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Abstract

A Gaussian isotropic stochastic field on a 2D-sphere is characterized by
either its covariance function or its angular spectrum. The object of this
paper is the estimation of the spectrum in two steps. First we estimate
the covariance function, secondly we approximate the series expansion of the
covariance function with respect of Legendre polynomials. Simulations show
that this method is fast and precise.
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1. Introduction

There are several physical phenomena which can be described with the help of a
spherical random processes. A typical example of random data measured on the
surface of a sphere is the cosmic microwave background radiation (CMB). Similar
random fields arise in medical imaging, in analysis of gravitational and geomagnetic
data etc.. These fields are characterized by a series expansion with respect to the
spherical harmonics. Under assumption of Gaussianity both the covariance function
and the angular power spectrum describe completely the probability structure of
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an isotropic stochastic field. The estimated spectrum can be used to check the
underlying physical theory, while the possible non-Gaussianity can be investigated
by estimating the higher order angular spectra.

1.1. Notations

Let S2 denote the surface of the unit sphere in R3, and X(L) be a random field on
S2, where the location L = (ϑ, ϕ), and ϑ ∈ [0, π] is the co-latitude, while ϕ ∈ [0, 2π]
is the longitude. If the spatial process X(L) is mean square continuous, then it has
a series expansion in terms of spherical harmonics Y m` . Spherical harmonics are
defied by the Legendre polynomials

P`(x) =
1

2``!

d`

dx`
(x2 − 1)`, x ∈ [−1, 1],

(` = 0, 1, 2, . . . ) and the associated Legendre functions

Pm` = (−1)m(1− x2)m/2
dm

dxm
P`(x),

of degree ` and order m, where ` = 0, 1, 2, . . . , and m = −`, . . . , `. Now the
complex valued spherical harmonics of degree ` and order m (` = 0, 1, 2, . . . , and
m = −`, . . . , `) are given by

Y m` (ϑ, ϕ) = λm` (cosϑ)eimϕ,

where

λm` (x) =

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm` (x), if m ≥ 0,

and
λm` (x) = (−1)mλ

|m|
` (x), if m < 0,

that implies
Y −m` (ϑ, ϕ) = (−1)mY m` (ϑ, ϕ).

Using these notations the spherical harmonics expansion of the random field
X(L) ∈ L2(S2) is

X(L) =
∞∑

`=0

∑̀

m=−`
Zm` Y

m
` (L),

where the coefficients

Zm` , ` = 0, 1, . . . , m = −`, . . . , `

are complex valued centered random variables, while putting EZ0
0 = µ implies that

EX(L) = µ and the coefficients are given by

Zm` =

∫

S2

X(L)Y m` (L)dL, (1.1)
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and
Zm` = (−1)mZ−m` .

2. Spectrum

Definition. The random field X(L) is called strongly isotropic if all finite dimen-
sional distributions of {X(L), L ∈ S2} are invariant under the rotation g for every
g ∈ SO(3), where SO(3) denotes the special orthogonal group of rotations defined
on S2.

If the spatial process X is strongly isotropic, then

E(Zm1

`1
Zm2

`2
) = f`1δ`1`2δm1m2

for `1, `2 ∈ N, and mi = −`i, . . . , `i, where δ`k = 1 if ` = k and zero otherwise,
while

E(Z0
0Z

m
` ) =

(
f0 + E(Z0

0 )2
)
δ0`δ0m, f0 = V ar

(
Z0
0

)
.

f` = V ar (Zm` ), ` = 0, 1, 2, . . . , are nonnegative real numbers, and (f`, ` ∈ N0) is
called the angular power spectrum of the random field X. Note E(X) = µ, hence
C2(L1, L2) = E(X(L1)− µ)(X(L2)− µ) is the covariance function of the isotropic
field X(L). Due to the isotropy the covariance C2(L1, L2) depends on the angular
distance γ of the locations L1 and L2 only (where cos γ = L1 · L2). That means

C2(L1, L2) = C2(gL2L1
L1, N) =: C(cos γ),

where gL2L1 is the rotation which takes L2 into the north pole N and L1 into the
plane xOz.

It is straightforward (see [5]) that

C(cos γ) =

∞∑

0

f`
2`+ 1

4π
P`(cos γ). (2.1)

For the practical computation of the spectrum fk the orthogonality of the Legendre
polynomials can be used: with t = cos(γ) from (2.1) follows

1∫

−1

C(t)P`(t)dt = f`
2`+ 1

4π

1∫

−1

[P`(t)]
2dt = f` ·

1

2π
,

that is

f` = 2π

1∫

−1

C(t)P`(t)dt, (2.2)

for ` = 0, 1, 2, . . . .
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Example (Lapalce-Beltrami model on S2). Consider the homogeneous isotropic
field X on R3 according to the equation

(
4− c2

)
X = ∂W,

where 4 = ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3
, denotes the Laplace operator on R3. Its spectrum,

see ([6]), is

S (λ) =
2

(2π)
2

λ2

(λ2 + c2)
2 , λ2 = ‖(λ1, λ2, λ3)‖2 ,

with covariance of Matérn Class

C (r) =
1

(2π)
3/2

(cr)
1/2

K1/2 (cr)

2c
,

where K1/2 is the modified Bessel (Hankel) function, see [1].
Now according to the Lapalce-Beltrami operator, which is the restriction of 4 onto
the unit sphere S2,

4B =
1

sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+

1

sin2 ϑ

∂2

∂ϕ2
,

we consider the stochastic model
(
4B − c2

)
XB = ∂WB ,

on sphere. The covariance function C0 of XB is the restriction of the covariance
function C of X on sphere and C0 (cos γ) = C (2 sin (γ/2)), i.e.

C0 (cos γ) =
1

(2π)
3/2

√
sin (γ/2)

2c
K1/2 (2c sin (γ/2)) .

We apply the Poisson formula when Φ (dλ) = S (λ) dλ, and we obtain the spectrum
for XB

f` = 2π2

∞∫

0

J2
`+1/2 (λ)

1

λ

2

(2π)
2

λ2

(λ2 + c2)
2 dλ

=

∞∫

0

J2
`+1/2 (λ)

λ

(λ2 + c2)
2 dλ.

3. HEALPix

The most widely used pixelisation of the sphere for sampling and analyzing CMB
data is the HEALPix (Hierarchical, Equal Area and isoLatitude Pixelization), see
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[2]. Actually the CMB data are given on the surface of a unit ball at the discrete
points defined by HEALPix. Here in the base resolution partitioning the surface of
the sphere is divided into 12 quadrilateral pixels of same area, and in each further
resolution the pixels are subdivided into 4 equal area pixels. Denoting by Nside
the resolution parameter, the total number of pixels equals 12N2

side, and the pixel
centers are located on 4Nside − 1 isolatitude rings. Unfortunately, the pixelisation
is not rotational invariant, the pixel centers can be rotated into each other in the
case of some rotations around the north-south axes only.

4. Computational results

Let us suppose that we are given an observation of an isotropic field on the sphere,
more precisely for each HEALPix pixel L we have a value X(L). The estimator of
the spectrum of the field can be based either on (1.1) or on (2.1). It means that
we can approximate the integral (1.1), then for each fixed ` we estimate f` as the
variance of approximated Zm` , m = −`, . . . , `. In this case one can not expect good
result for small `, since the estimator of the variance f` based on 2` + 1 values.
The alternative method is based on the estimation of covariance function first then
use the expansion (2.1) according to the Legendre polynomials for estimating f`.
The advantage of this later one is that there are many distances between pixels in
which the estimation of the covariance is possible.

For further improvement of this computations we are going to apply some sam-
pling theorems concerning on spherical harmonics and Legendre polynomials. We
show this method through simulations.

In our simulations we consider random fields not only with zero mean but with
f0 = 0 as well. The reason is that we have only one realization and when we
center the observation the sample mean contains a value of Z0

0 hence f0 can not be
identified.

To the numerical approximation of the integral (2.2) denote by t1, t2, . . . , tn the
nodes of the quadrature (−1 ≤ ti ≤ 1), and for a given i let (Li1j , L

i
2j), j = 1, . . . , N ,

be pairs of pixels which have angular distance ti. Considering the samples

X1, X2, . . . , XN , where Xj = X(Li1j),

and
Y1, Y2, . . . , YN , where Yj = X(Li2j),

we use the empirical covariance

Ĉi =
1

N

N∑

j=1

XjYj

to estimate the value C(ti), i = 1, . . . , n.
In the program we used only pixels located in the equatorial area (i.e. pixel

centers with co-latitude − 1
3 ≤ cosϑ ≤ 1

3 ). E.g. in the case of Nside = 16 these
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pixels determine nearly 9000 different values for t. In the equatorial zone each
ring contains the same number of pixels (4Nside), moreover the pixel centers are
equidistant located. In order to calculate the possible values of t = cos γ we
considered the first pixel center on each ring in the north equatorial belt together
with the pixel centers located on and below the actual ring. More precisely it is
suffices to consider on each ring only the half of the pixels. After that for a given
t to collect the pixel-pairs having distance t we can use the rotation symmetry.
Depending on the location of the original pixel-pair (L1, L2), which was used to
compute t, there exist 4Nside, 8Nside or 16Nside pairs having the given distance.
If both of the pixels lie on the equator, or θ1 = π − θ2 and ϕ1 = ϕ2 (where
L1 = (θ1, ϕ1), L2 = (θ2, ϕ2)), that is the locations are symmetric to the equator,
then the number of pairs is equal to 4Nside. In the case of θ1 = θ2 6= π

2 and in the
case of θ1 6= π − θ2 and ϕ1 = ϕ2, moreover if θ1 = π − θ2 and ϕ1 6= ϕ2, there are
8Nside pairs. In all other cases there exist 16Nside pairs corresponding to the given
distance.

By the numerical calculation of (2.2) using the Gaussian quadrature instead of
the built-in Matlab function trapz enables a more efficient calculation, since these
method requires much less evaluations of empirical covariances, however, this could
be subject of further investigations.

Test example 1. (See Figure 1.) As a first example we considered the spatial
process

X(L) =
100∑

`=1

√
f`
∑̀

m=−`
Zm` Y

m
` (L), (4.1)

where Zm` ∼ N (0, 2) are i.i.d. random numbers and

f` =
1

(`(`+ 1) + 4)2
, ` = 1, 2, . . .
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Figure 1: A random field described in Test example 1
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By the discretization of the sphere we used Nside = 16 as resolution parameter,
which results 3072 pixels located on 63 isolatitude rings.

The estimated and theoretical correlations can be seen on Figure 2 such that
f0 = f1 = 0.
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Figure 2: Estimated correlation in Test example 1

Let us denote by f̂`, ` = 1, . . . , 100 the estimated spectrum, then we obtained

100∑

`=1

(f` − f̂`)2 ≈ 1.93 · 10−4

and
max

1≤`≤100
|f` − f̂`| = 4.2 · 10−3.

Test example 2. In the second example we investigated the field defined by the
sum (4.1) taking

f` =
4π

2`+ 1
0.8`, ` = 1, 2, . . .

The covariance is estimated from the generated field, and the theoretical correlation

C (γ) =
1√

1− 1.6 cos γ + 0.82
− 1;

are shown on Figure 3.
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Figure 3: Estimated correlation in Test example 2
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