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Abstract

We descibe an alternative procedure for solving automatically simultane-
ous Pell equations with relatively small coefficients. The word “automatically”
means to indicate that the algorithm can be implemented in Magma. Nu-
merous famous examples are verified and a new theorem is proved by running
simply the corresponding Magma procedure requires only the six coefficients
of the system

a1x
2
+ b1y

2
= c1,

a2x
2
+ b2z

2
= c2.

Keywords: Simultaneous Pell equations, to compute all solutions, Thue equa-
tions

MSC: 11D09, 11D25, 11Y50

1. Introduction

In this paper an alternative method is presented for solving the simultaneous
Pell equations

a1x
2 + b1y

2 = c1, (1.1)

a2x
2 + b2z

2 = c2, (1.2)

in non-negative integers x, y and z, where the coefficients are given integers satis-
fying the natural conditions

a1b1 < 0, a2b2 < 0, c1c2 6= 0, a1c2 − a2c1 6= 0.
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The algorithm depends on the combination of (1.1) and (1.2), which leads to Thue
equations of degree four can be solved, for example, by the computer package
magma. Further, if (1.2) is replaced by

a2x
2 + b2z

2 = c2y
2, (1.3)

then the method still works. Unfortunately, the number and the coefficients of
the Thue equations need to be solved may increase if ai, bi, ci (i = 1, 2) are getting
larger. Nevertheless, applying the new idea, the classical examples have been hand-
led before by different methods were verified in a short time (see Appendix). One
of the examples gives a new result by showing that there is no Lucas balancing
number.

The first paper concerning simultaneous Pell equations is due to Boutin and
Teilhet [8]. In 1904, they proved the unsolvability (in positive integers α, β, γ) of
the system 6β2 + 1 = α2, γ2 − 3β2 = 1. In Appendix there are given some more
papers from the early period. Ljunggren [20] has a remarkable result from the first
part of the twentieth century. Using the properties of the units of quadratic fields,
he showed that the equations x2−Dy2 = 1 and y2−D1z

2 = 1 with fixed D and D1

have only finitely many solutions, and he was able to solve the case D = 2, D1 = 3.
Generally, the finiteness of the number of solutions of (1.1), (1.2) (or (1.1), (1.3)
or (1.4), (1.5)) follows from the works of Thue [27] or Siegel [26].

In 1969, Baker and Davenport discovered that the theory of linear forms in
logarithm can be also applied to solve simultaneous Pell equations. Their famous
paper [3] provided the number 120 as a unique extension of the Diophantine triple
{1, 3, 8} to quadruple. A set of positive integers is called Diophantine m-tuple if
the product of any two elements increased by one is a perfect square. Following
them, many authors applied the Baker-Davenport method to investigate similar
problems (see Appendix). Taking t12, t13, t23 ∈ Z the set S = {a1, a2, a3} is called
Diophantine triple with t12, t13, t23 if each aiaj + tij equals a perfect square. Can
S be extended to Diophantine quadruple by some integer x = a4 with the new
integers t14, t24, t34? This question leads to the equations

a1x + t14 = x2
1,

a2x + t24 = x2
2,

a3x + t34 = x2
3,

or, equivalently, to an (1.1), (1.2)-type system of the form

a2x
2
1 − a1x

2
2 = a2t14 − a1t24,

a3x
2
1 − a1x

2
3 = a3t14 − a1t34.

Clearly, starting from an Diophantine quadruple with fixed six integers tij (1 6 i <
j 6 4), one can make efforts to solve the problem of Diophantine quintuple with
the new integers ti5 (i = 1, . . . , 4).

Pinch [23] generalized the procedure of Baker and Davenport, and his approach
was applied by Gaál, Pethő and Pohst [13]. They reduced the resolution of index
form equations to the resolution of certain simultaneous Pell equations.
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Although Kedlaya [18] described an elementary method to solve the generaliza-
tion

x2 − ay2 = b, (1.4)

P (x, y) = z2 (1.5)

of (1.1), (1.3), where P (x, y) is a polynomial with integer coefficients, it is fact,
that in his examples P is univariate with degree at most two.

Tzanakis [28] suggests the elliptic logarithm method. The procedure provides
a corresponding elliptic curve and then determines all rational points on it. But
his algorithm requires an initial non-trivial rational solution, and it may cause
difficulties. This idea has been partially described by Katayama [16] as well.

An other direction is to study the number of solutions of simultaneous Pell
equations. In [5] Bennett proved that if a and b are distinct nonzero integers
then the simultaneous equations x2 − az2 = 1 = y2 − bz2 possess at most three
solutions in positive integers (x, y, z). Further, he also gave an upper bound for
the cardinality of positive triplets (x, y, z) satisfying x2 − az2 = u, y2 − bz2 = v.

In the end of this section we quote two preliminary result required by our
method. First we recall a criterion due to Legendre for the existence of a nonzero
integer solution (x, y, z) to the diophantine equation

ax2 + by2 + cz2 = 0, (1.6)

where a, b and c are nonzero integers. (See, for example, in [7].)

Theorem 1.1. Let a, b, c be three squarefree integers, a > 0, b < 0, c < 0 which
are pairwise coprime. Then there exists a nonzero integer solution (x, y, z) to the
diophantine equation (1.6) if and only if all three congruences

t2 ≡ −ab (mod c) t2 ≡ −ac (mod b) t2 ≡ −bc (mod a)

are solvable. Furthermore, if a nonzero solution exists, then there exists a nonzero
solution (x0, y0, z0) of equation (1.6) satisfying the inequality

max{x0, y0, z0} 6
√

abc.

By applying the next statement (see [21]), if (1.6) has a non-zero solution, one
can determine all (x, y, z) satisfying (1.6).

Theorem 1.2. Assume that (x0, y0, z0) is an integer solution of equation (1.6)
with z0 6= 0. Then, all integer solutions (x, y, z) with z 6= 0 of equation (1.6) are
of the form

x = ±D

d

(

−ax0s
2 − 2by0rs + bx0r

2
)

,

y = ±D

d

(

ay0s
2 − 2ax0rs − by0r

2
)

,
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z = ±D

d

(

az0s
2 + bz0r

2
)

,

where r and s > 0 are coprime integers, D is a nonzero integer, and d | 2a2bcz3
0 is

a positive integer.

2. The algorithm

Consider the aforesaid system of two diophantine equations

a1x
2 + b1y

2 = c1, (2.1)

a2x
2 + b2z

2 = c2, (2.2)

in non-negative integers x, y and z, where the coefficients are given integers satis-
fying the conditions a1b1 < 0, a2b2 < 0, c1c2 6= 0 and a1c2 − a2c1 6= 0.

After multiplying (2.1) by c2 and (2.2) by c1 and subtracting the second equa-
tion from the first, we obtain

(a1c2 − a2c1)x
2 + b1c2y

2 − b2c1z
2 = 0. (2.3)

Note that none of the coefficients in (2.3) is zero. We should achieve that the con-
ditions of Legendre’s theorem be fulfilled. Therefore we divide (2.3) by gcd(a1c2 −
a2c1, b1c2, b2c1) and we get a3x

2 + b3y
2 + c3z

2 = 0, further if a3b3c3 < 0 then
even multiply a3x

2 + b3y
2 + c3z

2 = 0 by (−1). Moreover, let this new equation be
multiplied by gcd(a3, b3) · gcd(a3, c3) · gcd(b3, c3) and let assimilate the squarefull
part of the coefficients into the corresponding variables, relabelling them, and we
have

aX2 + bY 2 + cZ2 = 0, (2.4)

where X, Y, Z is a permutation of cxx, cyy, czz with some suitable positive
integers cx, cy and cz, moreover a > 0, b < 0 and c < 0 are pairwise coprime,
squarefree integers. Clearly, the choice of X is unique, but the role of Y and Z can
be switched. By the theorem of Legendre, we need a basic solution (X0, Y0, Z0).

If (2.4) is not solvable then the system (2.1), (2.2) has no solution. Otherwise,
let (X0, Y0, Z0) with Z0 6= 0 satisfy (2.4), and possibly d(2a2bcZ3

0) 6 d(2a2bcY 3
0 ),

where d( ) denotes the number of divisors function. Such a triplet can easily be
found by a simply search in the intervals 0 6 X0, Y0, Z0 6

√
abc.

Now, applying Theorem 1.2, X, Y and Z can be expressed by

X = ±D

d
(α1s

2 + β1sr + γ1r
2),

Y = ±D

d
(α2s

2 + β2sr + γ2r
2),

Z = ±D

d
(α3s

2 + β3sr + γ3r
2),
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where s > 0 and r are coprime, D is an arbitrary integer, d | hd = 2a2bcZ3
0 is a

positive integer and β3 = 0. Consequently,

x = ± D

cxd
(αi1s

2 + βi1sr + γi1r
2),

y = ± D

cyd
(αi2s

2 + βi2sr + γi2r
2),

z = ± D

czd
(αi3s

2 + βi3sr + γi3r
2),

where i1, i2, i3 is a permutation of the subscripts 1, 2, 3 of α, β and γ.
These results can be applied to return with x, y and z, for instance, to (2.1),

and we obtain

a1

(

D

cxd
(αi1s

2 + βi1sr + γi1r
2)

)2

+ b1

(

D

cyd
(αi2s

2 + βi2sr + γi2r
2)

)2

= c1,

which implies

a1c
2
y

(

αi1s
2 + βi1sr + γi1r

2
)2

+ b1c
2
x

(

αi2s
2 + βi2sr + γi2r

2
)2

= c1c
2
xc2

y

(

d

D

)2

.

Note that the left hand side is a homogenous form of degree 4 in s and r, denote it
by T1(s, r). Simplify the latest equation by the greatest common divisor of c1c

2
xc2

y

and the coefficients of T1. Hence we obtain T (s, r) = c4(d/D)2. On the right hand
side, let c0 be the squarefree part of c4. Thus there exist a positive integer c6 such
that c4 = c0c

2
6. Then the above equation is equivalent to

T (s, r) = c0

(

c6d

D

)2

. (2.5)

(2.5) means finitely many Thue equations of order 4, because T (s, r) is given,
0 < d is a divisor of hd = 2a2bcZ3

0 and j = c6d
D

must be integer. To determine
all solutions of equations (2.5) we use magma system. Suppose that (sj , rj) is
a solution of T (s, r) = c0j

2 for some eligible j. We reject (sj , rj) if sj 6 0 or
gcd(sj , rj) > 1, otherwise we get

x = ± c6

cxj
(αi1s

2
j + βi1sjrj + γi1r

2
j ),

y = ± c6

cyj
(αi2s

2
j + βi2sjrj + γi2r

2
j ),

z = ± c6

czj
(αi3s

2
j + βi3sjrj + γi3r

2
j ).

If all x, y and z are non-negative integers then a solution of the system (2.1),
(2.2) is found.
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3. Examples

Example 3.1. A positive integer y is called balancing number with balancer
r ∈ N

+ if
1 + 2 + · · · + (y − 1) = (y + 1) + · · · + (y + r). (3.1)

The problem of determining balancing numbers leads to the solutions of the Pell
equation z2 − 8y2 = 1, where y can be described by the recurrence yn = 6yn−1 −
yn−2, y0 = 1, y1 = 6 (see Behera and Panda, [4]). Note that y = y0 = 1 is not a
balancing number in the sense of equation (3.1).

In [19], Liptai showed that there are no Fibonacci balancing numbers, i.e. nei-
ther of balancing numbers y is a term of the Fibonacci sequence {F} defined by
the initial values F0 = 0, F1 = 1 and by the recurrence relation Fn = Fn−1 +Fn−2,
(n > 2). Liptai used the Baker-Davenport method to have the solution of the
simultaneous Pell equation x2 − 5y2 = ±4, z2 − 8y2 = 1.

Now we show that no Lucas balancing number exists. Lucas sequence is defined
by the recurrence relation Ln = Ln−1 + Ln−2, (n > 2) and L0 = 2, L1 = 1. It is
well known that the terms of Lucas and Fibonacci sequences satisfy L2

n−5F 2
n = ±4.

Theorem 3.2. There is no Lucas balancing number.

Proof. We are showing that the system

x2 − 5y2 = ±4, (3.2)

z2 − 8x2 = 1. (3.3)

has only the positive integer solution (x, y, z) = (1, 1, 3), consequently there exists
no Lucas balancing number x.

Taking the case +4, with the notation X := x, Y := y and Z := 2z, we have

33X2 − 5Y 2 − Z2 = 0.

By Theorem 1.1, it has no nonzero solution, because t2 6≡ 33 (mod (−5)).
The case of −4 with X := 2z, Y := y, Z := x provides

X2 − 5Y 2 − 31Z2 = 0.

The coefficients suggest the solution (X0, Y0, Z0) = (6, 1, 1). Applying Theorem 1.2,
it follows that

x = Z = ±D

d
(s2 − 5r2),

y = Y = ±D

d
(s2 − 12sr + 5r2),

z =
X

2
= ±D

2d
(−6s2 + 10sr − 30r2) = ±D

d
(−3s2 + 5sr − 15r2).
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Substitute x and z to (3.3) to have

(−3s2 + 5sr − 15r2)2 − 8(s2 − 5r2)2 =

(

d

D

)2

,

where, by Theorem 1.2 again, 0 < d | 310. Obviously, d
D

is integer, therefore we
have to solve the Thue equations

s4 − 30s3r + 195s2r2 − 150sr3 + 25r4 =

(

d

D

)2

(3.4)

for some positive integers j = d/D | 310. There are only three values of j when
the solution (sj , rj) satisfies the condition sj > 0 and gcd(sj , rj) = 1, these are
j = 1, 31 and 155. All the three triplets (j, sj , rj) = (1, 1, 0), (31, 6, 1), (155, 5, 6)
provide the same solution (x, y, z) = (1, 1, 3). Hence, we conclude that there are
no Lucas balancing number. �

Example 3.3 (Brown [9]). The system

x2 − 8y2 = 1 (3.5)

z2 − 5y2 = 1 (3.6)

leads to the equation X2 − 3Y 2 − Z2 = 0, where X := x, Y := y, Z := z. The
coefficients of the Legendre equation and the basic solution (X0, Y0, Z0) = (1, 0, 1)
imply d 6 6. Theorem 2 gives x = X = ±D

d
(−s2 − 3r2), y = Y = ±D

d
(−2sr),

z = Z = ±D
d
(s2 − 3r2), which together with the first equation of the system leads

to

s4 − 26s2r2 + 9r4 =

(

d

D

)2

. (3.7)

Since d | 6, we have to solve only four Thue equations. Only one of them have
solution satisfying the conditions, namely if j = (d/D) = 1 then (sj , rj) = (1, 0).
It gives (x, y, z) = (1, 0, 1).

Example 3.4. To determine all the non-negative solutions of the system

3x2 − 10y2 = −13, (3.8)

x2 − 3y2 = z2, (3.9)

first we consider (3.9), which has already been solved in the previous example.
Applying x = X = ±D

d
(−s2−3r2), y = Y = ±D

d
(−2sr), d | 6 and (3.8), we obtain

3s4 − 22s2r2 + 27r4 = −13

(

d

D

)2

. (3.10)

These Thue equations has eight solutions in coprime sj > 0 and rj providing
(x, y, z) = (7, 4, 1) and (73, 40, 23).

In the next section we enumerate chronologically several systems of Pell equa-
tions in order to illustrate experiences and statistical data regarding the MAGMA

program on my average home computer. The last coloumn shows the running time
of the algorithm. Then we notify four more examples.
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4. Appendix

Year Cit. Author(s) System(s) (x, y, z) hd d(hd) Time

1904 [8] Boutin, Teilhet
x
2
− 6y

2 = 1
z
2 − 3y

2 = 1 (1, 0, 1) 6 4 1 sec

1918 [25] Rignaux
x
2
− 2z

2 = 1
y
2 − 3z

2 = 1 (1, 1, 0) 2 2 1 sec

1922 [2] Arwin
x
2
− 2y

2 = 1
y
2 − 3z

2 = 1 (3, 2, 1) 6 4 2 sec

1941 [20] Ljunggren (see Arwin)
x
2
− 2y

2 = 1
y
2 − 3z

2 = 1 (3, 2, 1) 6 4 2 sec

1949 [12] Gloden (see Rignaux)
2x

2 + 1 = y
2

3x
2 + 1 = z

2 (0, 1, 1) 2 2 1 sec

1969 [3]
Baker, Davenport
(details below)

3x
2
− y

2 = 2
8x

2 − z
2 = 7

(1, 1, 1)
(11, 19, 31) 980 18 20 sec

1975 [15]
Kanagasabapathy
Ponnudurai

y
2
− 3x

2 = −2
z
2 − 8x

2 = −7
(1, 1, 1)
(11, 19, 31) 980 18 20 sec

1978 [14] Grinstead
x
2
− 8y

2 = 1
3z

2 − 2y
2 = 1 (3, 1, 1) 36 9 5 sec

1980 [29] Vellupilai
z
2
− 3y

2 = −2
z
2 − 6x

2 = −5
(1, 1, 1)
(29, 41, 71) 50 6 2 sec

1984 [22]
Mohanty
Ramasamy

x
2
− 5y

2 = −20
z
2 − 2y

2 = 1 (0, 2, 3) 10 4 3 sec

1985 [9] Brown
x
2
− 8y

2 = 1
z
2 − 5y

2 = 1 (1, 0, 1) 6 4 1 sec

1987 [30] Zheng
y
2
− 2x

2 = 1
z
2 − 5x

2 = 4 (0, 1, 2) 6 4 2 sec

1987 [30] Zheng
y
2
− 5x

2 = 4
z
2 − 10x

2 = 9 (0, 2, 3) 80 10 3 sec

1988 [23] Pinch (example)
x
2
− 2y

2 = −1
x
2 − 10z

2 = −9
(1, 1, 1)
(41, 29, 13) 10 4 1 sec

1995 [13]
Gaál, Pethő
Pohst (example)

2x
2 − y

2 = ±1
5x

2
− z

2 = ±4

(0, 1, 2)
(1, 1, 1)
(5, 7, 11)

6, 2704
2704, 6 4, 15 Σ : 16 sec

1996 [24] Riele (details below)
2x

2 − y
2 = 1

y
2
− 3z

2 = 1
(1, 1, 0)
(5, 7, 4) 96 12 1 sec

1996 [10] Chen (details below)
5x

2 − 3y
2 = 2

16y
2
− 5z

2 = 11 (1, 1, 1) 7436 18 13.5 min

1996 [1] Anglin (example)
x
2 − 11y

2 = 1
z
2
− 56y

2 = 1
(1, 0, 1)
(199, 60, 449) 10 4 26 sec

1997 [11] Chen
x
2 − 7y

2 = 2
z
2
− 32y

2 = −23
(3, 1, 3)
(717, 271, 1533) 92 6 40 sec

1998 [18] Kedlaya (example)
x
2 − 2y

2 = −1
3z

2
− 4y

2 = −1 (1, 1, 1) 36 9 2 sec

1995 [17]
Katayama, Levesque
Nakahara (example)

x
2 − 3y

2 = 1
y
2
− 2z

2 = −1 (1, 1, 1) 8 4 2 sec

2004 [6] Bennett (example)
x
2 − 2y

2 = 1
9z

2
− 3y

2 = −3 (3, 2, 1) 54 8 1 sec

2004 [19] Liptai (details below)
x
2 − 5y

2 = ±4
z
2
− 8y

2 = 1
(2, 0, 1)
(3, 1, 3) (1, 1, 3) 6, 2738 4, 6 Σ : 40 sec

2005 Szalay
x
2 − 5y

2 = ±4
z
2
− 8x

2 = 1 (1, 1, 3) –, 310 8 4 sec

2005 Szalay
3x

2 − 10y
2 = −13

x
2
− 3y

2 = z
2

(7, 4, 1)
(73, 40, 23) 6 4 —
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1. Baker and Davenport, [3].
3x2 − y2 = 2, 8x2 − z2 = 7 =⇒ 7X2 − 5Y 2 − 2Z2 = 0,
X := y, Y := x, Z := z, (X0, Y0, Z0) = (1, 1, 1),
d | 980,
49s4 − 224s3r + 314s2r2 − 160sr3 + 25r4 = (d/D)2.

2. Riele. [24]
2x2 − y2 = 1, y2 − 3z2 = 1 =⇒ X2 − Y 2 − 6Z2 = 0,
X := 2y, Y := 2x, Z := z, (X0, Y0, Z0) = (5, 1, 2),
d | 96,
23s4 + 20s3r − 150s2r2 + 20sr3 + 23r4 = −(2d/D)2.

3. Chen, [10].
5x2 − 3y2 = 2, 16y2 − 5z2 = 11 =⇒ 13X2 − 2Y 2 − 11Z2 = 0,
X := y, Y := x, Z := z, (X0, Y0, Z0) = (1, 1, 1),
d | 7436,
169s4 − 1534s3r + 1718s2r2 − 236sr3 + 4r4 = (d/D)2.

4. Liptai, [19].
x2 − 5y2 = ±4, z2 − 8z2 = 1 =⇒ X2 − 3Y 2 − Z2 = 0 and 37X2 − Y 2 − Z2,
X := 2z, Y := 3y, Z := x, (X0, Y0, Z0) = (1, 0, 1) and
X := y, Y := x, Z := 2z, (X0, Y0, Z0) = (1, 6, 1)
d | 6 and d | 2738
9s4 − 74s2r2 + 81r4 = (6d/D)2 and
42439s4 − 28416s3r + 7050s2r2 − 768sr3 + 31r4 = −(2d/D)2.
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him to Magma system, and A. Bérczes for implementing the algorithm toMAGMA.
Moreover the author finished this paper during his very enjoyable visit to UNAM,
Morelia, Mexico, and thanks the Institute of Mathematics for their kind hospitality.
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