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Abstract

GB-spline curves can be considered as the generalization of B-spline curve
incorporating a shape parameter into the polynomial basis functions. The
geometric effect of the alteration of the shape parameter is discussed in this
paper, including constrained shape control of the curve.
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1. Introduction

Although B-spline curve still plays central role in computer aided geometric
design, the recently developed generalizations of this curve are also in the forefront
of research. The well-known result of this attempt is the NURBS curve (c.f. [9]),
but this curve has rational coefficient functions, yielding computational stability
problems. Some recently developed methods tried to incorporate shape parameters
into the original, polynomial basis functions. One of the earliest methods in this
way is β-spline curve with two global parameters ([1, 2]). Further methods have
been provided by direct generalization of B-spline curves as αB-splines in [8] and
[10] and recently as GB-splines in [3]. Some alternative spline curves with shape
parameters can be found in [4, 5, 6].
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In this paper we examine the GB-spline curves. At first we study the effect of
the shape parameter on the points of the curve, extending the method we applied
for trigonometric CB-spline curves in [7]. In Section 2 we study the paths obtained
by altering the shape parameter of the curve, and prove that points of the curve
move along straight line segments. Applying this fact in Section 5 linear blending
is used for constrained shape control, where the shape parameter is modified in a
way that the new GB-spline curve passes through a given point.

2. GB-spline curve and its λ-paths

In [3] the GB-spline curve as a generalization of the classical uniform cubic B-
spline curve with shape parameter has been introduced. The definition of an arc
of a GB-spline curve with shape parameter λ is as follows.

Definition 2.1. Given a sequence of control points Pi, (i = 0, . . . , 3) the arc of the
GB-spline curve is

C(λ, t) =

3
∑

i=0

Pibi(λ, t), λ ∈ [−8,∞), t ∈ [0, 1], (2.1)

where the GB-spline basic functions are

b0(λ, t) =
2

12 + λ
(1 − t)3

b1(λ, t) =
1

12 + λ

(

2 (3 + λ) t3 − 3 (4 + λ) t2 + 8 + λ
)

(2.2)

b2(λ, t) =
1

12 + λ

(

−2 (3 + λ) t3 + 3 (2 + λ) t2 + 6t + 2
)

b3(λ, t) =
2

12 + λ
t3.

This arc can simply be extended to a multi-arc non-uniform cubic GB-spline curve
in a usual way, using four consecutive control points and applying the substitution

t =
u − ui

ui+1 − ui

at each arc, where u ∈ [ui, ui+1). Since the shape parameter has the same effect
on each arc, we will focus on the single arc (2.1) in this paper.

Now we consider the paths P (λ, t0) of the point C(t0) of the curve as the
parameter λ has been changed. Note, that in these paths λ is the running parameter
and t is the family parameter. Throughout this paper these paths are called λ-
paths.

Theorem 2.2. The limit points of the λ-paths P (λ, t0) at λ → ∞ are fixed points
of the control leg P1P2 and have symmetrical positions for the midpoint of the leg.
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Figure 1: GB-spline curve and its λ-paths

Proof. By simple calculation

lim
λ→∞

b0(λ, t) = lim
λ→∞

b3(λ, t) = 0

lim
λ→∞

b1(λ, t) = 2t3 − 3t2 + 1

lim
λ→∞

b2(λ, t) = −2t3 + 3t2.

Denoting the latter limits by b1(∞, t) and b2(∞, t), and observing, that b2(∞, t) =
1 − b1(∞, t) it is obvious, that the limit points of the paths are

lim
λ→∞

P (λ, t) = L(t) = b1(∞, t)P1 + (1 − b1(∞, t))P2 (2.3)

while at t = 0.5 we obtain 0.5P1 + 0.5P2 and this completes the proof. �

Theorem 2.3. The λ-paths are straight line segments.

Proof. We prove that for any fixed t ∈ [0, 1] the points of the path P (λ, t) can be
described as barycentric combination of the two endpoints P (−8, t) and P (∞, t) =
limλ→∞ P (λ, t). The blending functions at P (−8, t) are

b0(−8, t) =
1

2
(1 − t)3

b1(−8, t) =
−5

2
t3 + 3t2

b2(−8, t) =
1

2
(5t3 − 9t2 + 3t + 1)
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b3(−8, t) =
1

2
t3.

We can observe that
b0(λ, t)

b0(−8, t)
=

b3(λ, t)

b3(−8, t)
=

4

12 + λ
(2.4)

and denoting this quotiens by q(λ), after some calculation we obtain that

b1(λ, t) = q(λ)b1(−8, t) + (1 − q(λ)) b1(∞, t)

b2(λ, t) = q(λ)b2(−8, t) + (1 − q(λ)) b2(∞, t),

thus finally for any point of the path we get

P (λ, t) = q(λ)P (−8, t) + (1 − q(λ)) P (∞, t) (2.5)

and this was to be proved. �

Theorem 2.4. Considering the symmetric λ-paths P (λ, t0) and P (λ, 1− t0), these
lines may intersect each other. These intersection points are on the path of the point
associated to the parameter value t = 1/2, that is at the line P (λ, 1/2), if the lines
P0P3 and P1P2 are parallel (see Fig. 2).

Figure 2: Symmetric paths intersect each other at a path associ-
ated to t = 1/2
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Proof. It is easy to prove that the shape of a GB-spline curve is independent of
the choice of coordinates, i.e. (2.2) satisfies the following two equations:

C(λ, t, P0∗T +r, P1∗T +r, P2∗T +r, P3∗T +r) ≡ C(λ, t, P0, P1, P2, P3)∗T +r (2.6)

where r is an arbitrary vector, and T is an arbitrary 3 × 3 matrix. From above
we know that the GB-spline curve, the symmetric lines and the midpoint of the
segments are all preserved by an affine transformation, so we can prove the result
in a special case using the coordinate system given in Fig. 2.

For arbitrary parameter t, let the symmetric paths P (λ, t0) and P (λ, 1 − t0)
intersect the control leg P1P2 and the curve C(−8, t) at the point A, B, C, D re-
spectively, and the middle path corresponding to t = 0.5 is on the line segment EF
with E, F are midpoints of P0P3 and P1P2 respectively. Then using the definition
of GB-spline curve, the coordinates of these points can be computed as follows:

A = ((3t2 − 2t3)a, 1)

B = 1/2((5t3 − 9t2 + 3t + 1)a + t3, 1 + 3t − 3t2)

C = ((1 − 3t2 + 2t3)a, 1)

D = 1/2((6t2 − 5t3)a + (1 − t)3, 1 + 3t− 3t2)

E = (a/2, 1)

F = (7/16a + 1/16, 7/8)

Thus we obtain the coordinates of intersection point J of the line AB and CD:

J =









(3t4 − 6t3 − 2t2 + 3t + 1)a2 + (−3t4 + 6t3 − 3t2)a

(9t2 − 9t − 3)a + t2 + 1
,

(6t4 − 12t3 − 4t2 + 10t + 2)a + (−t2 + t − 1)

(9t2 − 9t − 3)a + t2 + 1









. (2.7)

To prove that the symmetric paths intersect each other at the path of the point
associated to the parameter value t = 0.5, we can prove that the point J is on the
line segment EF . The reciprocal of slope of EF is

1

kEF

=
a − 1

2
(2.8)

Connecting the points EJ , the reciprocal of slope of EJ is a−1

2
too. So the point

J is located on the line EF (or located on its extending part). That completes the
proof. �

3. Passing through a given point

For practical applications, we would like to find a GB-spline curve passing
through a given point among the family curves with the same control polygon. Of
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course, the given point should be in a constrained region filled by the family of
curves with running parameter λ. For λ > 0 this region is bounded by the B-spline
curve, the control leg P1P2 and the paths when λ = 0, 1 (See Fig. 3.a). If we let
λ > −8 then the shape of the constrained region is a bit more complex. For a
convex polygon, the region includes two parts in general. There is only one curve
passing through a given point in one region, while there are two curves passing
through a given point in another. Definitely, for every point in this region, we can
find no less than one curve passing through it. By the property of the given convex
control polygon Pi, i = 0, . . . , 3, we can give the shape of the constrained region:

1) If two legs P0P1, P2P3 contend outside, the region H ⊕ G is circled by leg
P1P2, paths when λ = 0, 1 and the curve when λ = −8 as shown in Fig. 3. b.

2) When control polygon is a parallelogram, this region H⊕G is a triangle (See
Fig. 3. c).

3) Otherwise this region is circled by leg P1P2, paths when λ = 0, 1 and the
curve when λ = −8 as shown in Fig. 3. d.

Figure 3: Different cases of constrained region for shape control.
At each point in region H exactly one curve passes through, while

in region G there are two solutions for each point.

Then for every point P in this region, we should find two parameter values
λ0 and t0 for which C(λ0, t0) = P . As we have mentioned before, when λ < 0,
the GB-spline curve is “below” the standard B-spline curve and in this case the
variation diminishing property does not necessarily fulfilled. Thus in the following
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we restrict ourselves for the case λ > 0, however the described method works for
λ < 0 as well.

Figure 4: Given three points in the constrained region (λ > 0) the
shape parameter is modified in a way that the curves pass through

at the given points

We know that GB-spline paths are all lines, so we can find the value of t0 by
the following dichotomy method.

Let first = 0, last = 1:
a) Let t∗ = (first + last)/2 and compute two endpoints C(0, t∗) and C(∞, t∗)

of path line C(λ, t∗).
b) If P is just on the path line C(∞, t∗) within an allowed error, we get t0 = t∗.

The algorithm ends.
c) Otherwise we let last = t∗ (when P and b0 are on the same side of path line)

or first = t∗ (when P and b3 are on the same side of path line). Then we return
to step a).

After obtaining the value of t0, we can get the value of λ0 by the following
calculation. From (2.5) one can get

P (λ0, t0) = q(λ0)P (−8, t0) + (1 − q(λ0))P (∞, t0)

which yields

q(λ0) =
P − P (∞, t0)

P (−8, t0) − P (∞, t0)

for each coordinates of the points P, P (∞, t0) and P (−8, t0). Choosing for example
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the x coordinates of these points, one can find

λ0 =
4(P (−8, t0) − Px(∞, t0))

Px − Px(∞, t0)
− 12.

By the above algorithm the curve C(λ0, t) passes through the given point P at
the parameter value t0 (Fig. 4).

4. Conclusion and further research

GB-spline curves has been studied in the paper with special emphasis on the
numerical and geometrical effects of the alteration of its shape parameter λ. The
curve has also been described in a linear blending way, where a cubic blending
function was used to combine the classical B-spline curve and its control polygon
leg. This approach may worth for further examination to study other curves with
shape parameters as linear blending curves to give an overall view and comparison
of these curve types.
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