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Abstract

The aim of this paper is to solve the linear recurrence relation

xn+1 = a0xn + a1xn−1 + · · ·+ an−1x1 + anx0, n = 0, 1, 2, . . . ,

when its constant coefficients are in arithmetic, respective geometric progres-
sion. Rather surprising, when the coefficients are in arithmetic progression,
the solution is a sequence of certain generalized Fibonacci numbers, but not
of usual Fibonacci numbers, while if they are in geometric progression the
solution is again a geometric progression, with different ratio. In both cases
the solution will be found by generating function method. Alternatively, in
the first case it will be obtained by reduction to a generalized Fibonacci
equation and in the second case by mathematical induction. Finally, the
case is considered when both the coefficients and solutions form geometric
progressions with generalized Fibonacci numbers as terms. The paper has a
didactical purpose, being intended to familiarize the students with the usual
procedures for solving linear recurrence relations. Another algebraic, differ-
ential and integral recurrence relations were considered by the author in the
papers cited in the references.
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1. Introduction

In this paper we apply the usual methods for solving linear recurrence relations
with constant coefficients of special form - progressions. The method of charac-
teristic equation, of generating function and of mathematical induction are used.
The relationship between the considered relations and the generalized Fibonacci
numbers is also specified. The numbers considered in this paper are complex. We
remember that one calls generalized Fibonacci numbers or Horadam numbers (see
[5, 6, 7]) of orders α and β, the numbers xn, n = 0, 1, 2, . . . , satisfying the gen-
eralized Fibonacci recurrence relation xn+1 = αxn + βxn−1, n = 1, 2, . . ., with
arbitrary initial data x0 and x1. If α = β = 1, hence when the numbers xn sat-
isfy the usual Fibonacci recurrence relation xn+1 = xn + xn−1, these numbers are
called Fibonacci type numbers. Particularly, when the initial data are x0 = 0 and
x1 = 1, the usual Fibonacci numbers are obtained. When the coefficients of the
linear recurrence relation of order n are in arithmetic progression, then its solutions
are generalized Fibonacci numbers of certain orders. When the coefficients are in
geometric progression, then the solutions are also in such a progression. In the final
Section, this last situation is particularly considered when both the coefficients and
solutions are generalized Fibonacci numbers. Aspects of the theory of recurrence
relations and Fibonacci numbers can be found in the works listed in References.

2. Linear recurrence relations with coefficients in
arithmetic progression

Theorem 2.1. The numbers xn are solutions of the linear recurrence relation with
the coefficients in arithmetic progression

xn+1 = axn+(a+r)xn−1+· · ·+(a+(n−1)r)x1+(a+nr)x0, n = 0, 1, 2, . . . , (2.1)

with initial data x0, if and only if they are the generalized Fibonacci numbers given
by the Binet type formula

xn =
x0

λ1 − λ2
[
(b− aλ2)λn−11 − (b− aλ1)λn−12

]
, n = 1, 2, . . . , (2.2)

where

b = a2 + a+ r, λ1,2 =
a+ 2±

√
a2 + 4r

2
. (2.3)

Proof. (By reduction to a generalized Fibonacci recurrence relation) We suppose
that the numbers xn satisfy the recurrence relation (2.1). Then we have x1 = ax0,
x2 = bx0 and

xn+1 − xn = axn + rxn−1 + rxn−2 + · · ·+ rx1 + rx0,

xn − xn−1 = axn−1 + rxn−2 + · · ·+ rx1 + rx0,
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(xn+1 − xn)− (xn − xn−1) = axn + (r − a)xn−1.

Denoting c = a− r, one obtains the generalized Fibonacci recurrence relation

xn+1 = (a+ 2)xn − (c+ 1)xn−1, n = 2, 3, . . . . (2.4)

This equation has the solution xn = C1λ
n
1 + C1λ

n
2 , where λ1,2 are the roots, given

by (2.3), of the characteristic equation λ2 − (a + 2)λ + c + 1 = 0. The initial
conditions x1 = C1λ1 + C2λ2 = ax0 and x2 = C1λ

2
1 + C2λ

2
2 = bx0 give C1,2 =

±x0(b− aλ2,1)
λ1,2(λ1 − λ2)

, hence the solutions of the recurrence relation (2.1) are given by

the formula (2.2).

Remark. The linear recurrence relation (2.4) fails for n = 1 and therefore its
initial conditions are x1 and x2 instead of x0 and x1.

Proof. (By generating function method) Working with formal series, we denote by
X(t) =

∑∞
n=0 xnt

n, the generating function of the sequence xn. Then the recur-
rence relation (2.1) takes the form

∑∞
n=0 xn+1t

n+1 =
∑∞

n=0

∑n
k=0(a+kr)xn−kt

n+1.
Using the formula for the product of two power series, one obtains

X(t)− x0 = t

∞∑

n=0

(a+ nr)tn
∞∑

n=0

xnt
n = t

∞∑

n=0

(a+ nr)tnX(t).

Because
∞∑

n=0

(a+ nr)tn = a

∞∑

n=0

tn + rt

∞∑

n=0

d

dt
(tn) = a

1

1− t + rt
d

dt

( 1

1− t
)
=

a− ct
(1− t)2 ,

we have X(t)− x0 =
t(a− ct)
(1− t)2 X(t). One obtains

X(t) =
x0(t− 1)2

(c+ 1)t2 − (a+ 2)t+ 1
=

x0
c+ 1

+
x0((r − c)t+ c)√
c+ 1(t− t1)(t− t2)

,

where t1 =
1

λ1
and t2 =

1

λ2
are the roots of the equation (c+1)t2−(a+2)t+1 = 0,

the numbers λ1,2 been given by the relation (2.3). We have

X(t) =
x0
c+ 1

+
x0

(c+ 1)2(t1 − t2)

[
(r − c)t1 + c

t− t1
− (r − c)t2 + c

t− t2

]

=
x0
λ1λ2

+
x0

λ1λ2(λ1 − λ2)

[
cλ1 + r − c
1− λ1t

− cλ2 + r − c
1− λ2t

]

=
x0
λ1λ2

+
x0

λ1λ2(λ1 − λ2)

[
(cλ1 + r − c)

∞∑

n=0

λn1 t
n − (cλ2 + r − c)

∞∑

n=0

λn2 t
n

]
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= x0 +
x0

λ1λ2(λ1 − λ2)

[
(cλ1 + r − c)

∞∑

n=1

λn1 t
n − (cλ2 + r − c)

∞∑

n=1

λn2 t
n

]
.

Therefore the coefficients of the generating function X(t) are given by the relation

xn =
x0(cλ1 + r − c)
λ2(λ1 − λ2)

λn−11 − x0(cλ2 + r − c)
λ1(λ1 − λ2)

λn−12 , n = 1, 2, . . . .

Taking into account the identities
cλ1 + r − c

λ2
= b−aλ2 and

cλ2 + r − c
λ1

= b−aλ1,
from the above expression of xn one obtains formula (2.2).

Proof. (Reciprocal) If the sequence xn is given by formula (2.2), it satisfies the
recurrence relation (2.4). Indeed, using (2.2) and the relation λ2j = (a+2)λj− (c+
1), j = 1, 2, which results by the definition of the numbers λ1,2, one obtain

(a+ 2)xn − (c+ 1)xn−1 = (a+ 2)
x0

λ1 − λ2
[
(b− aλ2)λn−11 − (b− aλ1)λn−12

]
−

− (c+ 1)
x0

λ1 − λ2
[
(b− aλ2)λn−21 − (b− aλ1)λn−22

]

=
x0

λ1 − λ2
(b− aλ2)

[
(a+ 2)λ1 − (c+ 1)

]
λn−21 −

− x0
λ1 − λ2

(b− aλ1)
[
(a+ 2)λ2 − (c+ 1)

]
λn−22

=
x0

λ1 − λ2
[
(b− aλ2)λn1 − (b− aλ1)λn2

]
= xn+1, n = 1, 2, . . . .

Now we prove by induction that the sequence xn given by (2.2) satisfies the recur-
rence relation (2.1). We first show that (2.1) is satisfied for n = 0, 1, 2. Indeed,
from (2.2) it follows

x1 =
x0

λ1 − λ2
(b− aλ2 − b+ aλ1) = ax0,

x2 =
x0

λ1 − λ2
[
(b− aλ2)λ1 − (b− aλ1)λ2

]
= bx0

= (a2 + a+ r)x0 = ax1 + (a+ r)x0,

x3 =
x0

λ1 − λ2
[
(b− aλ2)λ21 − (b− aλ1)λ22

]

=
x0

λ1 − λ2
[
b(λ21 − λ22)− aλ1λ2(λ1 − λ2)

]

= x0
[
b(λ1 + λ2)− aλ1λ2

]
= x0

[
b(a+ 2)− a(c+ 1)

]

= abx0 + x0
[
2(a2 + a+ r)− a(1 + a− r)

]

= ax2 + x0(a
2 + ar + a+ 2r) = ax2 + (a+ r)x1 + (a+ 2r)x0.

For a fixed index n ≥ 2, we suppose that the formula (2.1) is true when k ≤ n,
hence we have

xk+1 =

k∑

j=0

(a+ (k − j)r)xj , k ≤ n. (2.5)
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Using (2.4) and (2.5), one obtains

xn+2 = (a+ 2)xn+1 − (c+ 1)xn

= (a+ 2)
n∑

k=0

(a+ (n− k)r)xk − (c+ 1)
n∑

k=1

(a+ (n− k)r)xk−1

=
n∑

k=2

(a+ (n− k)r)
[
(a+ 2)xk − (c+ 1)xk−1

]
+ (a+ 2)(a+ (n− 1)r)x1+

+ (a+ 2)(a+ nr)x0 − (c+ 1)(a+ (n− 1)r)x0 =

n∑

k=2

(a+ (n− k)r)xk+1+

+ a(a+ 2)(a+ (n− 1)r)x0 + a(a+ nr)x0+

+ 2(a+ nr)x0 + (r − a− 1)(a+ (n− 1)r)x0

=
n∑

k=2

(a+ (n− k)r)xk+1 + (a+ (n− 1)r)x2 + (a+ nr)x1 + (a+ (n+ 1)r)x0

=

n+1∑

k=0

(a+ (n+ 1− k)r)xk,

hence formula (2.1) is true for the index n+ 1. According to the induction axiom,
(2.1) is true for any natural number n.

Remarks. 1) The sequence of usual Fibonacci numbers can not be solution of
the equation (2.1). Indeed, for this would be that a + 2 = −c − 1 = r − a − 1 =
1, for the equation (2.4) to reduce to well-known Fibonacci recurrence relation
xn+1 = xn + xn−1 and to have the initial conditions x1 = ax0 = 1 and x2 = bx0 =
(a2 + a + r)x0 = 1. But these conditions are contradictory, leading to the false
equality x0 = 1 = −1.
2) An arithmetic progression xn cannot be solution of the equation (2.1). Indeed,
this requires that xn+1 = 2xn−xn−1, therefore a+2 = 2 and−c−1 = r−a−1 = −1,
which leads to the trivial case a = r = xn = 0, for n = 1, 2, . . . .

Corollary 2.2. The linear recurrence relation

xn+1 = xn + 2xn−1 + · · ·+ nx1 + (n+ 1)x0, n = 0, 1, 2, . . . , (2.6)

with the initial data x0 = 1, has the solution

xn =
1√
5

[(
3 +
√
5

2

)n

−
(
3−
√
5

2

)n]
, n = 1, 2, . . . . (2.7)

Proof. For a = r = x0 = 1, from Theorem 2.1 and its proof it results that the
recurrence relation (2.6) reduces to the generalized Fibonacci relation

xn+1 = 3xn − xn−1, n = 2, 3, . . . , (2.8)

with the initial data x1 = 1 and x2 = 3, hence it has the solution (2.7). Particularly,
both (2.6) and (2.7) give x3 = 8, x4 = 21 and so on.
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Remark. The recurrence relation (2.6) from above corollary was considered as
problem 9 (ii) in F. Lazebnik, Combinatorics and Graphs Theory, I, (Math 688).
Problems and Solutions, 2006, a work appearing on the Internet at the address
www.math.udel.edu/~lazebnik/papers/688hwsols.pdf. Unfortunately, in the
cited work one obtains the wrong solution

xn =
5−
√
5

10

(
3 +
√
5

2

)n

+
5 +
√
5

10

(
3−
√
5

2

)n

, n = 0, 1, 2, . . . ,

with particular solutions x0 = x1 = 1, x2 = 2, x3 = 5 and so on, the last two
being false. The explanation of this mistake is that the recurrence relation (2.8)
was wrongly considered for n = 1, 2, . . . ,, with the initial data x0 = x1 = 1, leading
to the wrong solution mentioned above. Indeed, for n = 1, the obtined recurrence
relation x2 = 3x1 − x0 is false. This mistake shows the importance of the correct
initialization of the recurrence relations.

3. Linear recurrence relations with coefficients in ge-
ometric progression

Theorem 3.1. The numbers xn are solutions of the linear recurrence relation with
constant coefficients in geometric progression

xn+1 = axn + aqxn−1 + · · ·+ aqn−1x1 + aqnx0, n = 0, 1, 2, . . . , (3.1)

with initial data x0, if and only if they form the geometric progression given by the
formula

xn = ax0(a+ q)n−1, n = 1, 2, . . . (3.2)

Proof. (By induction). From (3.1) we obtain x1 = ax0 and x2 = ax0(a+ q). For a
fixed natural number n we suppose formula (3.2) true for every k ≤ n. Therefore
we have xk = ax0(a + q)k−1, for k ≤ n. Then, from the recurrence relation (3.1)
one obtains

xn+1 = a2x0(a+ q)n−1 + a2x0q(a+ q)n−2 + · · ·+
+ a2x0q

n−2(a+ q) + a2x0q
n−1 + ax0q

n

= a2x0(a+ q)
[
(a+ q)n−2 + q(a+ q)n−3 + · · ·+ qn−3(a+ q) + qn−2

]
+

+ ax0q
n−1(a+ q)

= a2x0(a+ q)
(a+ q)n−1 − qn−1

a
+ ax0q

n−1(a+ q) = ax0(a+ q)n,

hence the formula (3.2) is true for n + 1. According to the induction axiom it
results that formula (3.2) is true for every natural number n.
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Proof. (By generating function method) Denoting X(t) =
∑∞

n=0 xnt
n, from the

recurrence relation (3.1) one obtains
∑∞

n=0 xn+1t
n+1 = at

∑∞
n=0

∑n
k=0 q

kxn−ktn.
Using the formula for the product of two power series, one obtains

X(t)− x0 = at
∞∑

n=0

qntn
∞∑

n=0

xnt
n =

at

1− qtX(t).

Therefore

X(t) = x0
qt− 1

(a+ q)t− 1
=

x0q

a+ q
+

ax0
(a+ q)(1− (a+ q)t)

=
x0q

a+ q
+

ax0
a+ q

∞∑

n=0

(a+ q)ntn = x0 + ax0

∞∑

n=1

(a+ q)n−1tn,

from which it results the formula (3.2).

Proof. (Reciprocal) If xn is given by the formula (3.2), then we have

a
n∑

k=0

qn−kxk = a2x0

n∑

k=1

qn−k(a+ q)k−1 + ax0q
n

= a2x0q
n−1

n∑

k=1

(a+ q

q

)k−1
+ ax0q

n

= a2x0q
n−1

(a+ q

q

)n − 1

a+ q

q
− 1

+ ax0q
n = ax0(a+ q)n = xn+1, n = 1, 2, . . . ,

hence the sequence xn satisfies the recurrence equation (3.1).

4. Linear recurrence relations having as coefficients
generalized Fibonacci numbers in geometric pro-
gression

Lemma 4.1. The terms an = aqn, n = 0, 1, 2, . . . , of a geometric progression are
generalized Fibonacci numbers of orders α and β if and only if the progression ratio
is given by the formula

q =
α±

√
α2 + 4β

2
. (4.1)

Proof. If the terms an of the geometric progression are generalized Fibonacci
numbers of orders α and β, then an+1 = αan + βan−1, relation which becomes
aqn+1 = αaqn + βaqn−1. One obtains the quadratic equation q2 − αq − β = 0,
with the roots given by formula (4.1). Reciprocally, if the number q is given by
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formula (4.1), it satisfies the above quadratic equation. Multiplying this equation
by aqn−1, one obtains the relation an+1 = αan + βan−1, hence an are generalized
Fibonacci numbers of orders α and β.

Example. If α = 2i, with i =
√
−1 and β = 1, then (4.1) gives q = i, therefore the

terms of the geometric progression an = ain are generalized Fibonacci numbers of
orders 2i and 1. Indeed, we have 2ian + an−1 = 2ain+1 + ain−1 = ain+1 = an+1.

Theorem 4.2. The coefficients an = aqn, n = 0.1.2. . . . , and the solutions
xn, n = 1, 2, . . . of the linear recurrence relation (3.1) are both generalized Fi-
bonacci numbers of orders α and β if and only if

α = a+ 2q, β = −q(a+ q). (4.2)

Proof. According to Theorem 3.1 and the above Lemma, the coefficients an and
the solutions xn of (3.1) are generalized Fibonacci numbers of orders α and β, if
and only if

q2 − αq − β = 0, (a+ q)2 − α(a+ q)− β = 0, (4.3)

hence the formula (4.2) holds.

Example. If a = q = i, then an = in+1 and, according to Theorem 3.1, xn =
x0

2 (2i)n. From Theorem 4.3 it results that both an and xn are generalized Fibonacci
numbers of orders α = a+ 2q = 3i and β = −q(a+ q) = 2. Indeed, we have

3ian + 2an−1 = 3in+2 + 2in = in+2 = an+1

and
3ixn + 2xn−1 =

x0
2
[3i(2i)n + 2(2i)n−1] =

x0
2
(2i)n+1 = xn+1.

Corollary 4.3. The coefficients an and the solutions xn of the linear recurrence
relation (3.1) are both Fibonacci type numbers if and only if

a = ∓
√
5, q =

1±
√
5

2
. (4.4)

Proof. For α = β = 1 it follows from Theorem 4.3 that a+2q = 1 and −q(a+q) = 1,
from which we obtain (4.4).
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