Annales Mathematicae et Informaticae 34 (2007) pp. 71-75 http://www.ektf.hu/tanszek/matematika/ami

On the generalization of the Fibonacci-coefficient polynomials^{*}

Ferenc Mátyás

Institute of Mathematics and Informatics, Eszterházy Károly College e-mail: matyas@ektf.hu

Submitted 8 September 2007; Accepted 27 November 2007

Abstract

In this note we deal with the zeros of polynomials defined recursively, where the coefficients of these polynomials are the terms of a given second order linear recursive sequence of integers. Some results on the Fibonaccicoefficient polynomials obtained by D. Garth, D. Mills and P. Mitchell will be generalized.

Keywords: Fibonacci numbers, polynomials defined recursively, bounds for zeros

MSC: 11C08, 13B25

1. Introduction

Let $R_0 = 0$, $R_1 = 1$, A and B be fixed positive integers and let R_n denote the *n*th term of the second order linear recursive sequence

$$R = \{R_n\}_{n=0}^{\infty}$$

where for $n \ge 2$

$$R_n = AR_{n-1} + BR_{n-2}. (1.1)$$

According to the known Binet-form, for $n \ge 0$

$$R_n = \frac{\alpha^n - \beta^n}{\alpha - \beta},$$

where α and β are the zeros of the characteristic polynomial $x^2 - Ax - B$ of the sequence R. We can suppose that $\alpha > 0$ and $\beta < 0$.

^{*}Research has been supported by the Hungarian OTKA Foundation No. T048945.

In the special case A = B = 1 we can get the Fibonacci-sequence, that is, with the usual notation

$$F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2} \quad (n \ge 2).$$

We can similarly define the most known second order linear recursive sequences of polynomials, such as the Chebishev-polynomials

$$\{U_n(x)\}_{n=0}^{\infty}$$

of the second kind and the Fibonacci-polynomials

$$\{F_n(x)\}_{n=0}^{\infty},$$

where

$$U_0(x) = 0, \ U_1(x) = 1, \ U_n(x) = 2xU_{n-1}(x) - U_{n-2}(x) \quad (n \ge 2)$$

and

$$F_0(x) = 0, \ F_1(x) = 1, \ F_n(x) = xF_{n-1}(x) + F_{n-2}(x) \quad (n \ge 2).$$
 (1.2)

It is well-known that for $n \ge 2$, $U_n(z) = 0$ if and only if $z = \cos \frac{k\pi}{n}$ for $k = 1, 2, \ldots, n-1$ and so $z \in \mathbf{R}$ and |z| < 1, while for $n \ge 2$ $F_n(z') = 0$ if and only if $z' = 2i \cos \frac{k\pi}{n}$ for $k = 1, 2, \ldots, n-1$ and so z's are purely imaginary complex numbers except 0 if n is even, and |z'| < 2.

According to D. Garth, D. Mills and P. Mitchell [1] the definition of the Fibonacci-coefficient polynomial $p_n(x)$ is the following:

$$p_n(x) = \sum_{k=0}^n F_{k+1} x^{n-k} = F_1 x^n + F_2 x^{n-1} + \dots + F_n x + F_{n+1}.$$
 (1.3)

It is worth mentioning that (1.3) is not a suitable (linear) transformation of (1.2).

The aim of this paper is to investigate the zeros of the polynomials $q_n(x)$, where

$$q_n(x) = \sum_{k=0}^n R_{k+1} x^{n-k} = R_1 x^n + R_2 x^{n-1} + \dots + R_n x + R_{n+1}, \qquad (1.4)$$

that is, our results concern to a family of the linear recursive sequences of second order instead of the only one Fibonacci-sequence.

Naturally, with the notation

$$q_n^{\star}(x) = x^n q_n(1/x) = R_1 + R_2 x + R_3 x^2 + \dots + R_{n+1} x^n \tag{1.5}$$

we can find information on the zeros of the polynomials $q_n^{\star}(x)$.

2. Preliminary and known results

At first we mention that the polynomials $q_n(x)$ can easily be rewritten in a recursive manner. That is, if $q_0(x) = 1$ then for $n \ge 1$

$$q_n(x) = xq_{n-1}(x) + R_{n+1}$$

Lemma 2.1. Let for $n \ge 1$, $g_n(x) = (x^2 - Ax - B)q_n(x)$. Then

$$g_n(x) = x^{n+2} - R_{n+2}x - BR_{n+1}.$$
(2.1)

Proof. Using (1.4) we get $q_1(x) = R_1x + R_2$ and by (1.1) $g_1(x) = (x^2 - Ax - B)q_1(x) = (x^2 - Ax - B)(R_1x + R_2) = \cdots = x^3 - R_3x - BR_2$. Continuing the proof with induction on n, we suppose that the statement is true for n - 1 and we prove it for n. Applying (1.4) and (1.1), after some numerical calculations one can get that

$$g_n(x) = (x^2 - Ax - B)q_n(x) = (x^2 - Ax - B)(R_1x^n + R_2x^{n-1} + \dots + R_nx + R_{n+1})$$
$$= \dots = x^{n+2} - R_{n+2}x - BR_{n+1}.$$

Lemma 2.2 (Theorem of S. Kakeya [3]). If every coefficients of the polynomial $f(x) = a_0 + a_1x + \cdots + a_nx^n$ are positive numbers and the roots of equation f(x) = 0 are denoted by z_1, z_2, \ldots, z_n , then

$$\gamma \leqslant |z_i| \leqslant \delta$$

holds for every $1 \leq i \leq n$, where γ is the minimal, while δ is the maximal value in the sequence

$$\frac{a_0}{a_1}, \frac{a_1}{a_2}, \dots, \frac{a_{n-1}}{a_n}$$

The following lemma can be found in [2].

Lemma 2.3. Let us consider the sequence R defined by (1.1). The increasing order of the elements of the set

$$\left\{\frac{R_{i+1}}{R_i} : 1 \leqslant i \leqslant n\right\}$$

is

$$\frac{R_2}{R_1}, \frac{R_4}{R_3}, \frac{R_6}{R_5}, \dots, \frac{R_7}{R_6}, \frac{R_5}{R_4}, \frac{R_3}{R_2}$$

3. Results and proofs

At first we deal with the number of the real zeros of the polynomials $q_n(x)$ defined in (1.4).

Theorem 3.1. a) If $n \ge 2$ and even, then the polynomial $q_n(x)$ has not any real zero, that is, every zeros are non-real complex numbers.

b) If $n \ge 3$ and odd, then the polynomial $q_n(x)$ has only one real zero and this is negative. That is, every but one zeros are non-real complex numbers.

Proof. Because of the definition (1.1) of the sequence R the coefficients of the polynomials $q_n(x)$ are positive ones, thus positive real root of the equation $q_n(x) = 0$ does not exist. That is, it is enough to deal with only the existence of negative roots of the equation $q_n(x) = 0$.

a) Since *n* is even, by (2.1), the coefficients of the polynomial $g_n(-x) = (-x)^{n+2} - R_{n+2}(-x) - BR_{n+1} = x^{n+2} + R_{n+2}x - BR_{n+1}$ have only one change of sign, thus according to the Descartes' rule of signs, the polynomial $g_n(x)$ has exactly one negative real zero. But $g_n(x) = (x^2 - Ax - B)q_n(x)$ implies that $g_n(\beta) = 0$, where $\beta < 0$, and so the polynomial $q_n(x)$ can not have any negative real zero.

b) Since $n \ge 3$ is odd, thus the existence of at least one negative real zero is obvious. We have only to prove that exactly one negative real zero exists. The polynomial

$$g_n(-x) = (-x)^{n+2} - R_{n+2}(-x) - BR_{n+1} = -x^{n+2} + R_{n+2}x - BR_{n+1}$$

shows that among its coefficients there are two changes of signs, thus according to the Descartes' rule of signs, the polynomial $g_n(x)$ has either two negative real zeros or no one. But $g_n(x) = (x^2 - Ax - B)q_n(x)$ implies that for $\beta < 0$ $g_n(\beta) = 0$. Although, $g_n(\alpha) = 0$ also holds, but $\alpha > 0$. That is, an other negative real zero of $g_n(x)$ must exist. Because of $g_n(x) = (x^2 - Ax - B)q_n(x)$ this zero must be the zero of the polynomial $q_n(x)$.

This terminated the proof of the theorem.

In this part of the paper we deal with the localization of the zeros of the polynomials $q_n(x)$ defined in (1.4).

Theorem 3.2. Let $z \in \mathbf{C}$ denote an arbitrary zero of the polynomial $q_n(x)$. For $n \ge 1$

$$A \leqslant |z| \leqslant A + \frac{B}{A},$$

where A and B are positive integers from (1.1).

Proof. To apply Lemma 2.2 for the polynomial $q_n(x)$ we have to determine the minimal and maximal values in the sequence

$$\frac{R_{n+1}}{R_n}, \frac{R_n}{R_{n-1}}, \dots, \frac{R_2}{R_1}.$$

$$\square$$

According to Lemma 2.3, these are $\frac{R_2}{R_1}$ and $\frac{R_3}{R_2}$, respectively. But by (1.1), $\frac{R_2}{R_1} = A$ and $\frac{R_3}{R_2} = \frac{A^2 + B}{A} = A + \frac{B}{A}$, which match the statement of the theorem.

Remarks. 1) If $n \ge 3$ and is odd then for the only one negative real zero z_n of the polynomial $q_n(x)$

$$-A - \frac{B}{A} \leqslant z_n \leqslant -A. \tag{3.1}$$

2) If we know the exact value of A and B then the estimation in (3.1) can be improved. E.g. in the case of the Fibonacci-sequence (A = B = 1) (see in [1])

$$-2 < -\frac{1+\sqrt{5}}{2} < z_n \leqslant -1.$$

3) For arbitrary zero z^* of the polynomial $q_n^*(x)$ (1.5)

$$\frac{1}{A + \frac{B}{A}} \leqslant |z^{\star}| \leqslant \frac{1}{A}$$

holds.

References

- GARTH, D., MILLS, D. and MITCHELL, P., Polynomials Generated by the Fibonacci Sequence, *Journal of Integer Sequences*, Vol. 10 (2007), Article 07.6.8.
- [2] MATYAS, F., On the quotions of the elements of linear recursive sequences of second order, *Matematikai Lapok*, 27 (1976-1979), 379–389 (Hungarian).
- [3] ZEMYAN, S.M., On the zeros of the nth partial sum of the exponential series, The American Mathematical Monthly, 112 (2005), No. 10, 891–919.

Ferenc Mátyás

Institute of Mathematics and Informatics Károly Eszterházy College P.O. Box 43 H-3301 Eger Hungary