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Abstract
In this paper a random graph evolution rule is defined which can be con-

sidered as a generalization of the Barabási-Albert random tree. The evolution
is a combination of the preferential attachment method and the interactions
of 2 vertices. Our model is similar to the 3-interactions model studied in [2].
We describe the asymptotic behaviour of the degrees and the weights of the
vertices.
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1. Introduction

Several real life networks are scale-free (see [4, 7]). A random graph is called scale-
free, if it has a power law degree distribution, that is P (d) ∼ d−γ as d→∞, where
P (d) is the probability that a vertex is of degree d. The well-known Barabási-Albert
preferential attachment model produces a scale-free sequence of random graphs.

The Barabási-Albert model

The preferential attachment model was suggested by Barabási and Albert in [4].
See also the paper of Yule [17] for trees. The graph evolution rule given in [4] is
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the following. The starting point is a graph with a small number of vertices. At
every time step a new vertex is added with m edges that link the new vertex to m
different vertices already present in the graph. The preferential attachment means
that the probability p(i) that the new vertex will be connected to vertex i depends
on the degree of that vertex, so that p(i) = ki/

∑
j kj , where kj denotes the degree

of vertex j. According to [5], the model is not defined precisely by this definition.
A precise definition of the model and a rigorous proof of the scale-free property was
given in [5] (see also [7, 16]). The simplest case of the model is the Barabási-Albert
random tree, when m = 1.

In [6] a generalization of the Barabási-Albert model was introduced. In [6]
besides the preferential attachment method, uniform choice of vertices are allowed,
moreover, new connections can be grown between old vertices. For the recent
results in the preferential attachment model see [16, 13, 10].

The 3-interactions model

In [2] the following graph evolution was introduced. We start with a single triangle.
This graph contains 3 vertices and 3 edges. Each of these objects has initial weight
1. The evolution of the graph is based on the interactions of three vertices. At
each step we consider three vertices and we draw all non-existing edges between
them. So we obtain a triangle. The weight of this triangle and the weights all of
its edges and vertices are increased by 1.

At a fixed time the evolution is the following. Independently of the past, with
probability p, a new vertex is born which interacts with 2 old vertices. That is
they form a triangle. The two old vertices can be chosen in two different ways.
With probability r we choose an edge from the existing edges according to their
weights. The two vertices of that edge will interact with the new vertex. On the
other hand, with probability 1−r, we choose 2 from the existing vertices uniformly.
They will interact with the new vertex. Independently of the past, with probability
1− p, we do not add a new vertex, but three of the old vertices interact. To select
the three old vertices we have two options. With probability q we choose one out
of the existing triangles according to their weights. The vertices of the triangle
chosen will interact. On the other hand, with probability 1− q, we choose from the
existing vertices uniformly (that is all three vertices have the same chance).

The power law degree distribution in that model was proved in [2] and [3].
The model and the results were extended to N -interactions model in [8] and [9], if
N ≥ 4.

The goal of this paper

In this paper a random graph evolution mechanism is defined. The evolution of
the graph is a combination of the preferential attachment and the interaction of
2 vertices. A vertex in our graph is characterized by its degree and its weight.
The weight of a given vertex is the number of the interactions of the vertex. The
asymptotic behaviour of the graph is studied. Scale-free properties both for the de-
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grees and the weights are proved. The proofs are based on discrete time martingale
theory.

Our model is a special case of the N -interactions model of [8] and [9]. However,
our result can not be obtained as a particular case of the general results of [8] and
[9] because the basic equation for the 2-interactions model is not a special case of
the basic equation for the N -interactions model with N ≥ 3. In this paper we
follow the method elaborated by Backhausz and Móri in [2, 3]. We do not present
detailed proofs because they are similar to the ones in [2, 3, 8, 9] .

2. The 2-interactions random graph model and the
main results

In this paper we study the following version of the Barabási-Albert random tree.
At time n = 0 we start with two connected vertices. The initial weights of the

Figure 1: n = 0, the initial state

two vertices and the initial weight of the edge are equal to one. The weights of
the non-existing edges and vertices are always considered to be 0. The evolution of
the graph is based on the interactions of 2 vertices. At each step n = 1, 2, . . . we
consider 2 vertices and if they are not connected, then we draw the edge between
them. The weights of the two vertices and the weight of the edge connecting them
are increased by 1.

The evolution of the graph is the following. On the one hand, with probability
p, we add a new vertex, that will interact with 1 old vertex. On the other hand,
with probability (1− p), we do not add any new vertex, but 2 old vertices interact.

(a) If we add a new vertex, then we choose 1 old vertex which will interact with
the new one. To choose the old vertex we have two possibilities. With probability
r we choose a vertex from the existing vertices according to the weights of the
vertices. That is a vertex k with weight wk has chance wk/(

∑
l wl). On the other

hand, with probability 1 − r, we choose from the existing vertices uniformly, that
is any vertex has the same chance.

(b) At the step when we do not add a new vertex, then 2 old vertices interact.
To select the 2 old vertices we have two options. With probability q we choose one
edge from the existing edges according to their weights. That is the probability
that we choose an edge is proportional to its weight. Then the two vertices of that
edge will interact. On the other hand, with probability 1 − q, we choose two out
of the existing vertices uniformly. That is all two vertices have the same chance.

Figure 2 shows an example for the graph evolution. At the initial step n = 0
we have an edge and two vertices. At step n = 1 we add a new vertex with initial
weight 1, choose an old vertex and connect them using a new edge. The initial
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Figure 2: An example for the graph evolution

weight of the new edge is 1 and we increase the weight of the old vertex by 1. Step
2 is similar to step 1. However, at step n = 3, we do not add a new vertex, but 2
old vertices interact. We choose two out of the existing vertices, then increase the
weights of the vertices and the weight of the edge connecting them by 1. So we
can see that the weight of a given vertex is the number of the interactions of the
vertex.

Our results are confined to the 2-interactions model. To describe the main
results we need the following notation. Throughout the paper 0 < p < 1, 0 ≤ r ≤ 1,
0 ≤ q ≤ 1 are fixed numbers. LetX(n, d, w) denote the number of vertices of weight
w and degree d after the nth step. Let Vn denote the number of vertices after the
nth step.

Each vertex has initial weight 1 and initial degree 1. When a vertex takes part
in an interaction, then its weight is increased by 1 and its degree may increase by
0 or 1. So X(n, d, w) can be positive only for 1 ≤ w ≤ n+ 1 and 1 ≤ d ≤ w.

Let
α1 = (1− p) q, α2 = pr/2, α = α1 + α2,

β = (1− r) + 2 (1− p) (1− q)/p. (2.1)

The following theorem describes the limiting behaviour of the relative frequency
of vertices with a fixed weight and a fixed degree.

Theorem 2.1. Let 0 < p < 1, q > 0. Assume that at least one of the following
three conditions are satisfied: r > 0 or r < 1 or q < 1. Then for any fixed w and
d with 1 ≤ w and 1 ≤ d ≤ w we have

X (n, d, w)/Vn → xd,w (2.2)

almost surely as n → ∞, where xd,w are fixed positive numbers. Furthermore, the
numbers xd,w satisfy the following recurrence relation

x1,1 = 1/(α+ β + 1) > 0, xd,1 = 0, for d 6= 1,

xd,w =
1

αw + β + 1
[α1 (w − 1)xd,w−1 + (α2 (w − 1) + β)xd−1,w−1] , (2.3)

for w ≥ 2, 1 ≤ d ≤ w. If 1 ≤ d ≤ w is not satisfied, then xd,w = 0.
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The following lemma states that the numbers xd,w, d = 1, . . . , w, w = 1, 2, . . . ,
form a (proper) two-dimensional discrete probability distribution. Moreover, its
marginal distributions will be the limiting distributions of the weights and the
degrees, respectively.

Lemma 2.2. Let p > 0 and define xw = x1,w +x2,w + · · ·+xw,w for w = 1, 2, . . . .
Then xw, w = 1, 2, . . . , are positive numbers satisfying the following recurrence
relation

x1 =
1

α+ β + 1
, xw =

α (w − 1) + β

αw + β + 1
xw−1, if w > 1. (2.4)

xw, w = 1, 2, . . . , is a discrete probability distribution. Moreover, xd,w, d =
1, . . . , w, w = 1, 2, . . . , is a two-dimensional discrete probability distribution.

Next theorem shows the scale-free property of the weights of the vertices.

Theorem 2.3. Let X (n,w) denote the number of vertices of weight w after n steps.
Assume that the conditions of Theorem 2.1 are satisfied. Then for all w = 1, 2, . . .
we have

X (n,w)/Vn → xw (2.5)

almost surely, as n → ∞, where xw, w = 1, 2, . . . , are positive numbers satisfying
the recurrence relation (2.4). Moreover,

xw ∼ Cw−(1+ 1
α ) as w →∞ (2.6)

with C = Γ
(

1 + β+1
α

)/(
αΓ
(

1 + β
α

))
.

Our main result is the scale-free property of the degrees.

Theorem 2.4. Assume that the conditions 0 < p < 1, q > 0, and r > 0 are satis-
fied. Let us denote by U (n, d) the number of vertices of degree d after n steps, that is
U (n, d) =

∑
w:d≤w≤n+1X (n, d, w). Then, for any d ≥ 1 we have

U (n, d)

Vn
→ ud (2.7)

a.s. as n→∞, where ud =
∑
w xd,w, d = 1, 2, . . . , are positive numbers. Further-

more,

ud ∼
Γ
(

1 + β+1
α

)

α2Γ
(

1 + β
α

)
(
α

α2

)−(1+ 1
α )
d−(1+ 1

α ) as d→∞. (2.8)

3. Proofs and auxiliary results

The following lemma contains the basic equation of the paper. Let Fn−1 denote the
σ-algebra of observable events after (n − 1) steps. We compute the conditional
expectation of X(n, d, w) with respect to Fn−1 for w ≥ 1.
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Lemma 3.1.

E(X(n, d, w)|Fn−1) = X(n− 1, d, w)

(
1− αw

n
− β p

Vn−1

)
+ (3.1)

+X(n− 1, d, w − 1)(1− p)
[
q
w − 1

n
+ (1− q) d(

Vn−1

2

)
]

+

+X(n− 1, d− 1, w − 1)

[
p

[
r
w − 1

2n
+ (1− r) 1

Vn−1

]
+ (1− p)(1− q)Vn−1 − d(

Vn−1

2

)
]

+

+ pδd,1δw,1.

Here δa,b denotes the Dirac-delta.

Proof. The probability that an old vertex of weight w takes part in the interaction
at step n is

p

(
r
w

2n
+ (1− r) 1

Vn−1

)
+ (1− p)

(
q
w

n
+ (1− q)Vn−1 − 1(

Vn−1

2

)
)

=
w

n
α+

p

Vn−1
β,

where α and β are defined by (2.1). So the terms at the right hand side of (3.1)
correspond to the following cases. The first term covers the case when neither the
degree nor the weight of a vertex change. Its probability is 1 −

(
αw
n + β p

Vn−1

)
.

The second term covers the case when the degree does not change but the weight
is increased by 1, while the third term correspond to the case when both the
degree and the weight are increased by 1. A new vertex always takes part in the
interaction. At each step, with probability p, a new vertex with weight 1 and with
degree 1 is born. This explains term pδd,1δw,1 in (3.1).

We shall need the following results on discrete time martingales. Let {Zn,Fn}
be a submartingale. Its Doob-Meyer decomposition is Zn = Mn + An, where
{Mn,Fn} is a martingale and {An,Fn} is an increasing predictable process. Here,
up to an additive constant,

An = EZ1 +
n∑

i=2

(E(Zi|Fi−1)− Zi−1).

We see that {M2
n,Fn} is again a submartingale. Let

M2
n = Yn +Bn

be the Doob-Meyer decomposition of M2
n. Here, up to an additive constant,

Bn =
n∑

i=2

D2(Zi|Fi−1) =
n∑

i=2

E
{

(Zi − E(Zi|Fi−1))2|Fi−1
}
.
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Proposition 3.1 (Propositions VII-2-3 and VII-2-4 of [12]). Let M1 = 0. On
the set {B∞ < ∞} the martingale Mn almost surely converges to a finite limit.
Moreover, Mn = o(B

1/2
n logBn) almost surely on the set {Bn →∞}.

A consequence of the above proposition is the following.

Proposition 3.2 (Proposition 2.3 of [1]). Let {Zn,Fn} be a square integrable non-
negative submartingale. If B1/2

n logBn = O(An), then Zn ∼ An as n→∞, almost
surely on the set {An →∞}.

Proof of Theorem 2.1. Applying the Marcinkiewicz strong law of large numbers to
the number of vertices, we obtain

Vn = pn+ o
(
n1/2+ε

)
(3.2)

almost surely, for any ε > 0. Let

c(n,w) =
n∏

i=1

(
1− αw

i
− βp

Vi−1

)−1
.

Then (3.2) and Taylor’s expansion imply that

c(n,w) ∼ awnαw+β (3.3)

almost surely as n→∞, where aw is a positive random variable.
Let Z(n, d, w) = c(n,w)X(n, d, w). Then, by (3.1), (Z(n, d, w),Fn) is a non-

negative submartingale. We shall apply the Doob-Meyer decompositions Zn =
Mn +An and M2 = Yn +Bn. Then

A(n, d, w) = EZ(1, d, w)+

+
n∑

i=2

c(i, w)X(i− 1, d, w − 1)(1− p)
(
q
w − 1

i
+ (1− q) d(

Vi−1

2

)
)

+

+
n∑

i=2

c(i, w)X(i− 1, d− 1, w − 1)×

×
[
p

(
r
w − 1

2i
+ (1− r) 1

Vi−1

)
+ (1− p)(1− q)Vi−1 − d(

Vi−1

2

)
]

+

+
n∑

i=2

c(i, w)pδd,1δw,1. (3.4)

Moreover

B (n, d, w) =

n∑

i=2

D2 (Z (i, d, w) |Fi−1) ≤
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≤
n∑

i=2

c (i, w)
2 E{(X (i, d, w)−X (i− 1, d, w))

2 |Fi−1} ≤

≤ 4
n∑

i=2

c (i, w)
2

= O
(
n2(αw+β)+1

)
. (3.5)

We use induction on w. Let w = 1. We see that a vertex of weight 1 took part
in an interaction only when it was born. Therefore its degree must be equal to 1.
By (3.4),

A (n, 1, 1) ∼ p
n∑

i=2

c (i, 1) ∼ p
n∑

i=2

a1i
α+β ∼ pa1

nα+β+1

α+ β + 1
(3.6)

a.s. as n→∞. By (3.5), B (n, 1, 1) = O
(
n2(α+β)+1

)
and therefore

(B (n, 1, 1))
1
2 logB (n, 1, 1) = O (A (n, 1, 1)) .

It follows from Proposition 3.2 that

Z (n, 1, 1) ∼ A (n, 1, 1) a.s. on the event {A (n, 1, 1)→∞} as n→∞. (3.7)

As, by (3.6), A(n, 1, 1) → ∞ a.s., therefore using the asymptotic behaviour of Vn
and c(n,w), relation (3.7) implies

X (n, 1, 1)

Vn
=
Z (n, 1, 1)

c (n, 1)Vn
∼ A (n, 1, 1)

c (n, 1)Vn
∼
pa1

nα+β+1

α+β+1

a1nα+βpn
=

1

α+ β + 1
= x1,1 > 0

almost surely. So (2.2) is valid for w = 1.
Suppose that the statement is true for all weights less than w and for all possible

degrees. It implies that X(n, d, w − 1) ∼ xd,w−1np.
Then by (3.2), (3.3) and using the induction hypothesis, we have for any w > 1

A (n, d, w) ∼
n∑

i=2

[
c (i, w)xd,w−1pi (1− p) qw − 1

i
+

+ c (i, w)xd−1,w−1pi

(
pr

(w − 1)

2i
+
p (1− r)

pi
+

2 (1− p) (1− q)
pi

)]
∼

∼
n∑

i=2

awi
αw+β

[
xd,w−1p (1− p) q (w − 1) +

+ xd−1,w−1

(
1

2
p2r (w − 1) + p (1− r) + 2 (1− p) (1− q)

)]
∼

∼ paw
nαw+β+1

αw + β + 1

[
(1− p) q (w − 1)xd,w−1+

+

(
1

2
pr (w − 1) + (1− r) +

2 (1− p) (1− q)
p

)
xd−1,w−1

]
. (3.8)
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In the above computation we deleted all terms having asymptotically smaller degree
than the largest one.

Formula (3.8) implies A(n, d, w) ∼ pawn
αw+β+1xd,w → ∞, because xd,w > 0,

where, by (3.8),

xd,w =
1

αw + β + 1
[α1 (w − 1)xd,w−1 + (α2 (w − 1) + β)xd−1,w−1] ,

with α1, α2, α and β defined by (2.1). Therefore (B (n, d, w))
1
2 logB (n, d, w) =

O (A (n, d, w)). So, using Proposition 3.2, we have Z (n, d, w) ∼ A (n, d, w). There-
fore

X (n, d, w)

Vn
=
Z (n, d, w)

c (n,w)Vn
∼ A (n, d, w)

c (n,w)Vn
∼ pawn

αw+β+1xd,w
awnαw+βpn

= xd,w (3.9)

a.s. as n→∞.

Proof of Lemma 2.2. If α = 0, then the statement is obvious. Now assume α 6= 0.
As xd,w is defined as xd,w = 0 for d /∈ {1, 2, . . . , w}, therefore xw =

∑
d xd,w. From

the recurrence relation (2.3) we obtain

xw =
w∑

d=1

xd,w =
∑

d

xd,w =

=
1

αw + β + 1

[
α1 (w − 1)

∑

d

xd,w−1 + (α2 (w − 1) + β)
∑

d

xd−1,w−1

]
=

=
α (w − 1) + β

αw + β + 1
xw−1.

Using this recursive formula for xw, we obtain

xw = x1

w∏

j=2

α (j − 1) + β

αj + β + 1
=

1

αw + β + 1

w−1∏

j=1

β
α + j
β+1
α + j

=

=
Γ
(

1 + β+1
α

)

αΓ
(

1 + β
α

)
Γ
(
w + β

α

)

Γ
(
w + β+1

α + 1
) . (3.10)

By [15], we have the following formula:

n∑

k=0

Γ (k + a)

Γ (k + b)
=

1

a− b+ 1

[
Γ (n+ a+ 1)

Γ (n+ b)
− Γ (a)

Γ (b− 1)

]
.

Therefore, by some calculation, we obtain
∑n
w=1 xw → 1 as n→∞. So

∑∞
w=1 xw =

1. As
∑
d xd,w = xw, so

∑∞
w=1

∑w
d=1 xd,w = 1 and therefore xd,w, d = 1, 2, . . . , w,

w = 1, 2, . . . , is a (proper) two-dimensional discrete probability distribution.
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Proof of Theorem 2.3. As

X (n,w) = X (n, 1, w) +X (n, 2, w) + · · ·+X (n,w,w) ,

Theorem 2.1 and Lemma 2.2 imply (2.5). Using (3.10), the Stirling formula gives
(2.6).

The following representation of the joint distribution of degrees and weights
is useful to prove scale-free property for degrees. Let W be a random variable
with distribution P (W = w) = xw, w = 1, 2, . . . . Let ξ1 ≡ 1 and ξ2, ξ3, . . . be
independent random variables being independent of W , too. For w ≥ 2 let ξw have
the following distribution:

P (ξw = 0) =
α1 (w − 1)

α (w − 1) + β
, P (ξw = 1) =

α2 (w − 1) + β

α (w − 1) + β
.

Let Sw = ξ1 + ξ2 + · · ·+ ξw.

Lemma 3.2. P (SW = d,W = w) = xd,w for all w = 1, 2, . . . , d = 1, 2, . . . , w.

Proof. It is easy to see that the sequence P (SW = d,W = w) satisfies the same
recursion (2.3) as xd,w.

To obtain scale-free property for degrees, we need the following local limit theo-
rem. Let X1, X2, . . . be independent, integer valued random variables. Let pj,m =
P(Xj = m) be the distribution, while pj,mj = maxm pj,m be the maximal value of
the distribution. Let Sn =

∑n
i=1Xi be the partial sum, Pn(N) = P(Sn = N) be its

distribution, Mn =
∑n
i=1 EXi be the expectation, and Bn =

∑n
i=1 E(Xi − EXi)

2

be the variance of Sn.

Proposition 3.3 (Theorem 5 and its consequence in Section VII, 2 of [14]). As-
sume that the greatest common divisor of the values



m :

1

log n

n∑

j=1

pj,mjpj,m+mj →∞





is equal to 1. Moreover,

lim inf
Bn
n

> 0, lim sup
1

n

n∑

i=1

E|Xi − EXi|3 <∞.

Then

sup
N

∣∣∣∣
√
BnPn(N)− 1√

2π
exp

(
− (N −Mn)2

2Bn

)∣∣∣∣ = O

(
1√
n

)
.

If we apply Proposition 3.3 to the random variables ξk in Lemma 3.2, then we
obtain the following result which will play an important role in the proof our main
theorem.
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Proposition 3.4. Suppose that α1 > 0 and α2 > 0. Then

xd,w = xw
α√

2πα1α2w

[
exp

(
− (d− ESw)

2

2D2Sw

)
+ O

(
w−

1
2

)]
as w →∞, (3.11)

where the error term O
(
w−

1
2

)
does not depend on d.

Proof. We follow the method of Theorem 4.2 in [3]. Let w > 1. Then we have

Eξw =
α2 (w − 1) + β

α (w − 1) + β
=
α2

α
+

α1β

α (α (w − 1) + β)
,

hence
ESw = Eξ1 + · · ·+ Eξw = w

α2

α
+ O (logw) (3.12)

as w →∞. By simple computation, we obtain

D2ξw =
α1α2

α2
+ O

(
1

w

)
, D2Sw =

α1α2

α2
w + O (logw) (3.13)

as w →∞.
Now, we apply Proposition 3.3 for Sw. The conditions of that proposition are

satisfied, therefore we have

sup
d∈Z

∣∣∣∣∣DSw P (Sw = d)− 1√
2π

exp

(
− (d− ESw)

2

2D2Sw

)∣∣∣∣∣ = O

(
1√
w

)
. (3.14)

Using (3.13) and (3.14), we obtain
∣∣∣∣DSw −

√
α1α2w

α

∣∣∣∣P (Sw = d) = O
(
w−

1
2

)
.

Therefore (3.14) implies that

sup
d∈Z

∣∣∣∣∣

√
α1α2w

α
P (Sw = d)− 1√

2π
exp

(
− (d− ESw)

2

2D2Sw

)∣∣∣∣∣ = O

(
1√
w

)
. (3.15)

By the independence of W and ξi, we see that xd,w = P (SW = d,W = w) =
P (Sw = d)xw. So the result follows from (3.15).

The well-known Hoeffding’s inequality is the following.

Proposition 3.5 (Theorem 2 of [11]). Let X1, X2, . . . , Xn be independent random
variables, ai ≤ Xi ≤ bi (i = 1, 2, . . . , n). Let X̄ = (X1+X2+ · · ·+Xn)/n, µ = EX̄.
Then for any t > 0

P(X̄ − µ ≥ t) ≤ exp

( −2n2t2∑n
i=1(bi − ai)2

)
.
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Proof of Theorem 2.4. Theorem 2.1 and Lemma 2.2 will imply (2.7). Hoeffding’s
inequality, Lemma 3.2 and Proposition 3.4 will imply (2.8).

By Theorem 2.1 and Lemma 3.2,
X (n, d, w)

Vn
converges almost surely to the

distribution xd,w = P (SW = d,W = w). But the cardinalities of terms in the sum∑
w:d≤w≤n+1X (n, d, w) are not bounded when n→∞. However, using that xd,w,

d = 1, 2, . . . , w, w = 1, 2, . . . is a proper two-dimensional discrete distribution, the
convergence of the marginal distributions is a consequence of the convergence of
the two-dimensional distributions. So we obtain (2.7).

To obtain (2.8), we can apply the method of Theorem 4.3 in [3]. Let

f =
α

α2
d , H = Hd =

{
w : f − f 1

2+ε ≤ w ≤ f + f
1
2+ε
}
,

H− = H−d =
{
w : w < f − f 1

2+ε
}
, H+ = H+

d =
{
w : w > f + f

1
2+ε
}

with some fixed 0 < ε < 1/6.
Using (3.12) and Proposition 3.5, we obtain for w ∈ H−

P (Sw = d) ≤ P (Sw ≥ d) ≤ P
(
Sw − ESw ≥ d−

α2

α
w −O (logw)

)
≤

≤ exp

{
− 2

w

(
d− α2

α
w −O (logw)

)2}
= exp

{
−2
(α2

α

)2 (f − w −O (logw))
2

w

}
.

Now w ∈ H− implies that

(f − w −O (logw))
2

= (f − w)
2 − 2 (f − w) O (logw) + (O (logw))

2 ≥
≥ f1+2ε −O (f log f) .

Therefore in the case when w ∈ H− we obtain

P (Sw = d) ≤ exp

{
−2
(α2

α

)2 f1+2ε −O (f log f)

f

}
=

= exp

{
−2
(α2

α

)2
f2ε + O (log f)

}
.

This implies that

P
(
SW = d,W ∈ H−

)
=
∑

w∈H−
P (Sw = d,W = w) ≤

∑

w∈H−
P (Sw = d) ≤

≤ f exp

{
−2
(α2

α

)2
f2ε + O (log f)

}
= o

(
f−(1+ 1

α )
)
. (3.16)

In the case when w ∈ H+, by Hoeffding’s inequality, we have

P (Sw = d) ≤ P (Sw ≤ d) ≤ P
(
Sw − ESw ≤ d−

α2

α
w
)
≤
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≤ exp

{
− 2

w

(
d− α2

α
w
)2}

= exp

{
−2
(α2

α

)2 (f − w)
2

w

}
.

Because w ∈ H+ and 1
2 + ε < 1, we obtain 2 (w − f) ≥ f

1
2+ε + w − f ≥ f

1
2+ε +

(w − f)
1
2+ε ≥ w 1

2+ε. So

P (Sw = d) ≤ exp

{
−2
(α2

α

)2 w1+2ε

4w

}
= exp

{
−1

2

(α2

α

)2
w2ε

}
.

Therefore

P
(
SW = d,W ∈ H+

)
≤

∑

{w : f<w}
exp

{
−1

2

(α2

α

)2
w2ε

}
= o

(
f−(1+ 1

α )
)
. (3.17)

Now turn to the case of w ∈ H = Hd. Consider the set

B = {(d,w) : w ≥ 1, d ≥ 1, w ∈ Hd} .

It is easy to see that

if d→∞ and (d,w) ∈ B, then
w

d
→ 1.

As w ∈ H, so we have w = f + O
(
f

1
2+ε
)
. Then (with ε1 > 0 arbitrarily small)

− (d− ESw)
2

2D2Sw
= −

(
d− wα2

α
−O (logw)

)2

2
α1α2

α2
w + O (logw)

= −α2

α1

(f − w −O (logw))
2

2w + O (logw)
=

= −α2

α1

(f − w)
2

+ O
(
f

1
2+ε+ε1

)

2w + O (logw)
= −α2

α1

(f − w)
2

2f
+ O

(
f−

1
2+3ε

)
(3.18)

as d→∞. Here the error term does not depend on w. By (3.11), (2.6) and (3.18),
we obtain

xd,w ∼

∼ Cw−(1+ 1
α ) α√

2πα1α2w

[
exp

{
−α2

α1

(f − w)
2

2f
+ O

(
f−

1
2+3ε

)}
+ O

(
w−

1
2

)]
∼

∼ Cf−(1+ 1
α ) α

α2

1√
2πα1

α2
f

exp

{
− (f − w)

2

2α1

α2
f

}

as d→∞ and w ∈ H, where C = Γ
(

1 + β+1
α

)
/
(
αΓ
(

1 + β
α

))
. Therefore

∑

w∈H
xd,w ∼

∑

f−f 1
2
+ε<w<f+f

1
2
+ε

Cf−(1+ 1
α ) α

α2

1√
2πα1

α2
f

exp

{
− (f − w)

2

2α1

α2
f

}
=
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= Cf−(1+ 1
α ) α

α2

∑

−f 1
2
+ε<k<f

1
2
+ε

1√
2πα1

α2
f

exp

{
− k2

2α1

α2
f

}
=

= A
∑

−fε< k√
f
<fε

1√
f

1√
2πα1

α2

exp




−

(
k√
f

)2

2α1

α2




→

→ A

+∞∫

−∞

1√
2πα1

α2

exp

{
− x2

2α1

α2

}
dx = A,

where

A =
Γ
(

1 + β+1
α

)

α2Γ
(

1 + β
α

)
(
αd

α2

)−(1+ 1
α )
.

So we obtain

P (SW = d,W ∈ H) ∼
Γ
(

1 + β+1
α

)

α2Γ
(

1 + β
α

)
(
αd

α2

)−(1+ 1
α )

(3.19)

as d→∞. Finally, by (3.16), (3.17) and (3.19), we obtain

ud ∼
Γ
(

1 + β+1
α

)

α2Γ
(

1 + β
α

)
(
α

α2
d

)−(1+ 1
α )

as d→∞.
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