On a sum involving powers of reciprocals of an arithmetical progression

Hacène Belbachir, Abdelkader Khelladi

USTHB/ Faculté de Mathématiques, Alger
e-mail: hbelbachir@usthb.dz, hacenebelbachir@gmail.com, akhelladi@usthb.dz, akhelladi@wissal.dz

Submitted 25 September 2007; Accepted 9 December 2007

Abstract

Our purpose is to establish the following result: Let a and d be coprime integers and $a, a+d, a+2 d, \ldots, a+(k-1) d(k \geqslant 2)$ be an arithmetical progression. Then for all integers $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k-1}$ the rational number $1 / a^{\alpha_{0}}+1 /(a+d)^{\alpha_{1}}+\cdots+1 /(a+(k-1) d)^{\alpha_{k-1}}$ is never an integer. This result extends theorems of Taeisinger (1915) and Kürschák (1918), and also generalizes a result of Erdős (1932).

Keywords: Harmonic sums, arithmetical progression, greatest prime factor.
In 1915, Taeisinger proved that the harmonic number $H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n}$ is never an integer except for H_{1}. The more general result that the sum of reciprocals of consecutive terms, not necessarily starting with 1 , is never an integer was proved by Kürschák in 1918 [3, p.157]. In 1932, Erdős proved that the sum of reciprocals of any integers in arithmetical progression is never a reciprocal and then an integer [2]. Our purpose is to give some extensions of the cited results.

Let n be a positive integer and p be a prime number. We define the p-valuation of n as the unique positive integer $v_{p}(n)$ satisfying $n=u \cdot p^{v_{p}(n)}$ with $\operatorname{gcd}(u, p)=1$.

Our idea relies on the fundamental inequality about the valuation of a sum of two positive integers. Let n and m be integers. It is well known that $v_{p}(n+m) \geqslant$ $\min \left\{v_{p}(n), v_{p}(m)\right\}$, with a remarkable implication that if $v_{p}(n)>v_{p}(m)$ then $v_{p}(n+m)=v_{p}(m)$.

The following Theorem is the key assertion behind all the results of this paper.
Theorem 1.1. Let $n_{1}, n_{2}, \ldots, n_{k}$ be positive integers. Assume that there exists a prime P such that $v_{P}\left(n_{j_{P}}\right)$ is maximal (non zero) for a unique $j_{P} \in\{1,2, \ldots, k\}$. Then

$$
\frac{1}{n_{1}}+\frac{1}{n_{2}}+\cdots+\frac{1}{n_{k}}
$$

is never an integer.
In fact this result is well-known and simple consequence of elementary properties of valuations (see [1]). However, for the convenience of the reader we give the proof of this statement.

Proof. Let us suppose that $N:=\frac{1}{n_{1}}+\frac{1}{n_{2}}+\cdots+\frac{1}{n_{k}}$ is an integer. By setting $R:=n_{1} n_{2} \cdots n_{k} / P^{v}$, where $v=1+\sum_{j \neq j_{P}} v_{P}\left(n_{j}\right)$, one has

$$
R N-\sum_{j \neq j_{P}} \frac{R}{n_{j}}=\frac{R}{n_{j_{P}}} .
$$

Each term of the left hand side is an integer, while the right hand side is not. It is contradiction, so the statement is proved.

We get the following as a simple and immediate consequence.
Corollary 1.2. Let $n_{1}, n_{2}, \ldots, n_{k}$ be positive integers. Assume that there exists a prime P such that $P \mid n_{i}$ for some i, and $P \nmid n_{j}$ when $j \neq i$. Then

$$
\frac{1}{n_{1}}+\frac{1}{n_{2}}+\cdots+\frac{1}{n_{k}}
$$

is never an integer.
The first main result of our paper is an extension of Taeisinger's Theorem.
Theorem 1.3. Let n be an integer $\geqslant 2$ and $\alpha_{2}, \ldots, \alpha_{n}$ be positive integers. Then

$$
1+\frac{1}{2^{\alpha_{2}}}+\cdots+\frac{1}{n^{\alpha_{n}}}
$$

is never an integer.
Proof. Let P be the greatest prime number $\leqslant n$. By Bertrand's postulate we have $n<2 P$. Thus P is coprime to all $k \in\{1,2, \ldots, n\} \backslash\{P\}$. The theorem follows then from Corollary 1.2.

To study the case of an arithmetical progression, we give the following result which is an immediate consequence of a theorem of Shorey and Tijdeman [4].

Theorem 1.4. Let a, d and k be positive integers, satisfying $\operatorname{gcd}(a, d)=1, k \geqslant 2$. By setting $\Delta=\prod_{j=1}^{k}(a+(j-1) d)$ and $P:=\max _{p \mid \Delta} p$, the greatest prime factor of Δ, then for $d>1$, we have $P \geqslant k$.

Now we are able to establish an extension of Erdős theorem, then of Kürschák's Theorem.

Theorem 1.5. Let a, d and k be positive integers satisfying $k \geqslant 2$, and $a, a+d, a+$ $2 d, \ldots, a+(k-1) d$ be an arithmetical progression. Then for all positive integers $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k-1}$ the rational number

$$
\frac{1}{a^{\alpha_{0}}}+\frac{1}{(a+d)^{\alpha_{1}}}+\cdots+\frac{1}{(a+(k-1) d)^{\alpha_{k-1}}}
$$

is never an integer.
Proof. Let $\delta:=\operatorname{gcd}(a, d)$. Consider the arithmetical progression $\left(a^{\prime}+j d^{\prime}\right), j=$ $0, \ldots, k-1$, where $a^{\prime}=a / \delta$ and $d^{\prime}=d / \delta$. For this progression, let P the prime given by Theorem 1.4. If $P \nmid \delta$, we conclude by using Corollary 1.2. Otherwise, we have

$$
\frac{1}{a^{\alpha_{0}}}+\frac{1}{(a+d)^{\alpha_{1}}}+\cdots+\frac{1}{(a+(k-1) d)^{\alpha_{k-1}}}<\frac{k}{P} \leqslant 1 .
$$

Acknowledgement. The authors are grateful to the referee and would like to thank him/her for comments and several suggestions which improved the quality of this paper.

References

[1] Bachman, G., Introduction to p-adic numbers and valuation theory, Academic Press, N.Y. (1964).
[2] Erdôs, P., Verallgemeinerung eines elementar-zahlentheoretischen Satzes von Kürschák (Generalization of an elementary number-theoretic theorem of Kürschák.), Mat. Fiz. Lapok 39 (1932), 17-24.
[3] Hoffman, P., The man who loved only numbers: The story of Paul Erdős and the search for mathematical truth, N.Y. Hyperion (1998).
[4] Shorey, T.N. and Tijdeman, R., On the greatest prime factor of an arithmetical progression, in "A tribute of Paul Erdős", Edited by A. Baker, B. Bollobas, and A. Hainal. Cambridge University Press (1990), 385-389.

Hacène Belbachir

Abdelkader Khelladi
USTHB/ Faculté de Mathématiques
BP 32, El Alia, 16111 Bab Ezzouar, Alger
Algeria

