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Abstract

This paper deals with the role of performance modeling tools. It intro-
duces 3 major tool development centers and shows how a given tool can be
applied to investigate the performance of a finite-source retrial queueing sys-
tem.
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1. Introduction

The argument for performance engineering methods and tools to be employed
in computer-communication systems has always been that such systems cannot be
designed or modified efficiently without recourse to some form of predictive model,
just as in other fields of engineering. This argument has never been more valid
than it is with today’s highly complex combination of communication and com-
puter technologies. These have created the Internet, the Grid and diverse types of
parallel and distributed computer systems. To be practical, performance engineer-
ing relies on tools to render its use accessible to the non-performance specialist,
and in turn these depend on sound techniques that include analytical methods, sto-
chastic models and simulation. Tools and techniques also need to be parameterised
and validated against real world observations, requiring sophisticated measurement
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techniques in this picosecond cyber-world. The series of "International Confer-
ences on Modelling Techniques and Tools for Computer Performance Evaluation"
(TOOLS) has provided a forum for this community of performance engineers with
all their diverse interests and selected papers of these conferences have been pub-
lished in the reputed Performance Evaluation journal. Many mathematical
techniques have been developed to derive various measures from Markov reward
models which form the basis of almost all performability models. For evaluation
techniques to be used, software tools are needed. The interested reader is referred
to, among others, [8, 7] for comprehensive and very detailed surveys on relevant
tools.

The paper is organized as follows. Section 2 is devoted to the introduction of
some recent well-known tools. In Section 3 tool supported analysis of finite-source
retrial queueing systems with a server subject to breakdowns is performed. Finally,
some conclusions are made.

2. Some recent modeling tools

In the following 3 major tool development centers are introduced.

2.1. Tools at Faculty of Informatics, University of Dortmund,
Germany

This traditionally famous center has developed several software packages which
can be downloaded from the site:

http://ls4-www.informatik.uni-dortmund.de/tools.html

Parallel to their methodological work the center continuously developed and used
tools for performance evaluation. Their intention is to provide facilities for a
model description close to the original system specification and hiding details of the
analysis techniques. Such tools map the model specification automatically to an
analysable model. The set of tools developed by Informatik IV comprises amongst
others

e HIT: The software tool HIT provides for model-based performance evalu-
ation of computing and communication systems during all phases of their
life cycle. Specification of (models of) dynamic, discrete-event, stochastic
systems is achieved by particular language- and graphics-based description
options. Performance evaluation of accordingly specified models is supported
by a variety of techniques of the simulative and analytical types.

e HiQPN: HiQPN-Tool supporting the analysis of hierarchical QPN models,
a superset of Coloured GSPNs and Queueing Networks. These models can
be analysed with respect to qualitative and quantitative aspects.
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e DSPNexpress: DSPNexpress is a software package for performance and
reliability modelling of computer systems with deterministic and stochastic
Petri nets (DSPN). DSPNexpress has a user-friendly graphical interface for
definition, analysis and graphical animation of DSPNs. The package has been
called DSPNexpress because this software package solves complex DSPNs
with four orders of magnitude less CPU time than other packages previously
introduced.

e APNN-Toolbox: The APNN-Toolbox is a software package for functional
(invariant, liveness, model checking) and quantitative analysis (APNNsim,
NSolve, Parallel, SupGSPN) of GSPNs. Modeling of GSPNs can be realized
with the editor APNNed. The editor can start the analysis tools and after-
wards a visualization of the results is possible. The communication between
APNNed and the analyzers takes place by a common exchange interface so-
called Abstract Petri net notation (APNN).

All tools provide a graphical user interface and are available for usual type of work-
stations. They are tested exhaustively and have been employed for the evaluation
of operating systems in the development phase, future hardware architectures, and
the assessment of distributed and telecommunication systems. The tools also suit
for an evaluation of flexible manufacturing systems. Their practical usability has
been proved by a large number of external installations in universities, research
institutes and industry.

2.2. Mo6bius Tool

Mobius is a software tool for modeling the behavior of complex systems, see
[5]. It is one of the major research projects of the Performability Engineering
Research Group (PERFORM) in the Coordinated Science Laboratory at the Uni-
versity of Illinois at Urbana-Champaign, USA. Although it was originally developed
for studying the reliability, availability, and performance of computer and network
systems, its use has expanded rapidly. It is now used for a broad range of discrete-
event systems, from biochemical reactions within genes to the effects of malicious
attackers on secure computer systems, in addition to the original applications. That
broad range of use is possible because of the flexibility and power found in M&bius,
which come from its support of multiple high-level modeling formalisms and multi-
ple solution techniques. This flexibility allows engineers and scientists to represent
their systems in modeling languages appropriate to their problem domains, and
then accurately and efficiently solve the systems using the solution techniques best
suited to the systems’ size and complexity. Time- and space-efficient discrete-event
simulation and numerical solution are both supported. Features of the tool is the
following.

e Multiple modeling languages, based on either graphical or textual
representations: Supported model types include stochastic extensions to
Petri nets, Markov chains and extensions, and stochastic process algebras.
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Models are constructed with the right level of detail, and customized to the
specific behavior of the system of interest.

e Hierarchical modeling paradigm: Build models from the ground up.
First specify the behavior of individual components, and then combine the
components to create a model of the complete system. It is easy to combine
components in multiple ways to examine alternative system designs.

e Customized measures of system properties: Construct detailed ex-
pressions that measure the exact information desired about the system (e.g.,
reliability, availability, performance, and security). Measurements can be
conducted at specific time points, over periods of time, or when the system
reaches steady state.

e Study the behavior of the system under a variety of operating con-
ditions: Functionality of the system can be defined as model input parame-
ters, and then the behavior of the system can be automatically studied across
wide ranges of input parameter values to determine safe operating ranges, to
determine important system constraints, and to study system behaviors that
could be difficult to measure experimentally with prototypes.

e Distributed discrete-event simulation: Evaluates the custom measures
using efficient simulation algorithms to repeatedly execute the system, either
on the local machine or in a distributed fashion across a cluster of machines,
and gather statistical results of the measures.

e Numerical solution techniques: Exact solutions can be calculated for
many classes of models, and advances in state-space computation and gen-
eration techniques make it possible to solve models with tens of millions of
states. Previously, such models could be solved only by simulation.

The Mobius tool was built based on the belief that no one modeling formalism can
be the best way to build all models of systems from across the diverse spectrum of
application domains. In addition to the fact that many domain-specific modeling
languages are needed, we also need many techniques (for example, simulation, state
space exploration, and analytical solution) for analyzing models to study important
behaviors of the systems being modeled. Mobius addresses those issues by defining
a broad framework in which new modeling formalisms and model solution methods
can be easily integrated, and populating that framework with multiple, synergisti-
cally combined modeling formalisms and model solution methods. Many advanced
modeling formalisms and innovative and powerful solution techniques have been
integrated in the Mobius framework. It is available for the following operating
systems: Windows XP or 2000, and Linux Fedora Core 3 and later. The package
can be found at http://www.mobius.uiuc.edu/
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2.3. MOSEL Tool

Performance modeling tools usually have their own textual or graphical specifi-
cation language which depends largely on the underlying modeling formalism. The
different syntax of the tool-specific modeling languages implies that once a tool
has been chosen it will be difficult to switch to another one as the model has to be
rewritten using a different syntax. On the other hand the solution of the underly-
ing stochastic process is performed in most tools by the same standard numerical
algorithms. Starting from these observations the creation of MOSEL (MOdeling,
Specification and Evaluation Language) tool, developed at the University of Er-
langen, Germany, is based on the following idea: Instead of creating another tool
with all the components needed for system description, state space generation, sto-
chastic process derivation, and numerical solution, we focus on the formal system
description part and exploit the power of various existing and well tested packages
for the subsequent stages. MOSEL is a modeling environment which comprises a
high-level modeling language that provides a very simple way for system descrip-
tion. In order to reuse existing tools for the system analysis, the environment is
equipped with a set of translators which transform the MOSEL model specification
into various tool-specific system descriptions [3].

The main features of the MOSEL-environment are the following:

e The modeler inspects the real-world system and generates a high-level system
description using the MOSEL specification language. He also specifies the
desired performance and reliability measures using the syntax provided by
MOSEL. He passes the model to the environment which then performs all
following steps without user interaction.

e The MOSEL environment automatically translates the MOSEL model into a
tool-specific system description, for example a CSPL-file suitable to serve as
input for SPNP.

e The appropriate tool (i.e. SPNP) is invoked by the MOSEL-environment.

e The state space of the model is generated by the tool according to the se-
mantic rules of its modeling formalism out of the static model description.

e The semantic model is mapped onto a stochastic process.

e The stochastic process is solved by one of the standard numerical solution
algorithms which are part of the tool. The results of the numerical analysis
are saved in a file with a tool-specific structure.

e The MOSEL-environment parses the tool-specific output and generates a
result file (sys.res) containing the performance and reliability measures which
the user specified in the MOSEL system description. If the modeler requested
graphical representation of the results, a second file (sys.igl) is generated by
MOSEL [3, 4].
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The latest version of MOSEL, called MOSEL-2 has been developed by Jorg Barner
and Bjorn Beutel, see [2]. Moreover, the present version contains the enhanced
MOSEL to CSPL translator written by Patrick Wiichner, see [9]. The distribution
contains the MOSEL source code (written in C) as well as a collection of examples
and installation instructions. Moreover, Bjorn’s diploma-thesis is included in PDF-
format. Chapter 4 of his thesis contains an easy-to-read introduction to modeling
and performance evaluation with MOSEL-2. MOSEL-2 provides means by which
many interesting performance or reliability measures and the graphical presentation
of them can be specified straightforwardly. It is especially easy to evaluate a model
with different sets of system parameters. The benefit of MOSEL-2 - especially for
the practitioner from the industry - lies in its modelling environment: A MOSEL-2
model is automatically translated into various tool-specific system descriptions and
then analyzed or simulated by the appropriate tools. This exempts the modeler
from the time-consuming task of learning different modeling languages. MOSEL
is available under the GNU Public License (GPL). You might read the installation
instructions first. All information concerning the package can be found at web
address http://wwwé.informatik.uni-erlangen.de/Projects/MOSEL/

System requirements:

e MOSEL-2 should be easily portable to nearly every POSIX system on which
an ISO C90 compiler is running.

e You may compile MOSEL-2 using the Portable GNU C Compiler GCC, avail-
able from http://www.gnu.org.

e [t has already been tested under the Linux and Solaris operating system.

e For the graphical display of evaluation results using the IGL interpreter, you
need to have Tcl/Tk, version 8.1 or later, installed on your computer system.
You can get Tcl/Tk from http://www.scriptics.com.

e Last but not least, you’ll need an evaluation tool. MOSEL-2 cooperates with
the Petri net analysis tools SPNP version 6 (available from
http://www.ee.duke.edu/ kst/softwarepackages.html) and TimeNET
(available from http://pdv.cs.tu-berlin.de/ timenet).

3. An application of MOSEL

To show an example for using MOSEL we analyze a retrial queueing system
with the following assumptions. Consider a single server queueing system, where
the primary calls are generated by K, 1 < K < oo homogeneous sources. The
server can be in three states: idle, busy and failed. If the server is idle, it can serve
the calls of the sources. Each of the sources can be in three states: free, sending
repeated calls and under service. If a source is free at time ¢ it can generate a
primary call during interval (¢,t + dt) with probability Adt + o(dt). If the server is
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free at the time of arrival of a call then the call starts to be served immediately,
the source moves into the under service state and the server moves into busy state.
The service is finished during the interval (¢, ¢ + dt) with probability udt + o(dt) if
the server is available. If the server is busy at the time of arrival of a call, then the
source starts generation of a Poisson flow of repeated calls with rate v until it finds
the server free. After service the source becomes free, and it can generate a new
primary call, and the server becomes idle so it can serve a new call. The server
can fail during the interval (¢,¢ + dt) with probability ddt + o(dt) if it is idle, and
with probability vdt + o(dt) if it is busy. If 6 = 0,7 > 0 or § = v > 0 active or
independent breakdowns can be discussed, respectively. If the server fails in busy
state, it either continues servicing the interrupted call after it has been repaired or
the interrupted request transmitted to the orbit. The repair time is exponentially
distributed with a finite mean 1/7. If the server is failed two different cases can
be treated. Namely, blocked sources case when all the operations are stopped,
that is neither new primary calls nor repeated calls are generated. In the unblocked
(intelligent) sources case only service is interrupted but all the other operations are
continued (primary and repeated calls can be generated). All the times involved
in the model are assumed to be mutually independent of each other.

Our main objective is to continue the investigations which were started in [1] but
because of page limitations only some results were presented. The mean number
of requests staying in the orbit or in the service, overall utilization of the system
and the mean response time of calls are displayed as the function of server’s failure
and repair rates. To achieve this goal MOSEL is used to formulate and solve the
problem.

The system state at time ¢ can be described with the process

where Y (¢t) = 0 if the server is up, Y (¢) = 1 if the server is failed, C(t) = 0 if
the server is idle, C'(t) = 1 if the server is busy, N(¢) is the number of sources
of repeated calls at time ¢. Because of the exponentiality of the involved random
variables this process is a Markov chain with a finite state space. Since the state
space of the process (X (), > 0) is finite, the process is ergodic for all reasonable
values of the rates involved in the model construction, hence from now on we will
assume that the system is in the steady state.

We define the stationary probabilities:
Plgri) = Jim P(Y(t) = .0(t) = . N(t) = j),

q=0,1, r=0,1, =0,..., K",

K-1 for blocked case,

where K™ = { K—r for unblocked case.
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Knowing these quantities the main performance measures can be obtained as fol-
lows:

e Utilization of the server

K—
Z (0,1,5)-

e Utilization of the repairman

Ur=>»_ > P(Lr}j).

=0 ;=0
o Awailability of the server
1 K*
As =YY P(0,r,j)=1-Us.
r=0 j=0

e Mean number of calls staying in the orbit or in service

1 1 K* 1 K-1
M=EN@t)+CH] =D jP(q.rj)+>_ > Plg1j).
q=07=0j=0 q=0 j=0
e Utilization of the sources
E[K-C)—N(®)Y (1)=0] for blocked case
K )
Uso = Py
S for unblocked case.

o QOuverall utilization
Uo=Us+ KUgop + Ug.
e Mean rate of generation of primary calls

N MEK —C(t) — N(t);Y(t) =0] for blocked case,
| AEIK —C(t) — N(¢)] for unblocked case.

o Mean response time

E[T] = M/\.
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3.1. The MOSEL implementation

Because of the fact that the state space of the describing Markov chain is very
large (especially in the heterogeneous model we would like to investigate later),
it is difficult to calculate the system measures in the traditional way of solving
the system of steady-state equations. To simplify the procedure and to make our
study more usable in practice, we used the software tool MOSEL to formulate the
model and to calculate the main performance measures. By the help of MOSEL
we can use various performance tools (like SPNP — Stochastic Petri Net Package)
to get these measures. In this section we show the base MOSEL program and
the explanation of its main parts without the technical details of programming.
This program belongs to the case of continued service after server’s repair and
request’s generation is blocked during the server repairing. It does not contain the
picture section, which is needed to generate various graphical representations of
the measures. The figures in the next section are automatically generated by the
tool with the corresponding picture part. In the MOSEL program we used the
following terminology: The server and the sources are referred to as a CPU and
terminals, respectively.

/* retrialnr-hom-cpu-cont.msl begins */

#define NT 6

VAR double prgen;

VAR double prretr;

VAR double prrun;

VAR double cpubreak_idle;

VAR double cpubreak_busy;

VAR double cpurepair;

enum cpu_states {cpu_busy, cpu_idle};
enum cpu_updown {cpu_up, cpu_down};

/K m Node definitions ------ */
NODE busy_terminals[NT] = NT;

NODE retrying_terminals([NT] = 0;

NODE waiting_terminals[1] = 0;

NODE cpu_state[cpu_states] = cpu_idle;
NODE cpulcpu_updown] = cpu_up;

IF cpu==cpu_up FROM cpu_idle, busy_terminals

TO cpu_busy, waiting_terminals W prgen*busy_terminals;
IF cpu==cpu_up AND cpu_state==cpu_busy FROM busy_terminals

TO retrying_terminals W prgen*busy_terminals;
IF cpu==cpu_up FROM cpu_idle, retrying_terminals

TO cpu_busy, waiting_terminals W prretr*retrying_terminals;
IF cpu==cpu_up FROM cpu_busy, waiting_terminals

TO cpu_idle, busy_terminals W prrun;
IF cpu_state==cpu_idle FROM cpu_up TO cpu_down W cpubreak_idle;
IF cpu_state==cpu_busy FROM cpu_up TO cpu_down W cpubreak_busy;
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FROM cpu_down TO cpu_up W cpurepair;
Y e ettt Results ------- */
RESULT>> if (cpu==cpu_up AND cpu_state==cpu_busy) cpuutil += PROB;
RESULT>> if (cpu==cpu_up) goodcpu += PROB;
RESULT if (cpu==cpu_up) busyterm += (PROB*busy_terminals);
RESULT>> termutil = busyterm / NT;
RESULT>> if (cpu==cpu_up) retravg += (PROB*retrying_terminals);
RESULT if(waiting_terminals>0) waitall += (PROB*waiting_terminals);
RESULT if (retrying_terminals>0)

retrall += (PROB*retrying_terminals);
RESULT>> resptime = (retrall + waitall) / NT / (prgen * termutil);
RESULT>> overallutil = cpuutil + busyterm;
/* retrialnr-hom-cpu-cont.msl ended */

In the declaration part we define the number of terminals (NT'), this is the
only program code line, that must be modified when modeling larger systems. The
terminals have three states: busy (primary call generation), retrying (repeated call
generation) and waiting (job service at the CPU). The CPU has two states: idle and
busy, and it can be up or failed in both states. We define the three parameters for
the terminals: prgen denotes the rate of primary call generation, prretr references
to the rate of repeated call generation and prrun denotes the service rate. The
cpubreak _idle, cpubreak busy and cpurepair variables denote the failure rate in
the two CPU states and the repair rate.

The node part defines the nodes of the system. Our queueing network contains
5 nodes: one node for the number of busy, retrying and waiting terminals, respec-
tively, and two nodes for the CPU. The CPU is idle and up and all the terminals
are busy at the starting time.

The transition part describes how the system works. The first transition rule
defines the successful primary call generation: the CPU moves from the idle state to
busy and the terminal from busy to waiting. The second rule shows an unsuccessful
primary call generation: if the CPU is busy when the call is generated then the
terminal moves to state retrying. The third rule handles the case of a successful
repeated call generation: the CPU moves from the idle state to busy and the
terminal from retrying to waiting. The fourth rule describes the request service at
the CPU. The fifth and sixth rules describe the CPU fail in idle and busy state.
The last rule shows the CPU repair.

Finally, the result part calculates the requested output performance measures.

3.2. Numerical examples

We used the tool SPNP which was able to handle the model with up to 126
sources. In this case, on a computer containing a 1.1 GHz processor and 512 MB
RAM, the running time was approximately 1 second.

The results in the reliable case (with very low failure rate and very high repair
rate) were validated by the (a little modified) Pascal program for the reliable case
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retrial (cont.) | retrial (orbit) | reliable [6]
Number of sources: 5 5 5
Request’s generation rate: 0.2 0.2 0.2
Service rate: 1 1 1
Retrial rate: 0.3 0.3 0.3
Utilization of the server: 0.5394868123 | 0.5394867440 | 0.5394867746
Mean response time: 4.2680691205 | 4.2680667075 | 4.2680677918

Table 1: Validations in the reliable case

retrial (cont.) | retrial (orbit) | non-rel. FIFO
Number of sources: 3 3 3
Request’s generation rate: 0.1 0.1 0.1
Service rate: 1 1 1
Retrial rate: le425 le425 -
Server’s failure rate: 0.01 0.01 0.01
Server’s repair rate: 0.05 0.05 0.05
Utilization of the server: 0.2232796561 | 0.2232796553 | 0.2232796452
Mean response time: 1.4360656331 | 1.4360656261 | 1.4360655471

Table 2: Validations in the non-reliable case

K A I v 4,y T
Figure 1 | 6 | 0.8 4 0.5 | x axis 0.1
Figure2 | 6 | 0.1 | 0.5 | 0.5 | x axis 0.1
Figure 3 | 6 | 0.1 | 0.5 | 0.05 | x axis 0.1
Figure4 | 6 | 0.8 4 0.5 0.05 | x axis
Figure 5 | 6 | 0.05 | 0.3 | 0.2 0.05 | x axis
Figure 6 | 6 | 0.1 | 0.5 | 0.05 | 0.05 | x axis

Table 3: Input system parameters

given in [6], on pages 272-274. See Table 1 for some test results. The non-reliable
case was tested with the non-reliable FIFO model, see Table 2.

In Figures 1-3 we can see the mean response time, the overall utilization of
the system and mean number of calls staying in the orbit or in the service for the
reliable and the non-reliable retrial system when the server’s failure rate increases.
In Figures 4-6 the same performance measures are displayed as the function of
increasing repair rate. The input parameters are collected in Table 3.
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3.3. Comments

In Figure 1, we can see that in the case when the request returns to the orbit
at the breakdown of the server, the sources will have always longer response times.
Although the difference is not considerable it increase as the failure rate increase.
The almost linear increase in E[T] can be explained as follows. In the blocked
(non-intelligent) case the failure of the server blocks all the operations and the
response time is the sum of the down time of the server, the service and repeated
call generation time of the request (which does not change during the failure) thus
the failure has a linear effect on this measure. In the intelligent case the difference
is only that the sources send repeated calls during the server is unavailable, so this
is not an additional time.

In Figure 2 and Figure 5 it is shown how much the overall utilization is higher
in the intelligent case with the given parameters. It is clear that the continued
cases have better utilizations, because a request will be at the server when it has
been repaired.

In Figure 3 we can see that the mean number of calls staying in the orbit or in
service does not depend on the server’s failure rate in continuous, non-intelligent
case, it coincides with the reliable case. It is because during and after the failure
the number of requests in these states remains the same. The almost linear increase
in the non-continuous, non-intelligent case can be explained with that if the server
failure occurs more often the server will be idle more often after repair until a
source repeats his call.

In Figure 4, we can see that if the request returns to the orbit at the breakdown
of the server, the sources will have longer response times like in Figure 1. The
difference is not considerable too, and as it was expected the curves converge to
the reliable case.

In Figure 6, it can be seen that the mean number of calls staying in the orbit or
in service does not depend on the server’s repair rate in continuous, non-intelligent
case, it coincides with the reliable case like in Figure 3. It is true for the non-
continuous, non-intelligent case too, which has more requests in the orbit on the
average because of the non-continuity.

4. Conclusions

This paper introduced some recent performance modeling tools of well-known
research centers of famous universities. In Section 3 a finite-source homogeneous
retrial queueing system was studied with the novelty of the non-reliability of the
server. The MOSEL tool was used to formulate and solve the problem, and the
main performance and reliability measures were derived and analyzed graphically.
Several numerical calculations were performed to show the effect of server’s break-
downs and repairs on the mean response times of the calls, on the overall utilization
of the system and on the mean number requests staying in the orbit or in service.
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