
CGT: a vertical miner for frequent
equivalence classes of itemsets

Laszlo Szathmary, Márton Ispány

University of Debrecen, Faculty of Informatics, Department of IT
{szathmary.laszlo,ispany.marton}@inf.unideb.hu

Abstract

In this paper we present a vertical, depth-first algorithm that outputs frequent
generators (FGs) and their associated frequent closed itemsets (FCIs). The
proposed algorithm –called CGT– is a single-pass algorithm and it explores
frequent equivalence classes in a dataset.

1. Introduction

In data mining, frequent itemsets (FIs) and association rules play an important
role [1]. Due to the high number of patterns, various concise representations of FIs
have been proposed, of which the most well known representations are the FGs
and the FCIs [2, 3]. There are a number of methods in the literature that target
both FCIs and FGs, but most of these algorithms are levelwise methods [4, 5]. It is
known that depth-first algorithms usually outperform their levelwise competitors.
Here we present a single-pass, depth-first, vertical FG+FCI miner.

The remainder of the paper is organized as follows. Background on pattern min-
ing and concept analysis is provided in Section 2. Section 3 presents our proposed
algorithm CGT in detail, including pseudo code and running example. Conclusions
and future work directions are given in Section 4.

2. Basic concepts

In the following, we recall basic concepts from frequent pattern mining and formal
concept analysis (FCA). The vocabulary and notations come from the dedicated

Proceedings of the
1st International Conference and Exhibition on Future RFID Technologies

Eszterhazy Karoly University of Applied Sciences and
Bay Zoltán Nonprofit Ltd. for Applied Research
Eger, Hungary, November 5–7, 2014. pp. 161–169

doi: 10.17048/FutureRFID.1.2014.161

161

literature but, whenever necessary, parallels are drawn to support the compre-
hension. The following 4 × 6 sample dataset: D = {(1, ACDE), (2, ABCDE),
(3, ABE), (4, BEF)} will be used as a running example. Henceforth, we refer to
it as dataset D.

We consider a set of objects or transactions O = {o1, o2, . . . , om}, a set of at-
tributes or items A = {a1, a2, . . . , an}, and a relation R ⊆ O ×A. A set of items
is called an itemset. Each transaction has a unique identifier (tid), and a set of
transactions is called a tidset. The tidset of all transactions sharing a given itemset
X is its image, denoted t(X). For instance, the image of {A,B} in D is {2, 3},
i.e., t(AB) = 23 in our separator-free set notation. The length of an itemset is
its cardinality, whereas an itemset of length k is called a k-itemset. The (abso-
lute) support of an itemset X, denoted by supp(X), is the size of its image, i.e.
supp(X) = |t(X)|. An itemset X is called frequent, if its support is not less than a
given minimum support (denoted by min_supp), i.e. supp(X) ≥ min_supp. An
equivalence relation is induced by t on the power-set of items ℘(A): equivalent
itemsets share the same image (X ∼= Z iff t(X) = t(Z)). Consider the equivalence
class of X, denoted [X], and its extremal elements w.r.t. set inclusion. [X] know-
ingly admits a unique maximum (a closed itemset), and a set of minimal elements
(generator itemsets). The following definition thereof exploits the monotony of
supp upon ⊆ within ℘(A):

Definition 2.1. An itemset X is closed (a generator) if it has no proper superset
(subset) with the same support.

A closure operator underlies the set of closed itemsets; it assigns to X the max-
imum of [X] (denoted by γ(X)). Naturally, X = γ(X) for closed X. Generators,
a.k.a. key-sets in database theory, represent a special case of free-sets [6]. For
instance, in our dataset D, B and C are generators, with closures BE and ACDE,
respectively (see Figure 1).

In [7], a subsumption relation is defined as well: X subsumes Z, iff X ⊃ Z and
supp(X) = supp(Z). By Def. 2.1, if Z subsumes X, then Z cannot be a generator.

The following property, which is part of the folklore in the domain, generalizes
this observation. It basically states that the generator family forms a downset
within the Boolean lattice 〈℘(A),⊆〉:

Property 2.2. Given X ⊆ A, if X is a generator, then ∀Y ⊆ X, Y is a generator.
Equivalently, if X is not a generator, ∀Z ⊇ X, Z is not a generator.

The FCI and FG families are well-known reduced representations [8] for FIs,
which jointly compose non-redundant bases of valid association rules, e.g. the
generic basis [3].

162 L. Szathmary, M. Ispány

Figure 1: Equivalence classes of D with min_supp = 2. Support
values are shown in the top right-hand corner of the classes. The

generator of E is the empty set.

3. Filtering generators and closed itemsets among
frequent itemsets using a depth-first traversal

Our own algorithm CGT, which is the contribution of this paper, is a vertical
itemset mining algorithm for finding frequent equivalence classes. In this section
first we provide a general view of CGT. Then we give a background on vertical
algorithms such as Eclat [9] and Talky [10]. Finally we detail CGT.

3.1. A general view of CGT

CGT is based on Talky [10], where Talky is a modified version of Eclat [9]. Eclat
and Talky produce the same output, i.e. they find all FIs in a dataset. However,
Talky uses a different traversal called reverse pre-order strategy. This traversal
goes from right-to-left and it provides a special feature: when we reach an itemset
X, all subsets of X were already discovered. As a result, this traversal can be used
to filter FGs among FIs. During the traversal procedure CGT also filters FCIs and
assigns them to the corresponding FGs, thus CGT outputs at the end the frequent
equivalence classes. In order to filter the frequent generators, it must rely on the
reverse pre-order strategy that we describe in the next subsections.

CGT: a vertical miner for frequent equivalence classes of itemsets 163

Figure 2: Left: pre-order traversal with Eclat ; Right: reverse pre-
order traversal with Talky. The direction of traversal is indicated

in circles.

3.2. Vertical itemset mining

Miners from the literature, whether for plain FIs or FCIs, can be roughly split
into breadth-first and depth-first ones. Breadth-first algorithms, more specifically
the Apriori -like [1] ones, apply levelwise traversal of the pattern space exploiting
the anti-monotony of the frequent status. Depth-first algorithms, e.g., Closet [11],
in contrast, organize the search space into a prefix-tree (see Figure 2) thus fac-
toring out the effort to process common prefixes of itemsets. Among them, the
vertical miners use an encoding of the dataset as a set of pairs (item, tidset), i.e.,
{(i, t(i))|i ∈ A}, which reportedly allows the costly database re-scans to be avoided.

Eclat [9] was the first FI-miner to combine the vertical encoding with a depth-
first traversal of a tree structure, called IT-tree, whose nodes are X × t(X) pairs.
Eclat traverses the IT-tree in a depth-first manner in a pre-order way, from left-
to-right [9, 12] (see Figure 2).

3.3. Reverse pre-order traversal

CGT extends Talky to filter FGs and FCIs among FIs. That is, CGT tests every
newly found FI if it is a generator. For the test to be effective, all subsets of a
candidate X must be processed before X itself. Only then all generator subsets
of X will be available for a thorough test of X being generator itself. Although
such a concern is typically addressed through a breadth-first traversal strategy in
mining, the same order could also be achieved with a depth-first one, yet with a
different order on the items.

Traversing the search space so that a given set X is processed after all its
subsets is a frequent requirement in combinatorial algorithms. Levelwise methods
straightforwardly satisfy this condition. Following an idea in [13], called reverse pre-
order traversal, we rank items in the initial ordering in reverse lexicographic order
(E, D, C, etc.). Thus, following the increasing order of numerical equivalents, we
get a depth-first right-to-left traversal of a prefix-tree representing the search space
℘(A). As at all nodes corresponding sets are listed before the sets corresponding
to descendant nodes, the processing is “pre” (rather than “post”).

In summary, our method traverses the IT-tree in a pre-order way from right-

164 L. Szathmary, M. Ispány

Figure 3: Execution of Talky on dataset D with min_supp = 2.
The processing order of nodes is indicated in circles.

Table 1: CGT builds this table, which is actually a hash table.
Key of the hash: a tidset. Value of the hash: a row of the table.

tidset generators eq. class members closure support
(optional)

1234 ∅ E E 4
234 B BE BE 3
123 A AE AE 3
23 AB ABE ABE 2
12 D, C DE, CE, CD, CDE, AD, ACDE 2

ADE, AC, ACE, ACD, ACDE

to-left. Thus, given an itemset X in a node in the IT-tree, it is guaranteed that
the nodes corresponding to the subsets of X will be explored before X.

Example. See Figure 2 for a comparison between the two traversals namely pre-
order with Eclat (left) and reverse pre-order with Talky (right).

3.4. Talky

Talky is a vertical FI miner that constructs an IT-tree in a depth-first manner in
a reverse pre-order way (see Figure 3). From our dataset D with min_supp = 2,
Talky extracts the following 19 FIs in this order1: E (4), D (2), DE (2), C (2),
CE (2), CD (2), CDE (2), B (3), BE (3), A (3), AE (3), AD (2), ADE (2), AC
(2), ACE (2), ACD (2), ACDE (2), AB (2) and ABE (2).

3.5. CGT in detail

In this subsection we present the CGT algorithm in detail. As mentioned before,
CGT is based on Talky. CGT traverses the IT-tree in a reversed pre-order way (see
Figure 3), and it filters FGs and FCIs while extracting FIs from a dataset. CGT
groups generators to their closure, thus the output of CGT is the list of frequent
equivalence classes (see Table 1).

1Support values are indicated in parentheses.

CGT: a vertical miner for frequent equivalence classes of itemsets 165

CGT builds a hash table2, as depicted in Table 1. The key of the hash is
a tidset, while the value of the hash is a row object. A row object represents
an equivalence class and it has the following fields: (1) tidset (by definition all
itemsets in an equivalence class have the same tidsets), (2) generators (minimal
elements of an equivalence class), (3) equivalence class members (itemsets in an
equivalence class that are neither generators nor closed itemsets), (4) closure (the
largest element in an equivalence class; this is a unique element), (5) support (this
is the cardinality of the tidset).

The algorithm works the following way. When a new FI is found in the IT-tree,
it is tested if it belongs to an already discovered equivalence class, i.e. we test if
its tidset is in the hash. If it is not present in the hash, then it belongs to a new
equivalence class, thus a new row is added to the hash. If its tidset is in the hash,
then there are two possible cases. Let R denote the row whose tidset is the same
as the tidset of the current itemset, i.e. R represents the equivalence class where
the current itemset belongs to.

Case 1. The itemset has a proper subset in the “generators” field of row R.
It means that the itemset is not a generator, but it belongs to this equivalence
class. The itemset is added to the “closure” field. The “closure” is the union of
the generators and the itemsets that belong to the same equivalence class. Since
CGT finds all FIs, it discovers all the members of an equivalence class, thus if
we take the unions of all the members of an equivalence class, the closure of the
equivalence class will be found correctly. Optionally, non-generator members of
an equivalence class can be stored in the “eq. class members” field. This field
is indicated in Table 1 for an easier understanding, but in the implementation it
can be omitted. A non-generator member of an equivalence class can be added
directly to the “closure” field using the union operation, it does not need to be
stored separately.

Case 2. The itemset does not have a proper subset in the “generators” field of
row R. It means the itemset is a new generator of the equivalence class, thus it is
added to the “generators” field. Whenever a new generator is registered, it is also
added to the “closure” field, where “closure” is the union of the added itemsets.

When the algorithm stops, the itemsets in the “closure” field are completed, i.e.
they represent the closures of the equivalence classes. The pseudo code of CGT is
provided in Algorithm 1.

3.5.1. Running example

Our dataset D is somewhat special since its column E is full. It means that E is
not a generator because it has a proper subset with the same support namely the
empty set. By definition, the support of the empty set is 100%. Thus, the hash
table is initialized as seen in Table 2. Actually, the hash can be initialized this way
with any dataset, but if the dataset has no full column, then the closure of the
empty set will remain the empty set.

2In our implementation we used the java.util.HashMap class.

166 L. Szathmary, M. Ispány

Algorithm 1 (pseudo code of CGT):

hashTable: the table structure (as seen in Table 1)

1) // initialization
2) row.tidset← {largest tidset} // in our example: 1234

3) row.generators.add(∅) // add the empty set
4) row.support← cardinality(row.tidset)

5) hashTable.add(row)

6)
7) // main block
8) start the Talky algorithm and assign the current node to the variable curr

9) {
10) if curr.tidset not in hashTable:
11) row.tidset← curr.tidset

12) row.generators.add(curr.itemset)

13) row.closure← curr.itemset

14) row.support← cardinality(row.tidset)

15) hashTable.add(row)

16) else:
17) row ← hashTable.get(curr.tidset)
18) if curr.itemset has a proper subset in row.generators:
19) row.eq_class_members.add(curr.itemset) // optional
20) row.closure← row.closure ∪ curr.itemset

21) else:
22) row.generators.add(curr.itemset)

23) row.closure← row.closure ∪ curr.itemset

24) }
25) // hashTable is filled; it contains all the frequent equivalence classes

Then, the algorithm starts enumerating the 19 FIs of D using the traversal
strategy of Talky (see Section 3.4 for the list of FIs in D). The first node is
E × 1234. The tidset 1234 is an existing key in the hash. E has a proper subset
with the same support (the empty set), thus E is added to the “eq. class members”
and “closure” fields. The next FI is D × 12. Since 12 is not yet in the hash, a new
row is added in the hash table. The next node is DE × 12. The tidset 12 is in
the hash, thus DE belongs to an existing equivalence class. It has a proper subset,
D, thus DE is added to the “eq. class members” and “closure” fields. The current
state of the hash table is depicted in Table 3.

We skip the step by step presentation of the rest of the algorithm. The end
result of CGT is shown in Table 1.

CGT: a vertical miner for frequent equivalence classes of itemsets 167

Table 2: Initialization of CGT ’s hash table

tidset generators eq. class members closure support
(optional)

1234 ∅ ∅ 4

Table 3: State of CGT ’s hash table after adding E, D and DE

tidset generators eq. class members closure support
(optional)

1234 ∅ E E 4
12 D DE DE 2

4. Conclusion and future work

In this paper we presented a vertical, depth-first algorithm that outputs FG/FCI
pairs and thus basically pinpoints the borders of frequent equivalence classes. The
CGT algorithm was thought as a first step towards the design of a single-pass
vertical FG+FCI miner, hence it represents an adaptation of a plain FI miner from
the literature: efficient filtering for FCI and FGs are added whereby the FG-to-
FCI association is immediate. Thus, CGT can be easily upgraded to a complete
solution for the association rule base construction, e.g., by combining it with a
precedence computing algorithm such as Snow [14].

In the near future, we shall concentrate on various strategies for reducing the
traversal effort in CGT as well as speeding-up the computing of FCIs from members
of their respective equivalence classes. One track would be to use counting inference
while another one leads to the definition of a canonical FG in each class, to focus
on for closure computation.

Acknowledgements. The publication work was supported by the TAMOP-
4.2.2.C-11/1/KONV-2012-0001 project. The project has been supported by the
European Union, co-financed by the European Social Fund.

References

[1] Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large
Databases. In: Proc. of the 20th Intl. Conf. on Very Large Data Bases (VLDB ’94),
San Francisco, CA, Morgan Kaufmann (1994) 487–499

[2] Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining Minimal
Non-Redundant Association Rules Using Frequent Closed Itemsets. In: Proc. of the
Computational Logic (CL ’00). Volume 1861 of LNAI., Springer (2000) 972–986

[3] Kryszkiewicz, M.: Concise Representations of Association Rules. In: Proc. of the
ESF Exploratory Workshop on Pattern Detection and Discovery. (2002) 92–109

168 L. Szathmary, M. Ispány

[4] Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering Frequent Closed
Itemsets for Association Rules. In: Proc. of the 7th Intl. Conf. on Database Theory
(ICDT ’99), Jerusalem, Israel (1999) 398–416

[5] Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing Iceberg
Concept Lattices with Titanic. Data and Knowl. Eng. 42(2) (2002) 189–222

[6] Boulicaut, J.F., Bykowski, A., Rigotti, C.: Free-Sets: A Condensed Representation
of Boolean Data for the Approximation of Frequency Queries. Data Mining and
Knowledge Discovery 7(1) (Jan 2003) 5–22

[7] Zaki, M.J., Hsiao, C.J.: CHARM: An Efficient Algorithm for Closed Itemset Mining.
In: SIAM Intl. Conf. on Data Mining (SDM’ 02). (Apr 2002) 33–43

[8] Calders, T., Rigotti, C., Boulicaut, J.F.: A Survey on Condensed Representations
for Frequent Sets. In Boulicaut, J.F., Raedt, L.D., Mannila, H., eds.: Constraint-
Based Mining and Inductive Databases. Volume 3848 of Lecture Notes in Computer
Science., Springer (2004) 64–80

[9] Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New Algorithms for Fast Dis-
covery of Association Rules. In: Proc. of the 3rd Intl. Conf. on Knowledge Discovery
in Databases. (August 1997) 283–286

[10] Szathmary, L., Valtchev, P., Napoli, A., Godin, R.: Efficient Vertical Mining of
Frequent Closures and Generators. In: Proc. of the 8th Intl. Symposium on Intelligent
Data Analysis (IDA ’09). Volume 5772 of LNCS., Lyon, France, Springer (2009) 393–
404

[11] Pei, J., Han, J., Mao, R.: CLOSET: An Efficient Algorithm for Mining Frequent
Closed Itemsets. In: ACM SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery. (2000) 21–30

[12] Zaki, M.J.: Scalable Algorithms for Association Mining. IEEE Transactions on
Knowledge and Data Engineering 12(3) (2000) 372–390

[13] Calders, T., Goethals, B.: Depth-first non-derivable itemset mining. In: Proc. of the
SIAM Intl. Conf. on Data Mining (SDM ’05), Newport Beach, USA. (Apr 2005)

[14] Szathmary, L., Valtchev, P., Napoli, A., Godin, R., Boc, A., Makarenkov, V.: A
Fast Compound Algorithm for Mining Generators, Closed Itemsets, and Computing
Links Between Equivalence Classes. Annals of Mathematics and Artificial Intelligence
(AMAI) (Aug 2013) 1–25

CGT: a vertical miner for frequent equivalence classes of itemsets 169

