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Abstract

Generalized one-sided concept lattices represent one of the conceptual
data mining methods, suitable for an analysis of object-attribute models with
the different types of attributes. It allows to create FCA-based output in form
of concept lattice with the same interpretation of concept hierarchy as in the
case of classical FCA. The main aim of this paper is to investigate relation-
ship between formal contexts and generalized one-sided concept lattices. We
show that each one uniquely determines the other one and we also derive
the number of generalized one-sided concept lattices defined within the given
framework of formal context. The order structure of all mappings involved in
some Galois connections between a power set and a direct product of complete
lattices is also dealt with.

Keywords: Galois connection, generalized one-sided concept lattice, formal
context.
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1. Introduction

Handling uncertainty, imprecise data or incomplete information has become an
important research topic in the recent years. One of the frequent solutions, how to
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deal with “imperfect” information, usually leads to the development of the fuzzified
versions of several well-known standard structures or approaches. In this paper,
we focus on the area of the formal concept analysis, specifically, on the approach
known as generalized one-sided concept lattices.

Formal Concept Analysis (FCA [9]) represents a method of data analysis for
identifying conceptual structures among data sets. As an efficient tool, Formal
Concept Analysis has been successfully applied to domains such as decision sys-
tems, information retrieval, data mining and knowledge discovery. Classical FCA
is suitable for crisp case, where object-attribute model is based on binary rela-
tion (object has/has-not the attribute). In practice there are natural examples
of object-attribute models for which relationship between objects and attributes
are represented by many-valued (fuzzy) relations. Therefore, several attempts to
fuzzify FCA have been proposed. As an example we mention work of Bělohlávek
[2, 3, 4] or other approaches [12, 14, 15]. One-sided concept lattices play a spe-
cial role in fuzzy FCA, where usually objects are considered as crisp subsets and
attributes obtain fuzzy values. In this case the interpretation of object clusters is
straightforward as in classical FCA, instead of fuzzy approaches with fuzzy subsets
of objects, where interpretability often becomes problematic.

Recently, there was a generalization of all known one-sided approaches [1, 10,
11], so called generalized one-sided concept lattices, cf. [7, 8]. This approach is,
in contrary with the previous one-sided approaches, convenient for the analysis
of object-attribute models with different truth value structures. From this point
of view it is applicable to a wide spectrum of real object-attribute models where
methods of classical FCA are appropriate, cf. [5, 6, 16, 17]. In this note we deal
with theoretical question, whether correspondence between formal contexts, which
represent object-attribute models, and concept lattices on the other side is one-to-
one or equivalently injective.

In order to make this paper as self-contained as possible, in the next section
we give a brief overview of the notions like formal context, Galois connections,
complete lattices, direct product, etc. We also describe the basic definitions and
the results concerning generalized one-sided concept lattices.

Our main results are in Section 3. Firstly we prove that the correspondence
between formal context and generalized one-sided concept lattices is injective, i.e.,
that each generalized one-sided concept lattice also uniquely determines formal
context. Based on this result, we deduce the formula expressing number of gen-
eralized one-sided concept lattices defined within the fixed framework of a given
formal context. Further, we are studying the order structure of mappings involved
in some Galois connections between a power set and a direct product of complete
lattices. In particular, we show that the lattice of all such mappings and the lattice
of all incidence relations are isomorphic.
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2. Formal contexts and generalized one-sided con-
cept lattices

In this section we examine the notion of the object-attribute model and its mathe-
matical counterpart formal context. Further, based on the notion of formal context
we define generalized one-sided concept lattices as fuzzy generalization of classical
concept lattices.

Firstly, we briefly describe the object-attribute models. Generally, by object
we understand any item that can be individually selected and manipulated, e.g.,
person, car, document, etc. In general, an attribute is a property or characteristic
of given object, e.g., height of a person, colour of a car or frequency of occurrence
of a given word in some document. We will consider that each particular attribute
under consideration has defined its range of possible values. Hence, if we measure
the height in cm, then any person has assigned the height as integer value from
interval [0, 280]. Similarly, color of a car can be from some given set of prescribed
colors {red, blue,white, . . . } and frequency of occurrence of some word w can be
given as the ratio Nw

Nall
from the interval [0, 1] of rationals. In this case Nw denotes

the number of the occurrences of the word w and Nall denotes the number of all
words in the considered document.

In our understanding object-attribute model consists of the set of objects, set
of the attributes with prescribed ranges and values which characterizes objects by
the given attributes, e.g., John is tall 183 cm.

In order to apply methods of FCA, we will need one restriction on the ranges
of all attributes belonging to object-attribute models. This restriction is given by
the usage of fuzzy logic in the theory of fuzzy concept lattices. The main idea of
fuzzifications of classical FCA is the usage of graded truth. In classical logic, each
proposition is either true or false, hence classical logic is bivalent. In fuzzy logic,
to each proposition there is assigned a truth degree from some scale L of truth
degrees. The structure L of the truth degrees is partially ordered and contains the
smallest and the greatest element. If to the propositions φ and ψ are assigned truth
degrees ‖ φ ‖ = a and ‖ ψ ‖ = b, then a ≤ b means that φ is considered less true
than ψ. In the object-attribute models typical propositions are of the form “object
has attribute in degree a”.

In the theory of fuzzy concept lattices it is always assumed that the structure
L of the truth degrees assigned to each attribute forms complete lattice.

Now we recall some basic facts concerning partially ordered sets and lattices.
By the partially ordered set (P,≤) we understand non-empty set P 6= ∅ together
with binary relation ≤ satisfying:

i) x ≤ x for all x ∈ P , i.e., the relation ≤ is reflexive,

ii) x ≤ y and y ≤ x then x = y, i.e., antisymmetry of ≤,

iii) x ≤ y and y ≤ z then x ≤ z, i.e., transitivity of the relation ≤.
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Let (P,≤) be a partially ordered set and H ⊆ P be an arbitrary subset. An
element a ∈ P is said to be the least upper bound or supremum of H, if a is the
upper bound of the subset H (h ≤ a for all h ∈ H) and a is the least of all elements
majorizing H (a ≤ x for any upper bound x of H). We shall write a = supH or
a =

∨
H. The concepts of the greatest lower bound or infimum is similarly defined

and it will be denoted by inf H or
∧
H.

A partially ordered set (L,≤) is a lattice if sup{a, b} = a∨b and inf{a, b} = a∧b
exist for all a, b ∈ L. A lattice L is called complete if

∨
H and

∧
H exist for any

subset H ⊆ L. Obviously, each finite lattice is complete. Note that any complete
lattice contains the greatest element 1L = supL = inf ∅ and the smallest element
0L = inf L = sup ∅. In what follows we will denote the class of all complete lattices
by CL.

Now we are able to define formal context which represents mathematical for-
malization of the notion object-attribute model.

Definition 2.1. A 4-tuple
(
B,A,L, R

)
is said to be a generalized one-sided formal

context if the following conditions are fulfilled:

a) B is a non-empty set of objects and A is a non-empty set of attributes.

b) L : A→ CL,

c) R : B×A→ ⋃
a∈A L(a) is a mapping satisfying R(b, a) ∈ L(a) for all b ∈ B and

a ∈ A.
Second condition says that L is a mapping from the set of attributes to the

class of all complete lattices. Hence, for any attribute a, L(a) denotes the complete
lattice, which represents structure of truth values for attribute a, i.e., L(a) denotes
the range of attribute a. As it is explicitly given, we require that all ranges form
complete lattices. The symbol R denotes so-called (generalized) incidence relation,
i.e., R(b, a) represents a degree from the structure L(a) in which the element b ∈ B
has the given attribute a.

As an example of simple formal context, consider four-element set of objects
B = {a, b, c, d} and eight-element set of attributes A = {a1, a2, a3, a4, a5, a6, a7, a8}.
We will assume that the attributes in our model are binary or real, i.e., ranges of
these attributes are represented either two-element chain 2 = {0, 1} with 0 < 1 or
real unit interval [0, 1]. Particularly we have L(a1) = L(a3) = L(a5) = L(a6) = 2
and L(a2) = L(a4) = L(a7) = L(a8) = [0, 1]. The generalized incidence relation
R of each formal context is usually described as data table. In this case the value
R(b, a) can be found on the intersection of b-th row and a-th column of the table.
The incidence relation of our example is depicted in Table 1.

Further we define generalized one-sided concept lattices derived from given gen-
eralized one-sided formal context. Since the theory of concept lattices is based on
the notion of Galois connections, we recall this notion at first, cf. [13] or [9].

Definition 2.2. Let (P,≤) and (Q,≤) be partially ordered sets and let

ϕ : P → Q and ψ : Q→ P
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a1 a2 a3 a4 a5 a6 a7 a8
a 0 0.2 1 0.3 1 0 0.1 0.5
b 1 0.6 0 0.6 0 1 0.5 0.3
c 1 1.0 0 0.7 0 0 0.5 0.0
d 0 0.2 0 0.3 1 0 0.1 0.5

Table 1: Data table of object-attribute model

be maps between these ordered sets. Such a pair (ϕ,ψ) of mappings is called a
Galois connection between the ordered sets if:

(a) p1 ≤ p2 implies ϕ(p1) ≥ ϕ(p2),

(b) q1 ≤ q2 implies ψ(q1) ≥ ψ(q2),

(c) p ≤ ψ(ϕ(p)) and q ≤ ϕ(ψ(q)).

Let us remark that the conditions (a), (b) and (c) are equivalent to the following
one:

p ≤ ψ(q) iff ϕ(p) ≥ q. (2.1)

These two maps are also called dually adjoint to each other. An important
property of Galois connections is captured in the following expressions (see [9] for
the proof).

ϕ = ϕ ◦ ψ ◦ ϕ and ψ = ψ ◦ ϕ ◦ ψ (2.2)

Moreover the dual adjoint is determined uniquely, i.e., if (ϕ1, ψ) forms Galois
connection as well as (ϕ2, ψ) then ϕ1 = ϕ2. The same is true if (ϕ,ψ1) and (ϕ,ψ2)
form Galois connections, then ψ1 = ψ2.

Now we describe the partially ordered sets, where we define appropriate Galois
connection. On the side of objects, we will consider the set P(B) as a domain of
one part of Galois connection. Let us note that P(B) denotes the power set of all
subsets of the set B partially ordered by the set theoretical inclusion. It is well
known fact that P(B) forms complete lattice. In this case, clusters of objects are
represented by classical subsets, hence this is the reason for the name “one-sided
concept lattices”.

If Li for i ∈ I is a family of lattices the direct product
∏

i∈I Li is defined as the
set of all functions

f : I →
⋃

i∈I
Li (2.3)

such that f(i) ∈ Li for all i ∈ I with the “componentwise” order, i.e, f ≤ g if
f(i) ≤ g(i) for all i ∈ I. If Li = L for all i ∈ I we get a direct power LI . In
this case the direct power LI represents the structure of L-fuzzy sets, hence direct
product of lattices can be seen as a generalization of the notion of L-fuzzy sets.
The direct product of lattices forms complete lattice if and only if all members of
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the family are complete lattices. The straightforward computations show that the
lattice operations in the direct product

∏
i∈I Li of complete lattices are calculated

componentwise, i.e., for any subset {fj : j ∈ J} ⊆∏i∈I Li we obtain
( ∨

j∈J
fj
)
(i) =

∨

j∈J
fj(i) and

( ∧

j∈J
fj
)
(i) =

∧

j∈J
fj(i), (2.4)

where these equalities hold for each index i ∈ I.
Generalized one-sided concept lattices were designed to handle with different

types of attributes, hence the appropriate domain for second part of Galois con-
nection consists of direct product of attribute lattices

∏
a∈A L(a).

Definition 2.3. Let
(
B,A,L, R

)
be a generalized one-sided formal context. We

define a pair of mappings ↑ : P(B) → ∏
a∈A L(a) and ↓ :

∏
a∈A L(a) → P(B) as

follows:
↑
(
X
)
(a) =

∧

b∈X
R(b, a), for all X ⊆ B, (2.5)

↓(g) = {b ∈ B : ∀a ∈ A, g(a) ≤ R(b, a)}, for all g ∈
∏

a∈A
L(a). (2.6)

The main result concerning such defined pair of mappings is stated in the fol-
lowing proposition.

Proposition 2.4. The pair (↑, ↓) forms a Galois connection between P(B) and∏
a∈A L(a).

Proof. We prove that ↑(X) ≥ g if and only if X ⊆ ↓(g) for all X ⊆ B and all
g ∈∏a∈A L(a).

Since ↑
(
X
)
≥ g if and only if ↑

(
X
)
(a) ≥ g(a) for all a ∈ A, according to the

Definition (2.5) of the map ↑ and expression (2.4) we obtain

∀a ∈ A, ↑
(
X
)
(a) =

∧

b∈X
R(b, a) ≥ g(a) iff ∀a ∈ A,∀b ∈ X, R(b, a) ≥ g(a).

Due to the definition (2.6) of the map ↓, this is equivalent to
X ⊆ {b ∈ B : ∀a ∈ A, g(a) ≤ R(b, a)} = ↓(g).

The result of this proposition allows to define generalized one-sided concept
lattices. Let

(
B,A,L, R

)
be a generalized one-sided formal context. Denote by

C
(
B,A,L, R

)
the set of all pairs (X, g), X ⊆ B, g ∈ ∏a∈A L(a) which form fixed

points of the Galois connection (↑, ↓), i.e., satisfying
↑
(
X
)

= g and ↓(g) = X.

In this case the ordered pair (X, g) is said to be a concept, the set X is usually
referred as extent and g as intent of the concept (X, g).

Further we define partial order on the set C
(
B,A,L, R

)
as follows:

(X1, g1) ≤ (X2, g2) iff X1 ⊆ X2 iff g1 ≥ g2. (2.7)
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{}
(1,1.0,1,1.0,1,1,1.0,1.0)

{a}
(0,0.2,1,0.3,1,0,0.1,0.5)

{b}
(1,0.6,0,0.6,0,1,0.5,0.3)

{c}
(1,1.0,0,0.7,0,0,0.5,0.0)

{b,c}
(1,0.6,0,0.6,0,0,0.5,0.0)

{a,d}
(0,0.2,0,0.3,1,0,0.1,0.5)

{a,b,d}
(0,0.2,0,0.3,0,0,0.1,0.3)

{a,b,c,d}
(0,0.2,0,0.3,0,0,0.1,0.0)

Figure 1: Generalized one-sided concept lattice

Proposition 2.5. The set C
(
B,A,L, R

)
with the partial order defined by (2.7)

forms a complete lattice, where
∧

i∈I

(
Xi, gi

)
=
(⋂

i∈I
Xi, ↑↓

(∨

i∈I
gi
))

and
∨

i∈I
(Xi, gi) =

(
↓↑
(⋃

i∈I
Xi

)
,
∧

i∈I
gi

)

for each family (Xi, gi)i∈I of elements from C
(
B,A,L, R

)
.

Proof of this proposition is based on the fact that any Galois connection be-
tween complete lattices induces dually isomorphic closure systems (see [13]). Con-
sequently, this dual isomorphism maps infima on the one side onto suprema in a
closure system on the other side and vice versa.

Remark that the algorithm for generation of generalized one-sided concept lat-
tices can be found in [7] or [8].

The Hasse diagram of the generalized one-sided concept lattice determined by
Table 1 is shown on Figure 1. Let us remark that we denote the elements of direct
product as ordered tuples, as it is common in lattice theory.

3. On relationship between incidence relations and
generalized one-sided concept lattices

In this section we present our results concerning incidence relations and correspond-
ing one-sided concept lattices. We also describe the order structure of the set of
all mappings involving in some Galois connection between power set and the direct
product of complete lattices. Firstly, we show that the correspondence

generalized one-sided context 7→ generalized one-sided concept lattice
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is injective or equivalently one-to-one. We already know how to define generalized
one-sided lattice from given formal context. However, there is an interesting theo-
retical question, whether different formal contexts yield different one-sided concept
lattices. The positive answer means that not only formal context fully characterizes
generalized one-sided context, but the converse is also true, i.e., given generalized
one-sided concept lattice fully determines formal context. Hence, generalized one-
sided concept lattice contains all information about object-attribute model.

We recall the definition of injective mapping. A mapping f : A→ B is said to
be injective (one-to-one) if

x 6= y implies f(x) 6= f(y)

Evidently, this condition is equivalent to the condition f(x) = f(y) implies x = y.
In what follows, we will consider that the set of objects B is fixed, as well as the

set of all attributes A (together with truth value structures L(a)). Consider that
we have two generalized one-sided formal contexts (B,A,L, R1) and (B,A,L, R2).
The corresponding concept lattices are denoted by C1 = C

(
B,A,L, R1

)
and C2 =

C
(
B,A,L, R2

)
.

Theorem 3.1. The correspondence (B,A,L, R) 7→ C
(
B,A,L, R

)
, which assign to

each generalized one-sided formal context the corresponding generalized one-sided
concept lattice is injective.

Proof. We prove this theorem in two steps. Firstly we show that the correspondence
(B,A,L, R) 7→ (↑, ↓), which maps formal context onto the Galois connection given
by (2.5) and (2.6) respectively, is injective. Next we show that the correspondence
(↑, ↓) 7→ C

(
B,A,L, R

)
, which maps Galois connection to the concept lattice is

injective too. Since the composition of two injective mappings is injective, this will
satisfy to prove our result.

Suppose that incidence R1 and R2 differ, i.e., there exist b ∈ B, a ∈ A such
that R1(b, a) 6= R2(b, a). Note, that we will recognize the corresponding Galois
connection by subscript. According to the definition (2.5) of mapping ↑ we obtain:

↑1({b}) =
∧

b′∈{b}
R1(b′, a) = R1(b, a) 6= R2(b, a) =

∧

b′∈{b}
R2(b′, a) = ↑2({b}).

This equation shows that we have found one-element subset {b} with ↑1({b}) 6=
↑2({b}) and consequently (↑1, ↓1) 6= (↑2, ↓2). Hence, the first correspondence be-
tween formal contexts and Galois connections is injective.

Further, assume that C1 = C2, i.e., that the generalized one-sided concept
lattices equal. This means that the sets of fixed points coincide, i.e., for all X ⊆ B
and g ∈∏a∈A L(a) it holds

↑1(X) = g and ↓1(g) = X iff ↑2(X) = g and ↓2(g) = X. (3.1)

Let X ⊆ B be an arbitrary subset. From the property (2.2) of Galois connec-
tions we have ↑1(X) = ↑1(↓1(↑1(X))), thus ordered pair (↓1(↑1(X)), ↑1(X)) forms
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a fixed point of Galois connection (↑1, ↓1). Then, due to condition (3.1) we obtain
that ↓2(↑1(X)) = ↓1(↑1(X)). Consequently, we have X ⊆ ↓1(↑1(X)) = ↓2(↑1(X))
which yields the first half of the condition (c) of the Definition 2.2.

Similarly, using (2.2) we obtain for each element g ∈ ∏a∈A L(A) the pair
(↓2(g), ↑2(↓2(g)) forms fixed point of (↑2, ↓2). Again, due to condition (3.1) we
obtain ↑2(↓2(g)) = ↑1(↓2(g)), which yields g ≤ ↑2(↓2(g)) = ↑1(↓2(g)). Since the
mappings ↑1 and ↓2 are order reversing, we have proved that the pair (↑1, ↓2)
forms Galois connection. Now using the fact that dual adjoint is unique, we obtain
↑1 = ↑2 and ↓1 = ↓2, which completes the proof.

It was proved in [7] that for any Galois connection (Φ,Ψ) between P(B) and∏
a∈A L(a) there exists a generalized formal context (B,A,L, R) that ↑ = Φ and
↓ = Ψ. Hence the correspondence between formal contexts and generalized one-
sided concept lattices is surjective, too. Since we have shown that it is injective,
in fact this correspondence is bijective. Using this fact we can prove the following
theorem about number of all concept lattices.

Theorem 3.2. Let B 6= ∅ be set of objects, A = {a1, a2, . . . , am} be set of at-
tributes. Denote by n = |B| number of objects and for all i = 1, . . . ,m denote by
ni = |L(ai)| the cardinality of the complete lattice L(ai). Then there is (

∏m
i=1 ni)

n

generalized one-sided concept lattices.

Proof. There is a bijection between set of all generalized incidence relations and
one-sided concept lattices, thus it is sufficient to count all generalized incidence
relations. For each object b and each attribute a the value R(b, a) can obtain
ni = |L(ai)| values. Since we have n objects, there is nin possibilities for columns
in data table (which represents incidence relation). Together we have

n1
n · n2n · . . . · nmn · . . . = (

m∏

i=1

ni)
n

possibilities to define incidence relation.

This result generalizes the similar assertion for classical concept lattices. Sup-
pose there is given a formal context (B,A, I). If we have n objects andm attributes,
then there is 2n·m concept lattices. Any classical concept lattice can be character-
ized as generalized one-sided concept lattice by setting L(a) = 2 (2 = {0, 1} denotes
two-element chain) and R(b, a) = 1 if and only if (b, a) ∈ I (see [14] for details).
Hence applying the result of Theorem 3.2 we obtain

∏m
i=1 2n = (2n)m = 2m·n.

Similarly, if one will consider L(ai) = L for all i = 1, . . . ,m, than generalized
one-sided concept lattices, represent one-sided concept lattices. Hence, applying
Theorem 3.2 we obtain that there is

∏m
i=1 |L|

n
= |L|m·n different one-sided concept

lattices.
Next we show that formal contexts also characterize order properties of the

Galois connections between power sets and complete lattices. Firstly we prove the
following lemma, concerning the closure property of Galois connections. Let L and
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M be complete lattices. Denote by Gal(L,M) the set of all ϕ : L → M such that
there exists ψ : M → L dually adjoint to ϕ.

Lemma 3.3. Let L,M be complete lattices. The set Gal(L,M) forms a closure
system in complete lattice ML.

Proof. We show that the set Gal(L,M) is closed under arbitrary infima. Let {ϕi :
i ∈ I} ⊆ Gal(L,M) be an arbitrary system. Denote by ϕ =

∧
i∈I ϕi. In this case

ϕ(x) =
∧

i∈I ϕ(x) for all x ∈ L. In order to prove that ϕ ∈ Gal(L,M) we show that
there is a dual adjoint ψ : M → L. Define ψ =

∧
i∈I ψi where ψi is dually adjoint

to ϕi for all i ∈ I.
Let x1, x2 ∈ L be elements such that x1 ≤ x2. Since ϕi(x1) ≥ ϕi(x2) for all

i ∈ I, we obtain
ϕ(x1) =

∧

i∈I
ϕi(x1) ≥

∧

i∈I
ϕi(x2) = ϕ(x2).

Similarly, for all y1, y2 ∈M condition y1 ≤ y2 implies ψ(y2) ≥ ψ(y1).
Finally, we show that x ≤ ψ(ϕ(x)) for all x ∈ L. Let j ∈ I be an arbitrary

index. Then for all x ∈ L we have

x ≤ ψj

(
ϕj(x)

)
≤ ψj

(∧

i∈I
ϕ(x)

)
,

since ψj is order reversing and ϕj(x) ≥ ∧i∈I ϕi(x). This yields

x ≤
∧

j∈I
ψj

(∧

i∈I
ϕi(x)

)
=
∧

j∈I
ψj

(
ϕ(x)

)
= ψ

(
ϕ(x)

)
.

In similar way, one can prove y ≤ ϕ(ψ(y)) for all y ∈M .

Since Gal(L,M) forms a closure system in complete lattice ML, it forms com-
plete lattice too. In this case meets in Gal(L,M) coincide with the meets in ML,
but this is not valid for joins in general. In particular, if (ϕi : i ∈ I} ⊆ Gal(L,M)
then

sup{ϕi : i ∈ I} =
∧
{ϕ ∈ Gal(L,M) : ϕ ≥

∨

i∈I
ϕi}

where the symbols
∧

and
∨

denote operations of meet and join in ML.
Let us note that Gal(L,M) and Gal(M,L) forms isomorphic posets. This follows

from the fact that the correspondence ϕ 7→ ψ where ψ denotes the dual adjoint
of ϕ is bijective. Moreover it is order preserving in both directions. Suppose
ϕ1(x) ≤ ϕ2(x) for all x ∈ L. Let y ∈ M be an arbitrary element. Then y ≤
ϕ1(ψ1(y)) ≤ ϕ2(ψ1(y)) and according to the condition (2.1) it follows ψ1(y) ≤
ψ2(y). The opposite implication can be proved analogously, hence ϕ1 ≤ ϕ2 if and
only if ψ1 ≤ ψ2.

Further assume that B,A 6= ∅ and L : A → CL are fixed. In order to describe
the structure of the lattice Gal(P(B),

∏
a∈A L(a)) we denote by R(B,A,L) the

set of all relations R such that (B,A,L, R) forms generalized one-sided formal
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context. Obviously the set R(B,A,L) forms complete lattice. In this case, if
{Ri : i ∈ I} is a system of relations, then relation R where R(b, a) =

∧
i∈I Ri(b, a)

(R(b, a) =
∨

i∈I Ri(b, a) ) corresponds to the infimum (supremum).

Theorem 3.4. The lattice Gal(P(B),
∏

a∈A L(a)) is isomorphic to the lattice of
all incidence relations R(B,A,L).

Proof. Define F : R(B,A,L) → Gal(P(B),
∏

a∈A L(a)) for all R ∈ R(B,A,L) by
F (R) = ↑R, where ↑R is defined by (2.5). As we already know, the mapping F is
bijective. We show, that it also preserves the lattice operations, i.e., F

(
R1∧R2

)
=

F (R1) ∧ F (R2) and F (R1 ∨R2) = sup{F (R1), F (R2)}.
Let X ⊆ B be any subset and a ∈ A be an arbitrary element. Then we obtain

↑R1∧R2
(X)(a) =

∧

b∈X

(
R1(b, a) ∧R2(b, a)

)
=

=
∧

b∈X
R1(b, a) ∧

∧

b∈X
R2(b, a) = ↑R1

(X)(a) ∧ ↑R2
(X)(a).

Hence the mapping F preserves meets.
In order to prove that F preserves joins, we use the fact that the mapping F

is surjective, i.e., for any Galois connection (ϕ,ψ) between P(B) and
∏

a∈A L(a)
there is some relation R with ϕ = ↑R and ψ = ↓R.

Let ϕ ∈ Gal(P(B),
∏

a∈A L(a)) be a mapping satisfying ϕ ≥ ↑R1
, ↑R2

. Then
ϕ = ↑R for some R ∈ R(B,A,L) and for all b ∈ B and a ∈ A we obtain

ϕ({b})(a) = ↑R({b})(a) =
∧

b′∈{b}
R(b, a) = R(b, a).

Since ϕ({b}) ≥ ↑R1
({b}), ↑R2

({b}) for all b ∈ B we have R(b, a) ≥ R1(b, a)∨R2(b, a)
for all b ∈ B and a ∈ A. This yields

ϕ(X)(a) = ↑R(X)(a) =
∧

b∈X
R(b, a) ≥

∧

b∈X

(
R1(b, a) ∨R2(b, a)

)
= ↑R1∨R2

(X)(a)

for all X ⊆ B and for all a ∈ A. Obviously ↑R1∨R2
is the upper bound of

↑R1
and ↑R2

and we have shown that it is in fact the least upper bound of ↑R1

and ↑R2
. Hence in the lattice Gal(P(B),

∏
a∈A L(a)) the assertion F (R1 ∨ R2) =

sup{F (R1), F (R2)} is valid.
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