On the generalization of the Fibonacci-coefficient polynomials*

Ferenc Mátyás
Institute of Mathematics and Informatics, Eszterházy Károly College e-mail: matyas@ektf.hu

Submitted 8 September 2007; Accepted 27 November 2007

Abstract

In this note we deal with the zeros of polynomials defined recursively, where the coefficients of these polynomials are the terms of a given second order linear recursive sequence of integers. Some results on the Fibonaccicoefficient polynomials obtained by D. Garth, D. Mills and P. Mitchell will be generalized.

Keywords: Fibonacci numbers, polynomials defined recursively, bounds for zeros

MSC: 11C08, 13B25

1. Introduction

Let $R_{0}=0, R_{1}=1, A$ and B be fixed positive integers and let R_{n} denote the nth term of the second order linear recursive sequence

$$
R=\left\{R_{n}\right\}_{n=0}^{\infty}
$$

where for $n \geqslant 2$

$$
\begin{equation*}
R_{n}=A R_{n-1}+B R_{n-2} \tag{1.1}
\end{equation*}
$$

According to the known Binet-form, for $n \geqslant 0$

$$
R_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}
$$

where α and β are the zeros of the characteristic polynomial $x^{2}-A x-B$ of the sequence R. We can suppose that $\alpha>0$ and $\beta<0$.

[^0]In the special case $A=B=1$ we can get the Fibonacci-sequence, that is, with the usual notation

$$
F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2} \quad(n \geqslant 2) .
$$

We can similarly define the most known second order linear recursive sequences of polynomials, such as the Chebishev-polynomials

$$
\left\{U_{n}(x)\right\}_{n=0}^{\infty}
$$

of the second kind and the Fibonacci-polynomials

$$
\left\{F_{n}(x)\right\}_{n=0}^{\infty}
$$

where

$$
U_{0}(x)=0, U_{1}(x)=1, U_{n}(x)=2 x U_{n-1}(x)-U_{n-2}(x) \quad(n \geqslant 2)
$$

and

$$
\begin{equation*}
F_{0}(x)=0, F_{1}(x)=1, F_{n}(x)=x F_{n-1}(x)+F_{n-2}(x) \quad(n \geqslant 2) \tag{1.2}
\end{equation*}
$$

It is well-known that for $n \geqslant 2, U_{n}(z)=0$ if and only if $z=\cos \frac{k \pi}{n}$ for $k=$ $1,2, \ldots, n-1$ and so $z \in \mathbf{R}$ and $|z|<1$, while for $n \geqslant 2 \quad F_{n}\left(z^{\prime}\right)=0$ if and only if $z^{\prime}=2 i \cos \frac{k \pi}{n}$ for $k=1,2, \ldots, n-1$ and so z^{\prime} s are purely imaginary complex numbers except 0 if n is even, and $\left|z^{\prime}\right|<2$.

According to D. Garth, D. Mills and P. Mitchell [1] the definition of the Fibo-nacci-coefficient polynomial $p_{n}(x)$ is the following:

$$
\begin{equation*}
p_{n}(x)=\sum_{k=0}^{n} F_{k+1} x^{n-k}=F_{1} x^{n}+F_{2} x^{n-1}+\cdots+F_{n} x+F_{n+1} . \tag{1.3}
\end{equation*}
$$

It is worth mentioning that (1.3) is not a suitable (linear) transformation of (1.2).
The aim of this paper is to investigate the zeros of the polynomials $q_{n}(x)$, where

$$
\begin{equation*}
q_{n}(x)=\sum_{k=0}^{n} R_{k+1} x^{n-k}=R_{1} x^{n}+R_{2} x^{n-1}+\cdots+R_{n} x+R_{n+1}, \tag{1.4}
\end{equation*}
$$

that is, our results concern to a family of the linear recursive sequences of second order instead of the only one Fibonacci-sequence.

Naturally, with the notation

$$
\begin{equation*}
q_{n}^{\star}(x)=x^{n} q_{n}(1 / x)=R_{1}+R_{2} x+R_{3} x^{2}+\cdots+R_{n+1} x^{n} \tag{1.5}
\end{equation*}
$$

we can find information on the zeros of the polynomials $q_{n}^{\star}(x)$.

2. Preliminary and known results

At first we mention that the polynomials $q_{n}(x)$ can easily be rewritten in a recursive manner. That is, if $q_{0}(x)=1$ then for $n \geqslant 1$

$$
q_{n}(x)=x q_{n-1}(x)+R_{n+1} .
$$

Lemma 2.1. Let for $n \geqslant 1, g_{n}(x)=\left(x^{2}-A x-B\right) q_{n}(x)$. Then

$$
\begin{equation*}
g_{n}(x)=x^{n+2}-R_{n+2} x-B R_{n+1} . \tag{2.1}
\end{equation*}
$$

Proof. Using (1.4) we get $q_{1}(x)=R_{1} x+R_{2}$ and by (1.1) $g_{1}(x)=\left(x^{2}-A x-\right.$ $B) q_{1}(x)=\left(x^{2}-A x-B\right)\left(R_{1} x+R_{2}\right)=\cdots=x^{3}-R_{3} x-B R_{2}$. Continuing the proof with induction on n, we suppose that the statement is true for $n-1$ and we prove it for n. Applying (1.4) and (1.1), after some numerical calculations one can get that

$$
\begin{gathered}
g_{n}(x)=\left(x^{2}-A x-B\right) q_{n}(x)=\left(x^{2}-A x-B\right)\left(R_{1} x^{n}+R_{2} x^{n-1}+\cdots+R_{n} x+R_{n+1}\right) \\
=\cdots=x^{n+2}-R_{n+2} x-B R_{n+1} .
\end{gathered}
$$

Lemma 2.2 (Theorem of S. Kakeya [3]). If every coefficients of the polynomial $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ are positive numbers and the roots of equation $f(x)=0$ are denoted by $z_{1}, z_{2}, \ldots, z_{n}$, then

$$
\gamma \leqslant\left|z_{i}\right| \leqslant \delta
$$

holds for every $1 \leqslant i \leqslant n$, where γ is the minimal, while δ is the maximal value in the sequence

$$
\frac{a_{0}}{a_{1}}, \frac{a_{1}}{a_{2}}, \ldots, \frac{a_{n-1}}{a_{n}} .
$$

The following lemma can be found in [2].
Lemma 2.3. Let us consider the sequence R defined by (1.1). The increasing order of the elements of the set

$$
\left\{\frac{R_{i+1}}{R_{i}}: 1 \leqslant i \leqslant n\right\}
$$

is

$$
\frac{R_{2}}{R_{1}}, \frac{R_{4}}{R_{3}}, \frac{R_{6}}{R_{5}}, \ldots, \frac{R_{7}}{R_{6}}, \frac{R_{5}}{R_{4}}, \frac{R_{3}}{R_{2}} .
$$

3. Results and proofs

At first we deal with the number of the real zeros of the polynomials $q_{n}(x)$ defined in (1.4).

Theorem 3.1. a) If $n \geqslant 2$ and even, then the polynomial $q_{n}(x)$ has not any real zero, that is, every zeros are non-real complex numbers.
b) If $n \geqslant 3$ and odd, then the polynomial $q_{n}(x)$ has only one real zero and this is negative. That is, every but one zeros are non-real complex numbers.

Proof. Because of the definition (1.1) of the sequence R the coefficients of the polynomials $q_{n}(x)$ are positive ones, thus positive real root of the equation $q_{n}(x)=$ 0 does not exist. That is, it is enough to deal with only the existence of negative roots of the equation $q_{n}(x)=0$.
a) Since n is even, by (2.1), the coefficients of the polynomial $g_{n}(-x)=$ $(-x)^{n+2}-R_{n+2}(-x)-B R_{n+1}=x^{n+2}+R_{n+2} x-B R_{n+1}$ have only one change of sign, thus according to the Descartes' rule of signs, the polynomial $g_{n}(x)$ has exactly one negative real zero. But $g_{n}(x)=\left(x^{2}-A x-B\right) q_{n}(x)$ implies that $g_{n}(\beta)=0$, where $\beta<0$, and so the polynomial $q_{n}(x)$ can not have any negative real zero.
b) Since $n \geqslant 3$ is odd, thus the existence of at least one negative real zero is obvious. We have only to prove that exactly one negative real zero exists. The polynomial

$$
g_{n}(-x)=(-x)^{n+2}-R_{n+2}(-x)-B R_{n+1}=-x^{n+2}+R_{n+2} x-B R_{n+1}
$$

shows that among its coefficients there are two changes of signs, thus according to the Descartes' rule of signs, the polynomial $g_{n}(x)$ has either two negative real zeros or no one. But $g_{n}(x)=\left(x^{2}-A x-B\right) q_{n}(x)$ implies that for $\beta<0 g_{n}(\beta)=0$. Although, $g_{n}(\alpha)=0$ also holds, but $\alpha>0$. That is, an other negative real zero of $g_{n}(x)$ must exist. Because of $g_{n}(x)=\left(x^{2}-A x-B\right) q_{n}(x)$ this zero must be the zero of the polynomial $q_{n}(x)$.

This terminated the proof of the theorem.

In this part of the paper we deal with the localization of the zeros of the polynomials $q_{n}(x)$ defined in (1.4).

Theorem 3.2. Let $z \in \mathbf{C}$ denote an arbitrary zero of the polynomial $q_{n}(x)$. For $n \geqslant 1$

$$
A \leqslant|z| \leqslant A+\frac{B}{A}
$$

where A and B are positive integers from (1.1).
Proof. To apply Lemma 2.2 for the polynomial $q_{n}(x)$ we have to determine the minimal and maximal values in the sequence

$$
\frac{R_{n+1}}{R_{n}}, \frac{R_{n}}{R_{n-1}}, \ldots, \frac{R_{2}}{R_{1}}
$$

According to Lemma 2.3, these are $\frac{R_{2}}{R_{1}}$ and $\frac{R_{3}}{R_{2}}$, respectively. But by (1.1), $\frac{R_{2}}{R_{1}}=A$ and $\frac{R_{3}}{R_{2}}=\frac{A^{2}+B}{A}=A+\frac{B}{A}$, which match the statement of the theorem.

Remarks. 1) If $n \geqslant 3$ and is odd then for the only one negative real zero z_{n} of the polynomial $q_{n}(x)$

$$
\begin{equation*}
-A-\frac{B}{A} \leqslant z_{n} \leqslant-A . \tag{3.1}
\end{equation*}
$$

2) If we know the exact value of A and B then the estimation in (3.1) can be improved. E.g. in the case of the Fibonacci-sequence $(A=B=1)$ (see in [1])

$$
-2<-\frac{1+\sqrt{5}}{2}<z_{n} \leqslant-1
$$

3) For arbitrary zero z^{\star} of the polynomial $q_{n}^{\star}(x)(1.5)$

$$
\frac{1}{A+\frac{B}{A}} \leqslant\left|z^{\star}\right| \leqslant \frac{1}{A}
$$

holds.

References

[1] Garth, D., Mills, D. and Mitchell, P., Polynomials Generated by the Fibonacci Sequence, Journal of Integer Sequences, Vol. 10 (2007), Article 07.6.8.
[2] Mátyás, F., On the quotions of the elements of linear recursive sequences of second order, Matematikai Lapok, 27 (1976-1979), 379-389 (Hungarian).
[3] Zemyan, S.M., On the zeros of the $n^{\text {th }}$ partial sum of the exponential series, The American Mathematical Monthly, 112 (2005), No. 10, 891-919.

Ferenc Mátyás

Institute of Mathematics and Informatics
Károly Eszterházy College
P.O. Box 43

H-3301 Eger
Hungary

[^0]: *Research has been supported by the Hungarian OTKA Foundation No. T048945.

