listed in the
statement of Proposition 2.2 can be replaced with other pairs with smaller products
rs, resp. st. We give details only for pairs (r, s), since the proof for pairs (s,t) is
completely analogous (using the inequalities (2.4) and (2.5), instead of (2.2) and
(2.3)).

Consider the case k = 4 and (r,s) = (2,3). By (2.3), we obtain an4+2 < 2.
Thus, the pair (r,s) = (2,3) can appear only for a,,+2 = 1. However, in that case
we have t = sa,,12 —r = 1, and therefore the (r,s) = (2,3) can be replaced by the
pair (s,t) = (3,1).

Analogously we can show that for k = 7 the pair (r,s) = (3,4) can be replaced
by (s,t) = (4,1), for k = 8,9, 10 the pair (r,s) = (3,5) can be replaced by (s,t) =
(5,2), while for k = 11,12 the pair (r,s) = (4,5) can be replaced by (s,t) = (5,1).



66 A. Dugella, B. Ibrahimpagié

We have only three remaining pairs to consider: the pair (r,s) = (5,3) for k = 8
and the pairs (r,s) = (5,4) and (r,s) = (7,3) for k = 11. For (r,s) = (5,3) and
k =8, from (2.2) and (2.3) we obtain 2 < @42 < 2, and therefore we have two
possibilities: @42 = 2 or apmyo = 3. If a2 = 2, we can replace (r,s) = (5,3)
by (s,t) = (3,1), while if a,,12 = 3, we can replace it by (s,t) = (3,4). Similar
approach works for two pairs with k = 11. For (r,s) = (5,4), from (2.2) and (2.3)
we obtain % < Umyo < %, which implies a,,+2 = 2. Then we have ¢ = 3 and the
pair (r,s) = (5,4) can be replaced by the pair (s,t) = (4,3). For (r,s) = (7,3)
we obtain % < Amy2 < %, which yields @42 = 3 or Gpmyo = 4. If a0 = 3, we
can replace (r,s) = (7,3) by (s,t) = (3,2), while if a,,4+2 = 4, we can replace it by
(s,t) = (3.5).

It remains to show that all pairs listed in the statement of the proposition are
indeed necessary (they cannot be omitted). This is shown by the examples from
the following tables:

k=4 k=5 k=6
a||a|b|m|r|s|t a||a|b|m|r|s|t a||a|b|m|r|s|t
35( 89 |15 |1(1]4(3 80|l 197[22(1|1|5]4 V194(|6421]461] 3| 1 |6] 5
V39| 968 {155] 1 [3|2[5 Vi2|111|32(1(2](3|4 V84 (/5105|557 1| 5 2] 7
V/50([ 601 | 85| 0|6[1]8 V82 [[1313[145| 0| 8 |1]10 V122([2441(221] 0 [10]|1|12
V65| 911 {113 0 |7[1]9 V/101]1819(181{ 0| 9 [1{11 V/145([3191(265| 0 [11]|1[13
V35| 219 | 37| 1 [3|4[1 V80| 65373 |1]4(5|1 V194|[989 [ 7115 (6|1
V/39([1580(253| 1 [5[2(3 V121|201 |58 |1]4(3|2 V84 ||7103|775| 1| 7 2] 5
V50| 799 {113 0 [8|1]6 V82 [[1639(181| 0 [10[1] 8 V122((2927(265| 0 [12]|1|10
V65(|1169[145] 0 [9[1]7 101([2221]221] 0 11{1] 9 145([3769[313| 0 [13]1]11
k=17 E=38

o [a [b]m[r[s[¢] [a [ a [b [m[r[s[¢ F=9
V/360][ 835 |44 1] 1]7] 6| [v/674][39799]1533[ 3] 1 |8] 7 a [ a [b]m[r]s[t
Va8 (1 215(31|1]2 (53 V90 || 1129|119 [1] 3 |4] 5| [v1088] 2441 |74 |1]1|9] 8
V87 1|12136{229| 1| 4 [3| 5 | [V147||16574|1367| 1| 7 |2] 9 V105 || 4273 417 1] 5 (3] 7
V170([4081(313| 0 |12|1|14| |v226]] 6329 | 421 |0 [14|1|16| | /290 || 9281 |545| 0 [16(1|18
V197|(5123(365| 0 |13|1|15| |v257|| 7711|481 |0 |15(1|17| | /325 [|11051(613]| 0 |17[1|19
V/360([4345(229{ 1| 6 |7| 1| [Vv674| 4751|183 |1| 7|8 1| [v/1088|[17449(529|1| 8 |9| 1
VA48 (1305|4413 [5{ 2] | v90]|[1831[193 (1|5 4] 3 V105 || 5933 579 1] 7 [3] 5
V87 (|12649(284| 1| 5 (3| 4 | [V147|[21254|1753| 1| 9 |2 7 /290 {|10439(613| 0 |18|1|16
V170([4759(365| 0 |14(|1[12| [v/226]] 7231 | 481 |0|16|1|14 325 (/12349685 0{19|1{17
197([5909[421| 0] 15{1]13 257|] 8737 | 545 |0 ]17[1|15
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k=10
« || a | b |m|r|s|t
V1762([163917|3905| 3 | 1 [10] 9
228 |[ 41207 2729 1] 9 | 2 |11
/362 || 13033 | 685 |0(18| 1|20
V401 || 15239 [ 761 [0 |19] 1 |21 k=12
V1762|[ 15909 [ 379 [ 1] 9 [10] 1 o [l a [0 mlr]s]t
7538 (50207 13331 1111l 2 |9 V/3842([518743[8369] 3| 1 [12[11
/362 || 14479 | 761 [0]20] 1 |18 V235 || 7159 |467]1|5]4[7
201 || 16841 | 841 |0]|21] 1 |19 V27 || 1933 |372]1| 7|3 |8
/327 || 86564 [4787] 111 2 {13
V530 || 23321 [1013] 0]22] 1 [24
T k|:bll|m| T /577 || 26543 [1105[ 0 [23] 1 |25
/3842 42335 [ 683 | 1|11|12] 1
2600[[ 5711 | 112] 1] 1 [11]10 /535 900 Teao (117415
V224 973 [ 65 [1|2]7]5 V27 [ 2198 |423]1[8 3|7
240112990 193|113 |5 |7 /327 |[102224]5653] 1 13] 2 |11
V442 [[17681] 841 [ 0[20] 1 [22 530 || 25439 |1105| 0 |24] 1 |22
V/485 [120371] 925 [ 0[21] 1 [23 577 || 28849 [1201]0 (25| 1 |23
V/26001(52061[1021] 1 [10]11] 1
V224 (2275 1521|572
V240 || 6770 [ 4371|753
V442 [[19447] 925 [ 0 [22] 1 |20
185 ||22309]1013[ 0] 23] 1 |21

For example, take the first row for k = 12, i.e. a = /3842 = [61,1,60,1,122)

and its rational approximation 5513%33, which satisfies ‘\/384 — 5513%33 < %.
The convergents of /3812 arc 81, 82, 3781 5843 T2 4TOIT0 20000807 T
only representation of the fraction 551;%33 in the form %, (r,s) € Rya or
722212:?;::;, (s,t) € Thg is 25058 = LATZATE 20843 i:’;iig:’q’j, which shows that
the pair (1,12) cannot be omitted from the set Ris. O

3. Casesr=1,s=1andt=1

The results from the previous section suggest that there are some patterns
in pairs (r,s) and (s,¢) which appear in representations (a,b) = (rpm+1 + Spm,
TGm+1+8¢m) and (a,b) = ($pm+2 —tPm+1, Sqm+2 —tqm+1) of solutions of inequality
(1.2). In particular, these patterns are easy to recognize for pairs of the form
(r,s) = (r,1) or (1,s), and (s,t) = (s,1) or (1,¢). In this section we will prove that
the results on these pairs, already proved for & < 12, are valid in general. These
facts will allow us to show that the inequality rs < 2k in Theorem 1.1 is sharp.

We will assume that k is a positive integer. From Theorem 1.1 it directly follows
that among the pairs of the form (r, 1), only pairs where r < 2k — 1 can appear.
Similarly, for pairs (1,¢) we have t < 2k — 1. On the other hand, from (2.3) and
(2.5) it follows that for pairs (1, s) we have s < k, and for pairs (s, 1) we have s < k.
These results follow also from Theorem 1.2. We will show that all these pairs that
do not contradict Theorem 1.2 can indeed appear.
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. 1 _ 9m-1 __ :
Let iy = [@m; @mt1, Gmeo, - -] and G = J:j = [am—-1,am—2,...,a1], with
the convention that 3; = 0. Then for & = 2mtltPm we have
b Tqm+1+5Gm

Am+2Pm+1+Pm

o=
b @ b b Am+29m+1+G9m

(TQm—H + Sqm) - (Tpm+l =+ Spm)

_ Isomio—r|(rgmi1+5gm) _ [s@mya—r[(r+5Bm2) (3 1)
Am42qm+1+qm Amt2+Bmt2 : :

We start with the pairs of the form (r,1). Let us consider the number a =
V4k? + 1. Tts continued fraction expansion has the form

V4k2 + 1 = [2k; 4K]

(see e.g. [8, p.297]). Take first m = —1, i.e. consider the rational number ¢ defined
by

. 1-p_ 2rk +1 1
a_rpotlpy b+l o001
b r-qo+1-q-1 T T

Hence, a = 2rk+1 and b = r. We claim that for r < 2k—1, |a — %| < b% holds. By
(3.1), this is equivalent to ( — L) r < k. For m > 1 we have a,,, = [4k,4k,...] <

i
4k + ;. Thus, it suffices to check that 4kr? — (16k* + 1)r + 16k + k > 0, which
is clearly satisfied for r < 2k — 1. More precisely, this is satisfied for r less than
16k>4+1—+/16k2+1 S 9k 1

8k 2

We can proceed similarly for m > 0. The only difference is that 4k < 3 1+2 =

[4k,...,4k] < 4k + 7. Hence, by (3.1), we obtain that it suffices to check that for

r<2k-—1,
1 T+ 1%
4k+——r> —— <k
( 4k 4k+—4kiﬁ

holds. But this condition is equivalent to (256k* + 16k2)r? — (1024k° + 64k3)r +
(1024k° — 64k* — 32k* — 1) > 0, which holds for r less than 2k — 2, so it certainly
holds for r < 2k — 1.

The same example o = v/4k? + 1 can be used to handle the pairs (s,t) = (1,1).
The relation (3.1) can be reformulated in terms of s and t = sa;,42 — 7:

t+#
2 al _ s Qs
b |a - E} - (t + am+3) $— Ocm+2+g,,:+2 : (3'2)
Now, for m = —1 we are considering the rational number
pr—t- 8k? +1 — 2tk 1
a_sp—t-p_ SF+ %k ——
b s-q1—1t-qo 4k —t 4k —t

By (3.2), the condition | — ¢| < & leads to 16k%t? — 64kt + 64k* — 12k — 1 > 0.
Similarly, for m > 0, we obtain the condition 8k2t%—(32k3+2k)t+32k*—4k%—1 > 0.
It is easy to see that both conditions are satisfied for ¢ < 2k — 1.
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For pairs of the form (1, s) and (s,1) we use « of the form oo = va? — 1, where
the integer  will be specified latter (if necessary). For z > 2, we have the following
continued fraction expansion

22 —1=[x—1;1,2x — 2]

(see e.g. [8, p.297]). Let us consider the pairs of the form (r,s) = (1,s). We take
m = —1 and define the rational number

a l-ppt+s-p1 x—1+s
b l-go+s-q1 1

Hence,a = — 1+ s and b =1, and for s < k,
lo—%| <(z—14s)—(z—1)=s< &

holds. The same result for pairs (r,s) = (1, k) holds also if m > 1 is odd and if =
is sufficiently large. Indeed, from (3.1) we obtain the condition

1 1+ 52
k(1 —1) [ —22 | <k,
((+2x—2> )<1+2f—_1

k% —2k+5
> 2 + .

which is satisfied for x

Finally, consider the pairs of the form (s,t) = (s,1) for s < k. Take m = —1
and define the rational number
s'pp—1-pp szx—x+1 1

s-qu—1-q  s—1 _x+s—1'

4
b

Hence,a =sxr —x+1and b=s— 1. Wehave\/x2—1>f;—§:x—ﬁ. Thus,

and we obtain the condition

1 n 1 - k
s—1 2z-—1 " (s—1)%

(3.3)

If we choose x to be greater than %, then we have T1—1 < ﬁ, while for
s < k the inequality ﬁ - Si—l > ﬁ - ﬁ = ﬁ holds, and we showed
that for such 2’s the condition (3.3) is fulfilled.

Again, the analogous result for pairs (s,t) = (k, 1) holds for all odd m > 1, but

2 has to be larger than in the case m = —1. Namely, the relation (3.2) yields the

condition
k 1
1 k— —————— k
(+2x—2>< 1+T"’_2>< ’
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2
which is satisfied for x > k_—QIHG.

Our results for the pairs (r,s) = (2k — 1,1) and (s,t) = (1,2k — 1) (with
a = v/4k? 4+ 1) immediately imply the following result which shows that Theorem
1.1 is sharp.

Proposition 3.1. For each € > 0 there exist a positive integer k, a real number «

and a rational number 3, such that
a k
o — E < b—Q,
a ; a _ TPm+1ESPm _ -
and 3 cannot be represented in the form § = S S form > —1 and nonneg

ative integers v and s such that rs < (2 —¢e)k.

Proof. Takek > 1 o =+4k>+Tandeg. § = 2REE-DFL  Then lo— %] < £ If

k-1
m = —1,thenr =2k—1,s =1,¢t = 2k+1, and thus rs = 2k—1 > 2k—ke = (2—¢)k,
while st = 2k + 1. If m > 0, then from s = —bp,,+1 + agm41 it follows that
|s| > |§ — 2| bg1 = 2k + 1, and therefore [rs| > 2k + 1 and |st| > 2k + 1. O

4. A Diophantine application

In [2], Dujella and Jadrijevi¢ considered the Thue inequality
|a:4 — 4exy 4 (6¢ + 2) 22y? + deay® + y4} < 6+ 4,

where ¢ > 3 is an integer. In this section we will assume that ¢ > 5, since the cases
¢ =3 and ¢ = 4 require somewhat different details. Using the method of Tzanakis
[9], they showed that solving the Thue equation z* —4ca3y+ (6¢ + 2) 22y? +4cxy> +
y* =, u € Z\ {0}, reduces to solving the system of Pellian equations

(2¢ +1)U? — 2c¢V? m (4.1)
(c=2)U? —cZ? = —2u, (4.2)

where U = 22 + 92, V = 22 + 2y — 3% and Z = —2? + 4y + y?. If suffices to find
solutions of the system (4.1) and (4.2) which satisfy the condition ged(U,V, Z) = 1.
Then ged(U, V) = 1, and ged(U, Z) = 1 or 2, since 4V + Z2 = 5U2. It is clear that
the solutions of the system (4.1) and (4.2) induce good rational approximations
of the corresponding quadratic irrationals. More precisely, from [2, Lemma 4] we
have the inequalities given in the following lemma.

Lemma 4.1. Let ¢ > 5 be an integer. All positive integer solutions (U,V,Z) of
the system of Pellian equations (4.1) and (4.2) satisfy

2
s (4.3)

2c+1 V
2c U
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C—Q_E 6c+4 <i (4.4)
c U U2\/c(c—2) U '

Using the result of Worley [12, Corollary, p. 206], in [2, Proposition 2| the
authors proved that if p is an integer such that |u| < 6¢+ 4 and that the equation
(4.1) has a solution in relatively prime integers U and V, then

we{l, —2¢,2¢+ 1, —6¢c+ 1, 6¢c+ 4}.

Analysing the system (4.1) and (4.2), and using the properties of convergents of

2c+1
2c 7

1,—6¢+ 1. Applying results from the previous sections to the equation (4.2), we
will present here a new proof of that result, based on the precise information on
w’s for which (4.2) has a solution in integers U and Z such that ged(U, Z) € {1,2}.

The simple continued fraction expansion of a quadratic irrational a = etVd iy
periodic. This expansion can be obtained using the following algorithm. Multiply-
ing the numerator and the denominator by f, if necessary, we may assume that
fl(d—€?). Let so = e, tg = f and

they were able to show that the system has no solutions for u = —2¢, 2c+

" d d—si
apn = {%J, Sna1 = Apty — Sp,  tpal = T“ forn >0 (4.5)

(see [6, Chapter 7.7]). If (sj,t;) = (sk,tx) for j < k, then

o = [ao;...,aj_l,aj,...7a;€_1].

Applying this algorithm to 1/0;62 = V2 oo find that

c )

_2 -
Tt 0;1,c-2,2).

c

According to our results (Proposition 2.2 for £ = 9), applied to a = 4/ 022, all

solutions of (4.2) have the form Z/U = (rpm+1 + $pm)/(T@m+1 + S¢m) an index
m > —1 and integers r and s. For the determination of the corresponding p’s, we
use the following result (see [2, Lemma 1]):

Lemma 4.2. Let a8 be a positive integer which is not a perfect square, and let
DPm/qm denotes the mth convergent of continued fraction expansion of \/% Let the

sequences (sm) and (t,) be defined by (4.5) for the quadratic irrational @ Then

a(rgm+1 + 5¢m)* = B(rpm+1 + 5pm)”
= (=1)™(8%timt1 + 2r8Smya — T2 tmt2). (4.6)

Since the period of the continued fraction expansion of 022 is equal to 2,

according to Lemma 4.2, we have to consider only the fractions :Z’”iiiij’q’m for
m m

m =1 and m = 2. By checking all possibilities, we obtain the following result.
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Proposition 4.3. Let p be an integer such that |u| < 6¢+ 4 and that the equation
(c—=2)U? —cZ% = -2
has a solution in integers U and Z such that ged(U, Z) =1 or 2.
(i) If ¢ = 15 is odd, then
we My ={1,4,2¢c,4c+ 1,6c+ 4, —2c+ 4, —4c+ 9, —6¢ + 16}.

Furthermore, if ¢ = 5,11,13, then p € My U {—8c + 25}; if ¢ = 9, then
w€ My U{-8c+25,—10c+ 36}; if c =7, then p € My U{—8c+ 25, —10c+
36, —12¢ + 49}.

(i) Let M = My U My, where

11 9 7 5 3 1
M2 = {—EC+36,—§C+25,—§C+ 16,—§C+9,—§C+4,—§C+ 1,

1 3 5 7
—c, = 1,-c+4, = )
20,2c+ ,20+ ,2C+9}
If ¢ > 108 is even, then p € M U {%c—i— 16, —121c+ 25}.

For even ¢ with 6 < ¢ < 106, we have p € MUM(C), where M(© can be given
explicitly, as in the case (i). E.g.

21 15
M© = {—?c +25,~10c + 36, —8c+ 25, — ¢ + 16} .

Comparing the set {1, —2¢, 2¢+1, —6¢+1, 6¢+4} from [2, Proposition 2] with
the sets appearing in Proposition 4.3, we obtain the desired conclusion.

Corollary 4.4. Let ¢ > 5 be an integer. If the system (4.1) and (4.2) has a
solution with |p| < 6¢+ 4 in integers U, V and Z such that gcd(U,V,Z) = 1, then
w=1o0rpu==6c+4.
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