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Abstract

In this paper it is shown several approximation formulae for the remainder
term of the Fourier series for a wide class of functions satisfying specific
boundary conditions. Also it is shown that the remainder term is related with
the Basel problem and the Riemann zeta function, which can be interpreted
as the energy of discrete-time signals; from this point of view, their energy
can be calculated with a direct formula instead of an infinite series. The
validity of this algorithm is established by means several proofs.

Keywords: Fourier series remainder term, discrete-time signal, Basel problem,
slow varying-type series.

1. Introduction

Fourier series is a mathematical tool for characterizing the frequency content of
a periodic signal which satisfies the Dirichlet conditions [1]. However, the Fourier
series is frequently applied to non-periodic functions, made artificially periodic by
extending periodically its original domain. In practice, with a sufficiently large
number of terms, a finite expansion can be built upon the Fourier series for repre-
senting accurately enough the function. Such finite representation carries implicitly
a remainder term which must be estimated [2].

The calculation of the remainder term is expressed via a mean square error
between the infinite series and the finite expansion, which provides us an enclosed
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range of values where the error can be found, instead of an exact formula. Such
estimations stir up the appearance of slow varying-type series, as in the Basel
problem series, which in general are expressed by the Riemann zeta function. This
let us establish a relation between it and a discrete-time signal, usually defined for
all the natural numbers. Therefore the approximation of the remainder term in
Fourier series can be employed as an excellent way for calculating the energy of
a discrete-time signal. The energy calculation embraces a small number of terms
instead of an infinite number, which brings us accurately enough results whose
validity is proved in this paper.

2. Integral approach of slow-varying series

In the calculation of the remainder term in finite Fourier expansion, appears
series whose members are expressed as the product of a periodic term and a function
which varies slowly between successive values of. This let us get a very good
approximation of the series [5]:

∞
∑

k=1

ejkαϕ(k). (2.1)

Let us integrate the kth term around k − 1/2 and k + 1/2 :

∫ k+1/2

k−1/2

ϕ(ξ)ejξαdξ =

∫ 1/2

−1/2

ϕ(k + t)ej(k+t)αdt

=
1

jα
ϕ(k + t)ej(k+t)α

∣

∣

∣

∣

∣

1/2

−1/2

−
1

jα

∫ 1/2

−1/2

ϕ′(k + t)ej(k+t)αdt. (2.2)

However, since ϕ′(k + t) tends to zero asymptotically, it is possible to establish the
following approximation:

∫ 1/2

−1/2

ϕ(k + t)ej(k+t)αdt ≈
ejkα

jα
[ϕ(k + 1/2)ejα/2 − ϕ(k − 1/2)e−jα/2]. (2.3)

Because of the slow variation of ϕ(k) we have that ϕ(k+1/2) ≈ ϕ(k−1/2) ≈ ϕ(k),
therefore the integral is:

∫ 1/2

−1/2

ϕ(k + t)ej(k+t)αdt ≈ ejkαϕ(k)
sin α/2

α/2
. (2.4)

By changing the integrating variable we have:

ejkαϕ(k) ≈
α

2 sinα/2

∫ k+1/2

k−1/2

ϕ(ξ)ejξαdξ, (2.5)
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which transforms the original series into a series of integrals:

∞
∑

k=1

ejkαϕ(k) ≈
α

2 sinα/2

∞
∑

k=1

∫ k+1/2

k−1/2

ϕ(ξ)ejξαdξ. (2.6)

Since the integration limits are contiguous, the series becomes in just one integral:

∞
∑

k=1

ejkαϕ(k) ≈
α

2 sinα/2

∫

∞

1/2

ϕ(ξ)ejξαdξ. (2.7)

3. The Zeta function as the generalization of the

Basel problem

The Basel problem is a famous issue in the Number Theory because of its inge-
nious solution provided by Leonhard Euler, and its relationship to the distribution
of the prime numbers. The problem consists in calculating the exact sum of the
following series:

∞
∑

n=1

1

n2
= lim

n→∞

(

1

12
+

1

22
+

1

32
+ · · · +

1

n2

)

. (3.1)

Euler’s method uses the Taylor series for the sine function, which is a polynomial
whose roots are x = kπ, k ∈ Z. Thus, with the Fundamental Theorem of Algebra,
the polynomial sin x/x can be written in terms of its roots [3]:

sin x

x
= 1 −

x2

3!
+

x4

5!
+

x6

7!
+ · · · = A(x2 − π2)(x2 − 4π2)(x2 − 9π2) · · · , (3.2)

where A is a proportionality constant. Since each factor has the form x2−n2π2 = 0,
they can be expressed as 1 − x2/n2π2 , transforming the polynomial into:

sin x

x
= (1 −

x2

π2
)(1 −

x2

4π2
)(1 −

x2

9π2
) · · · , (3.3)

by multiplying all the factors and gathering the coefficients belonging to x2, results
the series:

−
1

π2
−

1

4π2
−

1

9π2
· · · = −

1

π2

∞
∑

n=1

1

n2
, (3.4)

From (3.2) we get the coefficient of x2 as −1/3!, therefore:

∞
∑

n=1

1

n2
=

π2

6
. (3.5)
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The same procedure, after being applied in the other resulting powers of the mul-
tiplication (3.3), gives a set of impressive series, all of which are based in even
powers:

∞
∑

n=1

1

n4
=

π4

90
,

∞
∑

n=1

1

n6
=

π6

945
,

∞
∑

n=1

1

n8
=

π8

9450
,

∞
∑

n=1

1

n10
=

π10

93555
, . . . (3.6)

The generalization of the Basel problem for real powers is gotten by the Riemann
zeta function, defined as [6]:

ζ(x) =

∞
∑

n=1

1

nx
, x 6= 1. (3.7)

The case x = 1 is avoided since the series becomes divergent, Figure 1. For even
powers the function gives exact values, proportional to even powers of π, as shown
in (3.6); for odd powers it is not possible to get such an exact representations. The

Figure 1: Plot of the Riemann zeta function.

Bernoulli numbers Bn are a set of rational numbers defined by the series [4]:

x

ex − 1
=

∞
∑

n=0

Bnxn

n!
,

B0 = 1, B1 = −
1

2
, B2 =

1

6
, B4 = −

1

30
, B6 =

1

42
, . . . (3.8)

The zeta function is related with them for integer values of the argument x as:

ζ(n) =
2n−1|Bn|π

n

n!
, Bn = (−1)n+1nζ(1 − n), n ∈ N. (3.9)

4. The remainder term of Fourier series

The Fourier series develops a function by means of an infinite series of trigono-
metric terms; its convergence is assured by Dirichlet conditions. However, in prac-
tice, it is not possible to take an infinite number of such orthogonal functions, but a
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finite number of them for performing a finite Fourier expansion fn(x), formed by n
terms. Fourier series convergence shows that by taking a sufficiently large number
of terms, the difference between f(x) and fn(x), named the remainder term, can
be made as small as we desire:

ηn(x) = f(x) − fn(x). (4.1)

Let us suppose that f (m)(x) exists, although its continuity is not demanded; how-
ever, the continuity of f(x), f ′(x), f ′′(x), . . . , fm−1(x) is required for setting the
following boundary conditions:

f(π) = f(−π), f ′(π) = f ′(−π), . . . , fm−1(π) = fm−1(−π). (4.2)

The existence of the above conditions let us simplify the integration of the coef-
ficients in Fourier series, performed by parts successively m times. They can be
gathered in a complex coefficient:

ak + jbk =
jm

πkm

∫ π

−π

f (m)(ξ)ejkξdξ, (4.3)

where the Fourier series is the real part of the series:

f(x) =

∞
∑

k=1

(ak + jbk)e−jkx =

∫ π

−π

f (m)(ξ)

[

jm

π

∞
∑

k=1

ejk(ξ−x)

km

]

dξ. (4.4)

The index k = 0 has been omitted since f(x) stands for f(x)−a0/2. Let us change
the integrating variable by θ = ξ − x , therefore, f(x) is written in terms of the
kernel-type series Gm(θ):

f(x) =

∫ π

−π

f (m)(θ + x)Gm(θ)dθ, Gm(θ) =
jm

π

∞
∑

k=1

ejkθ

km
. (4.5)

In the finite expansion fn(x), the kernel-type series must add only n terms, thus
the remainder term is expressed in function of another kernel-type series gm

n (θ):

ηn(x) =

∫ π

−π

f (m)(θ + x)gm
n (θ)dθ, gm

n (θ) =
jm

π

∞
∑

k=n+1

ejkθ

km
. (4.6)

The simpler method for getting the remainder term is based on Cauchy inequality:

[

∫ b

a

f(x)g(x)dx

]2

6

∫ b

a

f2(x)dx

∫ b

a

g2(x)dx. (4.7)

After applied it in (4.6) we get:

η2
n(x) 6

∫ π

−π

f (m)2(θ + x)dθ

∫ π

−π

[gm
n (θ)]2dθ. (4.8)
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In this case, we can take advantage of the orthogonality of the members of the
series gm

n (θ), by taking their real part. The integral of the square of kernel-type
series is:

∫ π

−π

[gm
n (θ)]2dθ =

1

π2

∞
∑

k=n+1

∫ π

−π

cos kθ

km

∞
∑

l=n+1

cos lθ

lm
dθ =

1

π

∞
∑

k=n+1

1

k2m
. (4.9)

The above series seems to be related with the Riemann zeta function, however,
we cannot get an exact result since the series starts from n + 1. For estimation
purposes, we can use the integral approach of a slow varying-type series, whose
periodic part is the unitary function, i.e., α = 0. The slow varying part is the
function ϕ(k) = 1/k2m, which varies slowly, since m and n are supposed to be
great:

1

π

∞
∑

k=n+1

1

k2m
≈

1

π

∫

∞

n+1/2

dξ

ξ2m
=

1

π(2m − 1)(n + 1/2)2m−1
. (4.10)

The integral of f (m)2 , should be identified as the norm of the mth derivative of
f(x), represented by N2

m, therefore the remainder term is bounded by:

|ηn(x)| <
Nm

√

π(2m − 1)(n + 1/2)m−1/2
. (4.11)

Another method for getting the remainder term is by evaluating reliably the kernel-
type series gm

n (θ) with the integral approach of a slow varying-type series, where
the slow varying function corresponds with ϕ(k) = 1/km. With the exception of
small values around θ = 0, we can use the asymptotic behavior of the integral:

gm
n (θ) ≈

jmθ

2π sin θ/2

∫

∞

n+1/2

ejξθ

ξm
dξ ≈

jm+1

2π sin θ/2

ej(n+1/2)θ

(n + 1/2)m
. (4.12)

For estimation purposes, the remainder term can be calculated by means the fol-
lowing inequality:

|ηn(x)| 6

∫ π

−π

|f (m)(θ + x)||gm
n (θ)|dθ = |f (m)(x)|max

∫ π

−π

|gm
n (θ)|dθ. (4.13)

After taking the real part of gm
n (θ) and integrating it, we get the following formula:

|ηn(x)| <
2

(n + 1/2)m−1

ln(n + 1/2)π

(n + 1/2)π
|fm(x)|max. (4.14)

5. Mean square error in Fourier series

Frequently the remainder term is known as the error term, for its interpretation
is obvious. However, it is more suitable to handle a mean square error for practical
issues:

η2 =
1

2π

∫ π

−π

η2
n(x)dx =

1

2π

∫ π

−π

[f(x) − fn(x)]2dx. (5.1)
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The orthogonality properties let us express the mean square error in function of
the coefficients in Fourier series:

η2 =
1

2

∞
∑

k=1

(a2
k + b2

k) −
1

2

n
∑

k=1

(a2
k + b2

k) =
1

2

∞
∑

k=n+1

(a2
k + b2

k), (5.2)

where the mean square error results equal to the square of the remainder term:

η2 =
η2

n

2π

∫ π

−π

dx = η2
n. (5.3)

The above formulae let us find out a relation between the norm of the mth derivative
of f(x) and the coefficients of its Fourier series. By substituting (4.9) into (4.8) we
have:

η2
n 6

1

π

∞
∑

k=n+1

1

k2m

∫ π

−π

f (m)2(ξ)dξ, (5.4)

from which we get the following inequality:

1

2

∞
∑

k=n+1

(a2
k + b2

k) 6
1

π

∞
∑

k=n+1

1

k2m

∫ π

−π

f (m)2(ξ)dξ, (5.5)

which provides us the wanted relation:

a2
k + b2

k <
1

πk2m

∫ π

−π

f (m)2(ξ)dξ. (5.6)

If we consider that in the inequality (5.5) both series start from k = 1, we get:

1

2

∞
∑

k=1

(a2
k + b2

k) 6
1

π

∞
∑

k=1

1

k2m

∫ π

−π

f (m)2(ξ)dξ, (5.7)

where the left side is proportional to the integral of f2(x):

∞
∑

k=1

(a2
k + b2

k) =
1

π

∫ π

−π

f2(x)dx, (5.8)

from which the following inequality is gotten:

1

2

∫ π

−π

f2(x)dx 6

∞
∑

k=1

1

k2m

∫ π

−π

f (m)2(ξ)dξ. (5.9)

This series is expressed in terms of the zeta function, from which results the fol-
lowing impressive inequality:

∫ π

−π

f2(x)dx 6
(2π)2m

(2m)!
|B2m|

∫ π

−π

f (m)2(ξ)dξ. (5.10)
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6. Energy of discrete-time signals

A discrete-time signal x(k) is a single value function defined at discrete points
of the domain, which represents the samples of a continuous-time function xa(t),
related with the first one by:

x(k) = xa(kT ), k ∈ Z, (6.1)

being T the sampling rate. For discrete-time signals we can define their energy E
as that dissipated by a unitary resistance:

E =

∞
∑

k=−∞

|x(k)|2. (6.2)

For energy signals, the above series converges. However, if the series diverges,
the function is said to be a power signal [7]. In general, power signals are periodic
functions, where their mean power P , measured in a complete period N , converges:

P = lim
N→∞

1

2N + 1

N
∑

k=−N

|x(k)|2. (6.3)

In practice, it is not possible to perform an infinite summation for calculating
the energy of a discrete-time signal, since with a representative number of terms
we can get an approximation of the series, for the upper terms can be neglected
since energy signals show a decreasing behavior; therefore we have the following
approximation:

En =

n
∑

k=1

|x(k)|2, (6.4)

where x(k) is supposed to be a causal signal, i.e., x(k) = 0 for k 6 0. Therefore,
the Riemann zeta function, for even arguments, gives the exact value of the energy
of a discrete-time signal:

E = ζ(2m) =

∞
∑

k=1

1

k2m
, m ∈ N. (6.5)

which is written as a sequence of weighted unitary impulse:

x(n) =

∞
∑

k=1

δ(n − k)

km
, δ(n − k) =

{

1, n = k,
0, n 6= k.

(6.6)

The approximation of the energy of the signal is written in terms of its total energy,
expressed by the zeta function:

En =
n

∑

k=1

1

k2m
= ζ(2m) −

∞
∑

k=n+1

1

k2m
. (6.7)
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In this formula, we can use the integral approach of a slow varying-type series since
the second one varies slowly, as is required. Therefore:

∞
∑

k=n+1

1

k2m
≈

∫

∞

n+1/2

dξ

ξ2m
=

1

(2m − 1)

1

(n + 1/2)2m−1
. (6.8)

Hence, the next formula has the advantage of bring us a very accurate value of the
energy of the discrete-time signal without developing the sum until the nth term:

En ≈ ζ(2m) −
1

(2m − 1)

1

(n + 1/2)2m−1
. (6.9)

The following tables present a comparative analysis which demonstrates the validity
of (6.9) as a reliable approximation formula for the finite expansion (6.4). For doing
so, we must programming the formula (6.7) by using double precision floating point
variables, defined in C++ language like of double type. Figure 2 shows the flow
diagram of the main program.

m,n

sum = 0

Cicle from k=1,2,…,n

Begin

End

sum=sum+1/k2m

Figure 2: Algorithm for performing the expansion En.

7. Conclusions

The formulae used for getting the bounded values of the remainder terms were
deduce from the integral approach of a slow varying-type series, which let us cal-
culate the remainder term without performing the infinite sum of the series. In
fact, in this work has been proved that the remainder term can be related with the
Riemann zeta function, which aroused from the Basel problem.
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n En En Absolute
summation approximation Difference

1 1.000000000000000000 0.978267400181559776 0.021732599818440224
10 1.549767731166540760 1.549695971610131060 0.000071759556409701
100 1.634983900184892260 1.634983818092007550 0.000000082092884712
1000 1.643934566681561240 1.643934566598351350 0.000000000083209883
10000 1.644834071848064960 1.644834071847976360 0.000000000000088596
100000 1.644924066898243000 1.644924066898226120 0.000000000000016875

Table 1: Case m = 1.

n En En Absolute
summation approximation Difference

1 1.000000000000000000 0.983557801612372495 0.016442198387627505
10 1.082036583493756640 1.082035287844960840 0.000001295648795807
100 1.082322905344472730 1.082322905328218180 0.000000000016254553
1000 1.082323233378305940 1.082323233378304160 0.000000000000001776
10000 1.082323233710861480 1.082323233710804630 0.000000000000056843
100000 1.082323233710861480 1.082323233711137480 0.000000000000276001

Table 2: Case m = 2.

n En En Absolute
summation approximation Difference

1 1.000000000000000000 0.991005613424777998 0.008994386575222002
10 1.017341512441431340 1.017341494932115790 0.000000017509315553
100 1.017343061964943730 1.017343061964941290 0.000000000000002442
1000 1.017343061984441020 1.017343061984448570 0.000000000000007550
10000 1.017343061984441020 1.017343061984448790 0.000000000000007772
100000 1.017343061984441020 1.017343061984448790 0.000000000000007772

Table 3: Case m = 3.

The Riemann zeta function can be parsed as the energy of a discrete-time energy
signal. For calculating accurately its total energy, it is not necessary to perform a
large expansion of terms, but to use a formula which is gotten from the study of
the remainder term of the Fourier series.

As can be seen from Tables 1– 5, the results demonstrate the virtue of using the
formula (6.9) instead of counting n terms. Even if the expansion is formed by only
one term, the error involved is in the order of 0.1% for m = 5, and 2.1% for m = 1.
In addition, from the tables we can assure the convergence of the results by taking
only ten terms in all of the cases; by taking a large number of terms, the results
show that occur a kind of saturation in the results of the program, since there
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n En En Absolute
summation approximation Difference

1 1.000000000000000000 0.995716261417096016 0.004283738582903984
10 1.004077346255262570 1.004077346045353590 0.000000000209908979
100 1.004077356197943030 1.004077356197942580 0.000000000000000444
1000 1.004077356197943030 1.004077356197943920 0.000000000000000888
10000 1.004077356197943030 1.004077356197943920 0.000000000000000888
100000 1.004077356197943030 1.004077356197943920 0.000000000000000888

Table 4: Case m = 4.

n En En Absolute
summation approximation Difference

1 1.000000000000000000 0.998104320141845691 0.001895679858154309
10 1.000994575058549610 1.000994575056194600 0.000000000002355005
100 1.000994575127818200 1.000994575127817750 0.000000000000000444
1000 1.000994575127818200 1.000994575127817750 0.000000000000000444
10000 1.000994575127818200 1.000994575127817750 0.000000000000000444
100000 1.000994575127818200 1.000994575127817750 0.000000000000000444

Table 5: Case m = 5.

exist no variations in the calculations while increasing the number of summands.
This can be interpreted as that the first elements have more energy than the upper
ones. Therefore, the use of a finite expansion for calculating the energy of the
discrete-time signal is justified, since the upper terms can be neglected.
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