
Annales Mathematicae et Informaticae
35 (2008) pp. 21–30
http://www.ektf.hu/ami

Connection between ordinary multinomials,
Fibonacci numbers, Bell polynomials and

discrete uniform distribution∗

Hacène Belbachir, Sadek Bouroubi, Abdelkader Khelladi

Faculty of Mathematics, University of Sciences and Technology Houari Boumediene

(U.S.T.H.B), Algiers, Algeria.

Submitted 8 July 2008; Accepted 16 September 2008

Abstract

Using an explicit computable expression of ordinary multinomials, we
establish three remarkable connections, with the q-generalized Fibonacci se-
quence, the exponential partial Bell partition polynomials and the density of
convolution powers of the discrete uniform distribution. Identities and vari-
ous combinatorial relations are derived.
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1. Introduction

Ordinary multinomials are a natural extension of binomial coefficients, for an
appropriate introduction of these numbers see Smith and Hogatt [18], Bollinger [6]
and Andrews and Baxter [2]. These coefficients are defined as follows: Let q > 1
and L > 0 be integers. For an integer a = 0, 1, . . . , qL, the ordinary multinomial
(

L
a

)

q
is the coefficient of the a-th term of the following multinomial expansion

(

1 + x + x2 + · · · + xq
)L

=
∑

a>0

(

L

a

)

q

xa, (1.1)

with
(

L
a

)

1
=

(

L
a

)

(being the usual binomial coefficient) and
(

L
a

)

q
= 0 for a > qL.
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Using the classical binomial coefficient, one has
(

L

a

)

q

=
∑

j1+j2+···+jq=a

(

L

j1

)(

j1
j2

)

· · ·

(

jq−1

jq

)

. (1.2)

Some readily well known established properties are

the symmetry relation
(

L

a

)

q

=

(

L

qL − a

)

q

, (1.3)

the longitudinal recurrence relation

(

L

a

)

q

=

q
∑

m=0

(

L − 1

a − m

)

q

, (1.4)

and the diagonal recurrence relation

(

L

a

)

q

=

L
∑

m=0

(

L

m

)(

m

a − m

)

q−1

. (1.5)

These coefficients, as for usual binomial coefficients, are built trough the Pascal
triangle, known as “Generalized Pascal Triangle”, see tables: 1, 2 and 3. One can
find the first values of the generalized triangle in SLOANE [17] as A027907 for q = 2,
A008287 for q = 3 and A035343 for q = 4.

As an illustration of recurrence relation, we give the triangles of trinomial,
quadrinomial and pentanomial coefficients:

Table 1: Triangle of trinomial coefficients:
(

L
a

)

2

L\a 0 1 2 3 4 5 6 7 8 9 10
0 1
1 1 1 1
2 1 2 3 2 1
3 1 3 6 7 6 3 1
4 1 4 10 16 19 16 10 4 1
5 1 5 15 30 45 51 45 30 15 5 1

Table 2: Triangle of quadrinomial coefficients:
(

L
a

)

3

L\a 0 1 2 3 4 5 6 7 8 9 10 11 12
0 1
1 1 1 1 1
2 1 2 3 4 3 2 1
3 1 3 6 10 12 12 10 6 3 1
4 1 4 10 20 31 40 44 40 31 20 10 4 1
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Table 3: Triangle of pentanomial coefficients:
(

L
a

)

4

L\a 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 1
1 1 1 1 1 1
2 1 2 3 4 5 4 3 2 1
3 1 3 6 10 15 18 19 18 15 10 6 3 1
4 1 4 10 20 35 52 68 80 85 80 68 52 35 20 · · ·

Several extensions and commentaries about these numbers have been investi-
gated in the literature, for example Brondarenko [7] gives a combinatorial interpre-
tation of ordinary multinomials

(

L
a

)

q
as the number of different ways of distributing

“a” balls among “L” cells where each cell contains at most “q” balls.
Using this combinatorial argument, one can easily establish the following rela-

tion
(

L

a

)

q

=
∑

L1+2L2+···+qLq=a

(

L

L1

)(

L − L1

L2

)

· · ·

(

L − L1 − · · · − Lq−1

Lq

)

=
∑

L1+2L2+···+qLq=a

(

L

L1, L2 · · · , Lq

)

. (1.6)

For a computational view of the relation (1.6) see Bollinger [6]. Andrews and
Baxter [2] have considered the q-analog generalization of ordinary multinomials
(see also [19] for an exhaustive bibliography). They have defined the q-multinomial
coefficients as follows

[

L
a

](p)

q

=
∑

j1+j2+···+jq=a

q
∑ q−1

l=1
(L−jl)jl+1−

∑q−1

l=q−p
jl+1

[

L
j1

] [

j1
j2

]

· · ·

[

jq−1

jq

]

where
[

L
a

]

=

[

L
a

]

q

=

{

(q)L / (q)a (q)L−a if 0 6 a 6 L
0 otherwise

is the usual q-binomial coefficient, and where (q)k =
∏∞

m=1 (1 − qm) /
(

1 − qk+m
)

,
is called q-series. This definition is motivated by the relation (1.2).

Another extension, the supernomials, has also been considered by Schilling and
Warnaar [16]. These coefficients are defined to be the coefficients of xa in the

expression of
∏N

j=1

(

1 + x + · · · + xj
)Lj

A refinement of the q-multinomial coefficient is also considered for the trinomial
case by Warnaar [20].

Barry [3] gives a generalized Pascal triangle as

(

n

k

)

a(n)

:=

k
∏

j=1

a (n − j + 1) /a (j) ,
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where a (n) is a suitably chosen sequence of integers.
Kallas [11] and Noe [14] give a generalization of Pascal’s triangle by considering

the coefficient of xa in the expression of (a0 + a1x + · · · + aqx
q)

L
.

The main goal of this paper is to give some connections of the ordinary multino-
mials with the generalized Fibonacci sequence, the exponential Bell polynomials,
and the density of convolution powers of discrete uniform distribution. We will
give also some interesting combinatorial identities.

2. A simple expression of ordinary multinomials

If we denote xi the number of balls in a cell, the previous combinatorial inter-
pretation given by Brondarenko is equivalent to evaluate the number of solutions
of the system

{

x1 + · · · + xL = a,
0 6 x1, . . . , xL 6 q.

(2.1)

Now, let us consider the system (2.1). For t ∈ ]−1, 1[, we have (see also Comtet [8,
Vol. 1, p. 92 (pb 16).])

∑

a>0

(

L

a

)

q

ta = (1 + t + · · · + tq)L =
∑

06x1,...,xL6q

tx1+···+xL ,

and

(1 + t + · · · + tq)
L

=
(

1 − tq+1
)L

(1 − t)
−L

=





L
∑

j=0

(−1)
j

(

L

j

)

tj(q+1)









∑

j>0

(

j + L − 1

L − 1

)

tj



 .

By identification, we obtain the following theorem.

Theorem 2.1. The following identity holds

(

L

a

)

q

=

⌊a/(q+1)⌋
∑

j=0

(−1)
j

(

L

j

)(

a − j (q + 1) + L − 1

L − 1

)

. (2.2)

This explicit relation seems to be important since in contrast to relations (1.2),
(1.3) and (1.5), it allows to compute the ordinary multinomials with one summation
symbol.

In 1711, de Moivre (see [13] or [12, 3rd ed. p. 39]) solves the system (2.1) as the
right hand side of (2.2).

Corollary 2.2. We have the following identity

⌊n/2⌋
∑

j=0

(

n

j

)(

n − j

j

)

=

⌊n/3⌋
∑

j=0

(−1)j

(

n

j

)(

2n − 3j − 1

n − 1

)

.
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Proof. It suffices to use relation (6) in Theorem 2.1 for q = 2 and a = L = n. �

The left hand side of the equality has the following combinatorial meaning. It
computes the number of ways to distribute n balls into n boxes with 2 balls at
most into each box. Put a ball into each box, then choose j boxes for removing
the boxes located in them into j boxes chosen from the remaining n − j boxes.

3. Generalized Fibonacci sequences

Now, let us consider for q > 1, the “multibonacci” sequence (Φ
(q)
n )n>−q defined

by










Φ
(q)
−q = · · · = Φ

(q)
−2 = Φ

(q)
−1 = 0,

Φ
(q)
0 = 1,

Φ
(q)
n = Φ

(q)
n−1 + Φ

(q)
n−2 + · · · + Φ

(q)
n−q−1 for n > 1.

In [4], Belbachir and Bencherif proved that

Φ(q−1)
n =

∑

k1+2k2+···+qkq=n

(

k1 + k2 + · · · + kq

k1, k2, · · · , kq

)

,

and, for n > 1

Φ(q−1)
n =

⌊n/(q+1)⌋
∑

k=0

(−1)
k n − k (q − 1)

n − kq

(

n − kq

k

)

2n−1−k(q+1),

leading to

∑

k1+···+qkq=n

(

k1 + · · · + kq

k1, · · · , kq

)

=

⌊n/(q+1)⌋
∑

k=0

(−1)
k n − k (q − 1)

n − kq

(

n − kq

k

)

2n−1−k(q+1).

This is an analogous situation in writing above a multiple summation with one
symbol of summation. On the other hand, we establish a connection between the
ordinary multinomials and the generalized Fibonacci sequence:

Theorem 3.1. We have the following identity

Φ(q)
n =

qm−r
∑

l=0

(

n − l

l

)

q

, (3.1)

where m is given by the extended euclidean algorithm for division: n = m (q + 1)−r,
0 6 r 6 q.
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Proof. We have

Φ(q)
n =

∑

k1+2k2+···+(q+1)kq+1=n

(

k1 + k2 + · · · + kq+1

k1, k2, · · · , kq+1

)

=
∑

L>0

∑

k1+2k2+···+(q+1)kq+1=n

(

L

k1, k2, · · · , kq+1

)

=
∑

L>0

∑

k2+2k3+···+qkq+1=n−L

(

L

L − k2 − · · · − kq+1, k2, · · · , kq+1

)

=
∑

L>0

(

L

n − L

)

q

=
n

∑

L> n
q+1

(

L

n − L

)

q

,

using the fact that
(

L
a

)

q
= 0 for a < 0 or a > qL

Now consider the unique writing of n given by the extended euclidean algorithm
for division: n = m (q + 1) − r, 0 6 r < q + 1 then n

q+1 = m − r
q+1 , which gives

Φ(q)
n =

qm−r
∑

k=0

(

m + k

qm − r − k

)

q

=

qm−r
∑

k=0

(

m + k

(q + 1) k + r

)

q

=

qm−r
∑

l=0

(

n − l

l

)

q

.

�

As an immediate consequence of Theorem 3.1, we obtain the following identities

Φ
(q)
(q+1)m =

qm
∑

l=0

(

(q + 1)m − l

l

)

q

=

qm
∑

k=0

(

m + k

(q + 1) k

)

q

,

Φ
(q)
(q+1)m−1 =

qm−1
∑

l=0

(

(q + 1)m − l − 1

l

)

q

=

qm
∑

k=0

(

m + k

(q + 1) k + 1

)

q

,

...

Φ
(q)
(q+1)m−r =

qm−r
∑

l=0

(

(q + 1)m − l − r

l

)

q

=

qm
∑

k=0

(

m + k

(q + 1) k + r

)

q

.

For q = 1, we find the classical Fibonacci sequence:

F−1 = 0, F0 = 1, Fn+1 = Fn + Fn−1, for n > 0.

Thus, we obtain the well known identity

Fn =

⌊n/2⌋
∑

l=0

(

n − l

l

)

.
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Recently, in [5], the first author and Szalay prove the unimodality of the se-
quence uk =

(

n−k
k

)

q
associated to generalized Fibonacci numbers. More generally,

they establish the unimodality for all rays of generalized Pascal triangles by showing
that the sequence wk =

(

n+αk
m+βk

)

q
is log-concave, then unimodal.

4. Exponential partial Bell partition polynomials

In this section, we establish a connection of the ordinary multinomials with
exponential partial Bell partition polynomials Bn,L (t1, t2, . . .) which are defined
(see Comtet [8, p. 144]) as follows

1

L!





∑

m>1

tm
m!

xm





L

=
∑

n>L

Bn,L
xn

n!
, L = 0, 1, 2, . . . . (4.1)

An exact expression of such polynomials is given by

Bn,L (t1, t2, . . .) =
∑

k1+2k2+···=n
k1+k2+···=L

n!

k1!k2! · · · (1!)
k1 (2!)

k2 · · ·
tk1

1 tk2

2 · · · .

In this expression, the number of variables is finite according to k1 +2k2 + · · · =
n.

Next, we give some particular values of Bn,L :

Bn,L (1, 1, 1, . . .) =

{

n
L

}

Stirling numbers of second kind,

Bn,L (0!, 1!, 2!, . . .) =

[

n
L

]

Stirling numbers of first kind,

Bn,L (1!, 2!, 3!, . . .) =
n!

L!

(

n − 1

n − L

)

. (4.2)

In [1], Abbas and Bouroubi give several extended values of Bn,L.

The connection with ordinary multinomials is given by the following result:

Theorem 4.1. We have the following identity

Bn,L (1!, 2!, . . . , (q + 1)!, 0, . . .) =
n!

L!

(

L

n − L

)

q

. (4.3)

Proof. Taking in (4.1) tm = m! for 1 6 m 6 q + 1 and zero otherwise, we obtain

(

x + · · · + xq+1
)L

= L!
∑

n−L>0

Bn,L (1!, 2!, . . . , (q + 1)!, 0, . . .)
xn

n!
,
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from which it follows

∑

a>0

(

L

a

)

q

xa =
∑

n−L>0

L!

n!
Bn,L (1!, 2!, . . . , (q + 1)!, 0, . . .)xn−L.

�

Corollary 4.2. Let q > 1, L > 0 be integers, and a ∈ {0, 1, . . . , qL} . For q > a,
we have the following identity

(

L

a

)

q

=

(

L + a − 1

a

)

.

Proof. Using the fact that Bn,L (1!, 2!, . . . , (q + 1)!, 0, . . .) = Bn,L (1!, 2!, 3!, . . .) for

q + 1 > n − L + 1, we obtain
(

L
n−L

)

q
=

(

n−1
n−L

)

for q > n − L. We conclude with

a = n − L. �

This is simply a combination with repetition permitted (i.e. multi combination).

5. Convolution powers of discrete uniform distribu-

tion

This section gives a connection between the ordinary multinomials and the
convolution power of the discrete uniform distribution. The right hand side of
identity (2.2) is a very well known expression. Indeed for q, L ∈ N, let us denote
by U⋆L

q the Lth convolution power of the discrete uniform distribution

Uq :=
1

q + 1
(δ0 + δ1 + · · · + δq) (δa is the Dirac measure),

then for a ∈ N (see de Moivre [13] or [10]), with respect to the counting measure,
its density is given by

P
(

U⋆L
q = a

)

=
1

(q + 1)
L

⌊a/(q+1)⌋
∑

j=0

(−1)
j

(

L

j

)(

a + L − (q + 1) j − 1

L − 1

)

. (5.1)

Combining Theorem 2.1 and relation (5.1), we have the following result:

Corollary 5.1. Using the above notations, we obtain the following identity

P
(

U⋆L
q = a

)

=

(

L
a

)

q

(q + 1)
L

.
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It should be noted that the multinomials may be seen as the number of favorable
cases to the realization of the elementary event {a} .

It is easy to show that the distribution of U⋆L
q is symmetric by relation (1.3).

Corollary 5.2. We have the following identities

qL
∑

k=0

k

(

L

k

)

q

= (q + 1)L qL

2
,

qL
∑

k=0

k2

(

L

k

)

q

= (q + 1)L qL

2

(

qL

2
+

q + 2

6

)

,

qL
∑

k=0

k3

(

L

k

)

q

= (q + 1)L

(

qL

2

)2 (

qL

2
+

q + 2

2

)

,

More generally, for m > 1, the following identity holds

qL
∑

k=0

km

(

L

k

)

q

= (q + 1)
L

∑

i1+i2+···+iL=m

(

m

i1, i2, . . . , iL

)

ui1ui2 · · ·uiL
,

where ui is the i-th moment of the random variable Uq.

Proof. It suffices to compute the expectation of U⋆L
q using, first the density distri-

bution and second the summation of uniform distributions. It also comes from the
application of the generating function of the distribution given by Corollary 5.1. �
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