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Abstract

A general approach to the rate of convergence in the strong law of large
numbers is given. It is based on the Hájek–Rényi type method presented in
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1. Introduction

The Hájek–Rényi inequality (see Hájek and Rényi [3]) is a useful tool to prove
the strong law of large numbers (SLLN). There are several generalizations of that
inequality. In Fazekas and Klesov [1] a unified approach is given to obtain SLLN’s.
Their method is based on a Hájek–Rényi type inequality for the moments. Then
the general method is applied to prove SLLN’s for various dependent sequences. It
turned out that by their method the normalizing constants in the SLLN’s can be
improved. Hu and Hu in [4] strengthened the method of Fazekas and Klesov [1] by
adding the rate of convergence in the SLLN.

Sung, Hu and Volodin [5] found a new method for obtaining the strong growth
rate for sums of random variables by using the method of Fazekas and Klesov [1].
This result generalizes and sharpens the method of Hu and Hu [4].

Tómács and Líbor in [6] gave a version of the approach in Fazekas and Klesov [1]
by using Hájek–Rényi type inequality for the probabilities instead of the moments.
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In this paper we give a general method to obtain the rate of convergence in
an SLLN by using a Hájek–Rényi type inequality for the probabilities (see Theo-
rem 3.4). This result generalizes the method of Sung, Hu and Volodin [5].

We use the following notation. Let N be the set of the positive integers and R

the set of real numbers. If a1, a2, . . . ∈ R then in case A = ∅ let maxk∈A ak = 0
and

∑

k∈A ak = 0. Let Ψ denote the set of functions f : (0,∞) → (0,∞), that are
nonincreasing and

∞
∑

n=1

n−2f(n−1) < ∞.

2. Lemmas

Lemma 2.1. If f ∈ Ψ then
∑

∞

k=0
2−kf(2−k) < ∞.

Proof. It is easy to see that

∞
∑

n=1

n−2f(n−1) =
∞
∑

k=0

2
k+1

−1
∑

n=2k

n−2f(n−1)

>

∞
∑

k=0

f(2−k)

2
k+1

−1
∑

n=2k

(

1

n
−

1

n + 1

)

=
1

2

∞
∑

k=0

2−kf(2−k).

This inequality implies the statement. �

The following lemma generalizes Dini’s theorem (see Fikhtengolts [2], §375.5 or
Lemma 1 in Hu and Hu [4]).

Lemma 2.2. Let {ak, k ∈ N} be a sequence of nonnegative numbers such that
ak > 0 for infinitely many k. Let f ∈ Ψ. If

∑

∞

k=1
ak < ∞ then

∞
∑

k=1

akf

(

∞
∑

i=k

ai

)

< ∞.

Proof. Let vk =
∑

∞

i=k ai. Then {vk, k ∈ N} is a nonincreasing sequence of
positive numbers and limk→∞ vk = 0.

Let Ai = {k ∈ N : 2−i−1 < vk 6 2−i}, i = 0, 1, 2, . . . , and k0 = min
⋃

∞

i=0
Ai.

If Ai 6= ∅, then with notation mi = min Ai, we have

∑

k∈Ai

ak 6

∞
∑

k=mi

ak = vmi
6 2−i.

So we get

∞
∑

k=k0

akf(vk) =

∞
∑

i=0

∑

k∈Ai

akf(vk) 6

∞
∑

i=0

f(2−i−1)
∑

k∈Ai

ak



A general method to obtain the rate of convergence . . . 99

6

∞
∑

i=0

2−if(2−i−1) = 2

∞
∑

i=1

2−if(2−i)

which is less then ∞ by Lemma 2.1. Thus the statement is proved. �

Lemma 2.3. Let {Yk, k ∈ N} be a sequence of random variables defined on a fixed
probability space (Ω,F , P). Then

P
(

sup
k

Yk > x
)

= lim
n→∞

P
(

max
k6n

Yk > x
)

for all x ∈ R.

Proof. It is easy to see that

{

sup
k

Yk > x
}

=

∞
⋃

n=1

{

max
k6n

Yk > x
}

for all x ∈ R,

hence, using continuity of probability, we get the statement. �

Lemma 2.4. Let {Yk, k ∈ N} be a sequence of random variables defined on a
fixed probability space (Ω,F , P) and {εn, n ∈ N} a nondecreasing sequences of real
numbers. If

lim
n→∞

P
(

sup
k

Yk > εn

)

= 0,

then
sup

k
Yk < ∞ almost surely (a.s.).

Proof. Using continuity of probability, we have

P

(

∞
⋂

n=1

{sup
k

Yk > εn}

)

= lim
n→∞

P
(

sup
k

Yk > εn

)

= 0,

which is equivalent to P
(

⋃

∞

n=1
{sup

k
Yk 6 εn}

)

= 1. This implies that there exists

nω ∈ N for almost every ω ∈ Ω, such that sup
k

Yk(ω) 6 εnω
< ∞. �

3. The general method

In this section let {Xk, k ∈ N} be a sequence of random variables defined on a
fixed probability space (Ω,F , P) and Sn =

∑n
k=1

Xk for all n ∈ N. Let {αk, k ∈ N}
be a sequence of nonnegative real numbers, r > 0 and {bk, k ∈ N} a nondecreasing
unbounded sequence of positive real numbers. Assume that

∞
∑

k=1

αkb−r
k < ∞
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and there exists c > 0 such that for any n ∈ N and any ε > 0

P
(

max
k6n

|Sk| > ε
)

6 cε−r
n
∑

k=1

αk. (3.1)

Let f ∈ Ψ, g(x) = f−1/r(x) if x > 0, g(0) = 0 and

βn = max
k6n

bkg

(

∞
∑

i=k

αib
−r
i

)

.

Remark 3.1. It is proved that these conditions imply limn→∞ Snb−1

n = 0 a.s. (See
Theorem 2.4 in [6].)

Theorem 3.2. If there exists t ∈ N such that αt 6= 0, then

Sn

βn
=

{

O(1) a.s., if βn = O(1),

o(1) a.s., if βn 6= O(1).

Proof. It is easy to see that 0 < β1 6 β2 6 · · · . First we shall prove that

∞
∑

k=1

αkβ−r
k < ∞. (3.2)

If αk > 0 for finitely many k, then (3.2) is obvious. If αk > 0 for infinitely many
k, then

β−r
n =

(

max
k6n

bkf−1/r

( ∞
∑

i=k

αib
−r
i

)

)−r

6

(

bnf−1/r

( ∞
∑

i=n

αib
−r
i

)

)−r

= b−r
n f

(

∞
∑

i=n

αib
−r
i

)

.

This inequality and Lemma 2.2 imply

∞
∑

k=1

αkβ−r
k 6

∞
∑

k=1

αkb−r
k f

(

∞
∑

i=k

αib
−r
i

)

< ∞.

Thus (3.2) is proved. Now, if βn 6= O(1), then Remark 3.1 and (3.2) imply the
statement. If βn = O(1), then we get by (3.2)

∞
∑

k=1

αk 6

∞
∑

k=1

αk

(

β−1

k sup
n

βn

)r
=
(

sup
n

βn

)r
∞
∑

k=1

αkβ−r
k < ∞. (3.3)

By Lemma 2.3 and (3.1) we have

P
(

sup
k

|Sk| > ε
)

6 lim
n→∞

P
(

max
k6n

|Sk| > ε
)

6 cε−r
∞
∑

k=1

αk for all ε > 0.
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This inequality and (3.3) imply

lim
n→∞

P
(

sup
k

|Sk| > εn

)

= 0,

where 0 < εn ↑ ∞. Hence by Lemma 2.4 we get supk |Sk| < ∞ a.s. On the other
hand Snβ−1

n 6 supk |Sk|β
−1

1
. Thus the theorem is proved. �

Remark 3.3. Sung, Hu and Volodin proved in [5] (Lemma 4) that if αn ≡ 1 then
βn 6= O(1). Hence Theorem 3.2 implies that if αn ≡ 1 then limn→∞ Snβ−1

n = 0 a.s.

Theorem 3.4. The following statements are true:
(1) Snb−1

n = O(βnb−1

n ) a.s.
(2) limn→∞ Snb−1

n = 0 a.s.
(3) If αk > 0 for finitely many k, then limn→∞ βnb−1

n = 0.
(4) If limx→0 f(x) = ∞, then limn→∞ βnb−1

n = 0.

Proof. Let wk =
∑

∞

i=k αib
−r
i . Then w1 > w2 > . . . and limn→∞ wn = 0, hence

we get

βn 6 max
k<m

bkg(wk) + max
m6k6n

bkg(wk) 6 max
k<m

bkg(wk) + bng(wm), if n > m. (3.4)

On the other hand

lim
n→∞

(

b−1

n max
k<m

bkg(wk) + g(wm)
)

= g(wm), ∀m ∈ N. (3.5)

Now, we shall prove that

lim
m→∞

g(wm) = 0. (3.6)

If αk > 0 for finitely many k, then (3.6) is obvious. If αk > 0 for infinitely many k,
then the condition is limx→0 f(x) = ∞, which implies limm→∞ f(wm) = ∞. Hence,
(3.6) is true in this case too. Then (3.4), (3.5) and (3.6) imply limn→∞ βnb−1

n = 0.
Now, we turn to statement Snb−1

n = O(βnb−1

n ) a.s. If there exists t ∈ N such
that αt 6= 0, then by Theorem 3.2 we have

Sn

bn
=

Sn

βn

βn

bn
= O(1)

βn

bn
= O

(

βn

bn

)

a.s.

If αk ≡ 0, then by (3.1) we get

P
(

max
k6n

|Sk| > εm

)

= 0 ∀m, n ∈ N,

where 0 < εm ↓ 0. It follows that Sn = 0 a.s. for all n ∈ N in this case.
Finally limn→∞ Snb−1

n = 0 a.s. is proved by Tómács and Líbor in [6] (Theo-
rem 2.4). �



102 T. Tómács

References

[1] Fazekas, I. and Klesov, O., A general approach to the strong laws of large numbers,
Theory of Probab. Appl., 45/3 (2000) 568–583.

[2] Fikhtengolts, G.M., A course of differential and integral calculus, People’s Educa-

tion Press (1954).

[3] Hájek, J. and Rényi, A., Generalization of an inequality of Kolmogorov, Acta Math.

Acad. Sci. Hungar. 6 no. 3–4 (1955) 281–283.

[4] Hu, S. and Hu, M., A general approach rate to the strong law of large numbers,
Stat. & Prob. Letters 76 (2006) 843–851.

[5] Sung, S.H., Hu, T.-C. and Volodin, A., A note on the growth rate in the Fazekas-
Klesov general law of large numbers and some applications to the weak law of large
numbers for tail series, Submitted to Publicationes Mathematicae Debrecen (July 8,
2006).

[6] Tómács, T. and Líbor, Zs., A Hájek–Rényi type inequality and its applications,
Annales Mathematicae et Informaticae, 33 (2006) 141–149.

Tibor Tómács

Department of Applied Mathematics

Károly Eszterházy College

P.O. Box 43

H-3301 Eger

Hungary


