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Abstract

The aim of this paper is to give a new elementary proof for our previous
theorem, in which the Lie derived length and the strong Lie derived length
of group algebras are determined in the case when the derived subgroup of
the basic group is cyclic of odd order.
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1. Introduction

The group algebra FG of a group G over a field F may be considered as a Lie
algebra with the usual bracket operation [x, y] = xy − yx. Denote by [X, Y ] the
additive subgroup generated by all Lie products [x, y] with x ∈ X and y ∈ Y , and
define the Lie derived series and the strong Lie derived series of the group algebra
FG respectively, as follows: let δ[0](FG) = δ(0)(FG) = FG and

δ[n+1](FG) =
[

δ[n](FG), δ[n](FG)
]

,

δ(n+1)(FG) =
[

δ(n)(FG), δ(n)(FG)
]

FG.

We say that FG is Lie solvable if δ[m](FG) = 0 for some m and the number
dlL(FG) = min{m ∈ N | δ[m](FG) = 0} is called the Lie derived length of FG.
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Similarly, FG is said to be strongly Lie solvable of derived length dlL(FG) = m if
δ(m)(FG) = 0 and δ(m−1)(FG) 6= 0. Evidently, δ[i](FG) ⊆ δ(i)(FG) for all i.

For m > 0 let

s
(m)
l =











1 if l = 0;

2s
(m)
l−1 + 1 if s

(m)
l−1 is divisible by 2m;

2s
(m)
l−1 otherwise.

In [1] we proved the following

Theorem 1.1 (Z. Balogh and T. Juhász [1]). Let G be a group with cyclic derived
subgroup of order pn, where p is an odd prime, and let F be a field of characteristic
p. If G/CG(G′) has order 2mpr, then

dlL(FG) = dlL(FG) = d + 1,

where d is the minimal integer for which s
(m)
d > pn holds. Otherwise,

dlL(FG) = dlL(FG) = ⌈log2(2pn)⌉.

This article can be considered as a supplement to [1]. In the original proof of
the theorem, at the discussion of the cases when either G/CG(G′) has order 2pr,
or the order of G/CG(G′) is divisible by some odd prime q 6= p, Theorem A and
B from [3] play the central role. Two lemmas are shown here, which enable us
to construct a new (elementary) proof of Theorem 1.1 avoiding the use of above-
mentioned results of A. Shalev. For a change, we prove these two lemmas by two
different ways (the first was proposed by the referee, whereat we wish to thank
him), although both statements could be proved by both methods which will be
presented here.

We denote by ω(FG) the augmentation ideal of FG. It is well-known that
ω(FG) is nilpotent if and only if G is a finite p-group and char(F ) = p. The
nilpotency index of ω(FG) will be denoted by t(G). For a normal subgroup H ⊆ G
we mean by I(H) the ideal FG · ω(FH). For x, y ∈ G let xy = y−1xy and
(x, y) = x−1xy, furthermore, denote by ζ(G) the center of the group G. We shall
use freely the identities

[x, yz] = [x, y]z + y[x, z], [xy, z] = x[y, z] + [x, z]y,

and for units a, b the equality [a, b] = ba
(

(a, b) − 1
)

.

2. Proof of Theorem 1.1

Let G be a group with derived subgroup G′ = 〈x | xpn

= 1〉 where p is an odd
prime, and let F be a field of characteristic p. As it is well-known, the automor-
phism group of G′ is isomorphic to the unit group U(Zpn) of Zpn . Furthermore,
U(Zpn) is cyclic, so the factor group G/CG(G′), which is isomorphic to a subgroup
of U(Zpn), is cyclic, too. We distinguish the following two cases according to the
order of G/CG(G′).
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2.1. G/C has order 2mpr

Let d be the minimal integer for which s
(m)
d > pn holds.

First suppose that m = 0. Then, as is easy to check (see [1]), the group G is
nilpotent, and by [2], dlL(FG) = dlL(FG) = ⌈log2(p

n + 1)⌉. Since

2d − 1 = s
(0)
d−1 < pn 6 s

(0)
d = 2d+1 − 1,

we have d < log2(p
n + 1) 6 ⌈log2(p

n + 1)⌉ 6 d + 1, thus Theorem 1.1 is proved for
the case in point.

Let now m > 1. To prove that d + 1 is an upper bound on dlL(FG) it is
sufficient to show that

δ(l+1)(FG) ⊆ I(G′)s
(m)
l for all l > 0.

This is clear for l = 0. For the induction we need Lemma 2 from [1], which states
that

[I(G′)i2m

, I(G′)j2m

] ⊆ I(G′)i2m+j2m+1. (2.1)

Hence, assuming that δ(l)(FG) ⊆ I(G′)s
(m)
l−1 , we obtain

δ(l+1)(FG) = [δ(l)(FG), δ(l)(FG)]FG

⊆ [I(G′)s
(m)
l−1 , I(G′)s

(m)
l−1 ]FG ⊆ I(G′)s

(m)
l .

Therefore, dlL(FG) 6 d + 1. Now, we shall prove that d + 1 6 dlL(FG). Let us
choose an element aCG(G′) of order 2m from G/CG(G′) and consider the group
H = 〈x, a〉 and set xk = xa. In particular, when m = 1, we have that a2 ∈ ζ(H),
xa = x−1, and the quotient group H = H/ζ(H) is isomorphic to the dihedral group
of order 2pn. This case is treated in the next lemma.

Lemma 2.1. Let G be the dihedral group of order 2pn for some odd prime p, and
let char(F ) = p. Then dlL(FG) > d + 1, where d is the minimal integer such that

s
(1)
d > pn.

Proof. Write the group G as 〈a, x | a2 = xpn

= 1, xa = ax−1〉 and set sl = s
(1)
l . We

shall show that (x− x−1)sl−1 ∈ δ[l](FG) if l is odd, and (x− x−1)sl−1+1 ∈ δ[l](FG)
if l is even; further

a(x − x−1)sl−1 ∈ δ[l](FG) and ax(x − x−1)sl−1 ∈ δ[l](FG).

For, if l = 1 then x − x−1 = [a, ax] ∈ δ[1](FG), a(x − x−1) = [a, x] ∈ δ[1](FG)
and ax(x − x−1) = [ax, x] ∈ δ[1](FG).

If l is even then, by induction, the elements

(x − x−1)sl−2 , a(x − x−1)sl−2 , ax(x − x−1)sl−2
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belong to δ[l−1](FG). Since (x − x−1)2 is central and sl−2 is odd,

[ax(x − x−1)sl−2 , a(x − x−1)sl−2 ] = [ax(x − x−1), a(x − x−1)](x − x−1)2sl−2−2

= a(x − x−1)[x, a(x − x−1)](x − x−1)2sl−2−2

= (x − x−1)2sl−2+1 = (x − x−1)sl−1+1.

Thus (x − x−1)sl−1+1 ∈ δ[l](FG). Furthermore,

[
1

2
a(x − x−1)sl−2 , (x − x−1)sl−2 ] = [

1

2
a, (x − x−1)sl−2 ](x − x−1)sl−2

= [
1

2
a, x − x−1](x − x−1)2sl−2−1

= a(x − x−1)2sl−2 = a(x − x−1)sl−1 ,

and hence,

[
1

2
ax(x − x−1)sl−2 , (x − x−1)sl−2 ] = [

1

2
a(x − x−1)sl−2 , (x − x−1)sl−2 ]x

= ax(x − x−1)sl−1 ,

so the elements a(x − x−1)sl−1 and ax(x − x−1)sl−1 belong to δ[l](FG).
Now, if l is odd then sl−2 is even, and by the inductive hypothesis

(x − x−1)sl−2+1 , a(x − x−1)sl−2 , ax(x − x−1)sl−2 ∈ δ[l−1](FG).

As above,

[a(x − x−1)sl−2 , ax(x − x−1)sl−2 ] = [a, ax](x − x−1)2sl−2

= (x − x−1)2sl−2+1

= (x − x−1)sl−1 ∈ δ[l](FG),

and

[
1

2
a(x − x−1)sl−2 , (x − x−1)sl−2+1] = [

1

2
a, x − x−1](x − x−1)2sl−2

= a(x − x−1)2sl−2+1

= a(x − x−1)sl−1 ∈ δ[l](FG),

and finally

[
1

2
ax(x − x−1)sl−2 , (x − x−1)sl−2+1] = [

1

2
a(x − x−1)sl−2 , (x − x−1)sl−2+1]x

= ax(x − x−1)sl−1 ∈ δ[l](FG).

Induction is complete.
Let d be the minimal integer such that sd > pn. Then sd−1 < pn and

a(x − x−1)sd−1 = ax−sd−1(x2 − 1)sd−1

is nonzero element of δ[d](FG) (by the binomial theorem as the order of x2 is pn).
Thus dlL(FG) > d and the statement follows. �
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The following line shows the truth of Theorem 1.1 for the case m = 1:

d + 1 6 dlL(FH) 6 dlL(FH) 6 dlL(FG).

Let us turn to the case m > 1. Since (x, a) = x−1+k ∈ H ′ and k 6≡ 1 (mod p), we
have that H ′ has order pn. Moreover, H/CH(H ′) has order 2m. Lemma 4 in [1]
forces

aωs
(m)
l (FH ′) ⊕ a−1ωs

(m)
l (FH ′) ⊆ δ[l+1](FH)

for all l > 0, therefore δ[d](FH) 6= 0, so d + 1 6 dlL(FH) 6 dlL(FG), as asserted.

2.2. The order of G/CG(G′) is divisible by some odd prime

q 6= p

In the proof of the next lemma we will use the well-known congruence

xk − 1 ≡ k(x − 1) (mod I(G′)2) for all k ∈ Z. (2.2)

Set G/CG(G′) = 〈bCG(G′)〉 and xk = xb. The congruence

[(x − 1)2
l

, b] ≡ (k2l

− 1)b(x − 1)2
l

(mod I(G′)2
l+1) for all l > 0 (2.3)

can be obtained as a simple consequence of (2.2).

Lemma 2.2. Let G be a group with cyclic derived subgroup of order pn and let
char(F ) = p. If the order of G/CG(G′) is divisible by an odd prime q 6= p, then
dlL(FG) > ⌈log2(2pn)⌉.

Proof. Let G′ = 〈x | xpn

= 1〉 and let us choose an element bC ∈ G/CG(G′)
of order q and set xk = xb. Evidently, k2m

6≡ 1 (mod p) for all m. Set H =
〈b, CG(G′)〉. Clearly, xk−1 = (x, b) ∈ H ′ is of order pn, so H ′ has order pn, too.
Since H ′ = (b, CG(G′)) and the map c 7→ (b, c) is an epimorphism of CG(G′) onto
H ′, we can choose c from CG(G′) such that (b, c) = x. Define the following three
series in FG: let

u0 = b, v0 = c, w0 = c−1b−1,

and, for l > 0, let

ul+1 = [ul, vl], vl+1 = [ul, wl], wl+1 = [wl, vl].

Using induction we show for odd l that

ul ≡ t(l)u cb(x − 1)2
l−1

(mod I(G′)2
l−1+1);

vl ≡ t(l)v c−1(x − 1)2
l−1

(mod I(G′)2
l−1+1);

wl ≡ t(l)w b−1(x − 1)2
l−1

(mod I(G′)2
l−1+1),

(2.4)
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and if l is even then

ul ≡ t(l)u b(x − 1)2
l−1

(mod I(G′)2
l−1+1);

vl ≡ t(l)v c(x − 1)2
l−1

(mod I(G′)2
l−1+1);

wl ≡ t(l)w c−1b−1(x − 1)2
l−1

(mod I(G′)2
l−1+1),

(2.5)

where t
(l)
u , t

(l)
v , t

(l)
w are nonzero elements in the field F while 2l−1 < pn. Evidently,

u1 = [b, c] = cb(x − 1), and applying (2.2) we have

v1 = [b, c−1b−1] = c−1
(

(x−1)b−1

− 1
)

= c−1(x−k′

− 1) ≡ −k′c−1(x − 1) (mod I(G′)2),

and similarly, w1 = [c−1b−1, c] ≡ −k′b−1(x − 1) (mod I(G′)2), where xk′

= xb−1

.
Therefore (2.4) holds for l = 1. Now assume that (2.4) is true for some odd l.
Then, using the congruences (2.3) and kk′ ≡ 1 (mod p), we have

ul+1 ≡ t(l)u t(l)v [cb(x − 1)2
l−1

, c−1(x − 1)2
l−1

]

≡ −t(l)u t(l)v [(x − 1)2
l−1

, b](x − 1)2
l−1

≡ −t(l)u t(l)v (k2l−1

− 1)b(x − 1)2
l

(mod I(G′)2
l+1),

vl+1 ≡ t(l)u t(l)w [cb(x − 1)2
l−1

, b−1(x − 1)2
l−1

]

≡ t(l)u t(l)w

(

− b−1c[(x − 1)2
l−1

, b](x − 1)2
l−1

+ cb[(x − 1)2
l−1

, b−1](x − 1)2
l−1)

≡ t(l)u t(l)w k2l−1

(k′2l

− 1)c(x − 1)2
l

(mod I(G′)2
l+1)

and

wl+1 ≡ t(l)w t(l)v [b−1(x − 1)2
l−1

, c−1(x − 1)2
l−1

]

≡ −t(l)w t(l)v c−1[(x − 1)2
l−1

, b](x − 1)2
l−1

≡ −t(l)u t(l)v (k′2l−1

− 1)c−1b−1(x − 1)2
l

(mod I(G′)2
l+1).

The assumption on k (see at the beginning of the proof) ensures that the coefficients
of the element ul+1, vl+1 and wl+1 are nonzero in the field F . Supposing that (2.5)
is true for some even l we can similarly get the required congruences. So, (2.4) and
(2.5) are valid for any l > 0.

Assume that l < ⌈log2(2pn)⌉. Then 2l−1 < pn and the elements ul, vl, wl are
nonzero in δ[l](FH), thus dlL(FG) > dlL(FH) > ⌈log2(2pn)⌉. �

The inequality dlL(FG) 6 ⌈log2(2pn)⌉ is well-known, thus the lemma completes
the proof of Theorem 1.1.



Remarks on the Lie derived lengths of group algebras . . . 15

3. Remarks on the theorem

(i) If G is a non-nilpotent group with cyclic derived subgroup of order pn and
char(F ) = p, then

⌈log2(3pn/2)⌉ 6 dlL(FG) = dlL(FG) 6 ⌈log2(2pn)⌉.

In order to prove these inequalities it remains to show that if G/CG(G′)
has order 2mpr, then ⌈log2(3pn/2)⌉ 6 dlL(FG). Since G is not nilpotent,
m > 0, and, as we have already seen, the dihedral group of order 2pn can be
embedded into G. Hence, by Lemma 2.1, we have d + 1 6 dlL(FG), where

d is the minimal integer such that s
(1)
d > pn. At the same time, it is easy to

verify that

s
(1)
l =

{

(2l+2 − 1)/3 if l is even;

(2l+2 − 2)/3 if l is odd.
(3.1)

Thus, (2d+2 − 1)/3 > s
(1)
d > pn, whence d + 1 > ⌈log2(3pn/2 + 1/2)⌉ fol-

lows. Since ⌈log2(3pn/2 + 1/2)⌉ = ⌈log2(3pn/2)⌉, the required inequality is
guaranteed.

As the difference of the integers ⌈log2(3pn/2)⌉ and ⌈log2(2pn)⌉ is at most
one, the values of dlL(FG) and dlL(FG) are almost uniquely determined by
this inequality. In some cases we are able to determine explicitly the values
of dlL(FG) and dlL(FG):

(ii) We claim that if G/CG(G′) has order 2pr, then

dlL(FG) = dlL(FG) = ⌈log2(3pn/2)⌉.

Indeed, according to Theorem 1.1, if l = dlL(FG) then s
(1)
l−2 < pn. From

(3.1) it follows that (2l − 1)/3 < pn. Hence l < log2(3pn/2 + 1/2) + 1, and
therefore l 6 ⌈log2(3pn/2+1/2)⌉. Since ⌈log2(3pn/2+1/2)⌉ = ⌈log2(3pn/2)⌉,
the proof is complete.

(iii) Since the order of G/CG(G′) divides the order of U(Zpn), which is equal to
pn−1(p−1), for primes p of the form 4k−1 the order of G/CG(G′) is either pr

for some r (then dlL(FG) = dlL(FG) = ⌈log2(p
n +1)⌉), or 2pr (then by part

(ii), dlL(FG) = dlL(FG) = ⌈log2(3pn/2)⌉), or it has an odd prime divisor
q 6= p (then dlL(FG) = dlL(FG) = ⌈log2(2pn)⌉).

(iv) Let G be a non-nilpotent group with derived subgroup of order p > 3, where
p is a Fermat prime (i.e. it can be written in the form 22s

+1 for some s > 0),
and let char(F ) = p. Then

dlL(FG) = dlL(FG) =

{

⌈log2(2p)⌉ if G/CG(G′) has order p − 1;

⌈log2(3p/2)⌉ otherwise.
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Indeed, let us write p in the form 2r + 1 (r > 1). If G/CG(G′) has order

p − 1 = 2r, then s
(r)
r = 2r, and by Theorem 1.1,

dlL(FG) = dlL(FG) = r + 2 = ⌈log2(2p)⌉,

as asserted. In the other case G/CG(G′) has order 2m for some 0 < m < r.

Since ⌈log2(3p/2)⌉ = r+1, by Theorem 1.1 it is enough to show that s
(m)
r > p.

But this is true, because s
(r−1)
r−1 = 2r−1, furthermore, for m = r − 1 we have

s(m)
r = s(r−1)

r = 2s
(r−1)
r−1 + 1 = 2r + 1 = p,

and if m < r − 1 then s
(m)
r−1 > s

(r−1)
r−1 . This implies

s(m)
r > 2s

(m)
r−1 > 2s

(r−1)
r−1 = 2r = p − 1

and the proof is done.

References

[1] Balogh, Z., Juhász, T., Lie derived lengths of group algebras of groups with cyclic
derived subgroup. To appear in Commun. Alg.

[2] Juhász, T., On the derived length of Lie solvable group algebras, Publ. Math. (Deb-
recen) Vol. 68/1-2 (2006) 243–256.

[3] Shalev, A., The derived length of Lie soluble group rings. II. J. London Math. Soc.
(2) 49 (1994), no. 1, 93–99.

Zsolt Balogh

Institute of Mathematics and Informatics

College of Nyíregyháza

H-4410 Nyíregyháza

Sóstói út 31/B

Hungary

Tibor Juhász

Institute of Mathematics and Informatics

Eszterházy Károly College

H-3300 Eger

Leányka út 4

Hungary


