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Introduction

Let A C N ={1,2,3,...} and m,n € N, m < n. Denote by A(m,n) the
cardinality of the set A N [m,n]. The numbers

) = tm A" gy = ALY

n—00 n n— oo n

are called the lower and the upper asymptotic density of the set A. If there exists

Al
d(A) = lim (L,n)
n— o0 n
then it is called the asymptotic density of A.
According to [1], [2] we set

as =min A(t+ 1,t + s), o’ =max A(t+ 1,t+ s).
£>0 >0

Then there exist
Qg _ Y
u(A) = lim —, a(A) = lim —

s—00 S s—oo 8

and they are called the lower and the upper uniform density of A, respectively.
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It is obvious that for every A C N

u(A) < d(A) < d(4) < a(A).

Hence if u(A) exists then d(A) exists as well and u(A) = d(A). The converse
is not true. For example put

A= U {10F +1,10" +2,...,10" + k} .
k=1
Then d(A) =0, but u(A4) =0, a(A) = 1.

Note that the numbers o and a® can be replaced by the numbers 55 and 3%,
respectively, where

Bs= lim A(t +1,t+5s), p°= lim A(t+1,t+s)
t—o0

t—o0

(cf. [1], [2]).
In this paper we introduce some elementary remarks, observations on the
concept of the uniform density and prove that this density has the Darboux

property.

A

1. Uniform density u(A) and lim %ﬂrs) (uniformly with respect to

S$—00
t>0)

We introduce the following observation.
Theorem 1.1. If there exists

0 oy A+ Lt+s)

8—00 S

uniformly with respect to t > 0, then there exists u(A) and u(A) = L.

Proof. Let £ > 0. By the assumption there exists an so = so(€) € N such that for
each s > sy and each ¢ > 0 we have

(L—e)s< At +1,t+s) < (L+¢)s.
By the definition of the numbers 3, ° we get from this for s > sg

Bs

S

B*
L-e<—<—<L+e.
S
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If s = 0o we get
L—-e<u(A) <u(A)<L+e.

Since € > 0 is an arbitrary positive number, we get u(A) = L.
The foregoing theorem can be conversed.

Theorem 1.2. If there exists u(A) then

lim Al +1t+s) _ u(A)

5§—00 S
uniformly with respect tot > 0.

Proof. Put u(A) = L. Since

p
L = lim S _ lim @
p—o0 p p—o p

for every € > 0, there exists a pg such that for each p > pg we have
(L—e)p<ap<al <(L+e)p.
So we get

(L —e)p <min A(t +1,¢+p) < max At + 1, ¢ +p) < (L +e)p.

By the definition of A(¢t + 1,t + p) we get from this

A 1
(t+1,t+p) )
p
for each p > pg and each ¢ > 0. Hence
A 1
i A+ LE+D) o (= u(A))
p—00 p

uniformly with respect to ¢ > 0.

2. Uniform density and almost convergence

The concept of almost convergence was introduced in [5] (see also [10], p. 60).
A sequence (z,,)7° of real numbers almost converges to L if

lim Tn+1 + Tn+42 +- 4+ Tn+p
p—r 00 p

=1L
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uniformly with respect to n > 0. If (,,)7° almost converges to L, we write
F—limz, = L.
One can conjecture that there is a relationship between the uniform density
of a set A C N and the characteristic function y 4 of this set (xa(n) =1ifn € A,
xa(n) =0if n € N\A).

Theorem 2.1. Let A C N. Then u(A) = v if and only if F —lim xa(n) = v.

Proof. Let t > 0, s € N. By the definition of the sequence (xa(n));°~ we see that

At +1,t+s)  xalt+1)+xalt+2)+---+xalt+s) -t
s s ’

The assertion follows from this equality by Theorem 1.1 and 1.2.

3. Another way for defining the uniform density of sets

IfA={a1<ax<---<a,<---} C N is an infinite set then it is well-known
that

d(A) = lm -, d(A) = Tm -

n—oo An n—00 O,
and n
d(A) = lim —

Nn—00 Ap

(if d(A) exists) (cf. [8], p. 247). A similar result can be stated also for the uniform
density.

Theorem 3.1. Let A = {a1 < az < --- <ay, <---} C N be an infinite set. Then
u(A) = L if and only if

p

(2) lim ——— =1
P00 Aftp — Q41
uniformly with respect to k > 0.
Proof. 1. Let u(A) = L. Consider that for p > 2
p _ AlGk+1, ahip)
Qhotp — Q1 Qhop — Qo1

By Theorem 1.2 (see (1)) the right-hand side converges by p — oo (uniformly with
respect to k > 0) to u(A) = L. Hence (2) holds.

2. Suppose that (2) holds (uniformly with respect to k& > 0). By Theorem 1.1

it suffices to prove that
. A+ 1,t4p)
lim —————=2

p—ro0 p

=1L
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uniformly with respect to ¢ > 0.
We shall show it. Suppose in the first place that ¢ > a;. Then there exist
k,s € N such that

ar <t+1<aps1 < <apys <t+p < apyst1-
Then A(t 4+ 1,t + p) equals to s and so

At +1,t+p) s
T
Further on the basis of choice of the numbers k, s we get
Apts — k11 <p— 1 < apys41 — ag.
Therefore

s At +1,t+p) s
< < .
ptst1 —ag +1 p Apts — QR4

But —ax +1 < —ay_1, so that

S S s+3 s

>
Okts+1 — 0k +1 7 Qppsy1 —Ar—1  Qgyst1 — Ap—1 S+ 3

B 5+3 <1 3 >
Aktst1 — Qk—1 s+3)°
So we get wholly

s+3 (1_ 3 )<A(t+1,t+p)< s

(3) ——— ~
Aktst1 — Qk—1 s+3 D Qkts — Ot1

Let v > 0. Then by assumption (see (2)) there exists a vy such that for each v > wvg
we have

(4) e Ly
Qv — Q41
for all £ > 0.
Using (4) we get from (3)
A(t+1,¢
L—L— 3 < (t+1, +p)—L<¥—L.
Qf+s+1 — Ok—1 Af4s+1 — Ok—1 p Ak+s — Qk+1

Let s > wg. Then by (4) the right-hand side of (5) is less than 5. On the

left—hand side we get
s+3

—— — L > —~.
Q4541 — Ak—1
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Further
-3 -3

> )
Qptst1 — Qg—1 S+ 2

since

Qhtst1 — Oh—1 = (@ — Ak—1) + (a1 — ar) + -+ + (Chgst1 — Qits)

and each summand on the right-hand side is > 1.
Hence for every t > a1 we get from (5) (s > vp)

3 At +1,t
< (t+1,t+p)

6 —y = —L<
(6) gl ) v
From this
A 1
lim M:L
p—00 P

uniformly with respect to t > a;.

It remains the case if 0 < ¢ < ay. Since there is only a finite number of such
t's, it suffices to show that for each fixed ¢, 0 < t < ay, we have

(7) i AC+LE+p) o

p—0o0 p

If t is fixed, 0 < t < a; and p is sufficiently large we can determine a k such
that ap <t+ p < ag4+1. Then

0<t<my<as < ---<ar <t+p<ags

and

(8) At +1,t+p) = At + 1,a1) + A(az, ar).
From this

(8) D <Ggt1, P> ap—ax

and so from (8), (8') we obtain

At L) | Alaaxe) 1 _ AUFLE+p)
p Ak+1 N p
9
©) A(t+1,a1)+ k—1

p ar — a1

<
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Obviously we have A(t + 1,a1) < a; and so

A(t + 1, a1)
p

=o(l) (p— o0).

We arrange the left-hand side of (9). We get

A a2,ap4+1) — 1 1 k Ak+1 — Qg k
(azar) =1 _ 1 O
ak+1 ak+1 ag+1 — a2 Gg41 ap+1 — a2

(if p — oo then k — oo, as well).
Wholly we have

k At +1,t k—1
oy < AL
Ag4+1 — G2 p ak — a1

+ o(1).

If p — oo, then k — oo and by assumption (cf (2)) the terms

k—1 k
-L, ——— L
ap — ay Ak4+1 — G2

converge to zero. But then (9) yields

At +1,t
lim 7( +1t+p)

p—ro0 p

=1L

uniformly with respect to ¢t > 0. So u(A) = L.
The following theorem is a simple consequence of Theorem 3.1

Theorem 3.2. Let A = {a1 < az <---} C N be a lacunary set, i.e.

(10) lim (apt1 — an) = +o0.

n— o0

Then u(A) = 0.

Proof. Let ¢ > 0. Choose M € N such that M~! < ¢. By the assumption there
exists an ng such that for each n > ng we get ap+1 — ap > M.

Let £ > ng, s € N, s > 1. Then
Akys — g1 = (Qgy2 — Gkt1) + (ar43 — app2) + oo+ (Apps — Qpps—1) > (s = 1)M

and so
s s
< 2e.

<
Ak+s — g1 (s —1)M
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Hence for each k > ng and s > 2 we have

<o
Ak+s — Qk+1
If 0 <k < ny, k is fixed, then
(11) lim ——— =,

S0 Ak+s — Ak+1

since, for sufficiently large s

Akts — k1 = [(art+2 — akt1) + -+ (Gng+1 — Any))
+ [(ang+2 = @ng+1) + -+ + (Akts — ars—1)] > M(k+s—no—1)
> M(s — (no +1)).

There exists only a finite number of k’'s with 0 < k < ng, so we see that (11)
holds uniformly with respect to k, 0 < k < ng. So we get wholly
s

lim —— =0
§5=700 Q45 — k41

uniformly with respect to k& > 0. So according to Theorem 3.1, u(A4) = 0.

Remark. The assumption (10) in Theorem 3.2 cannot be replaced by the weaker
assumption

(10" (an+1 — an) = +o00.

im
n—oo

This can be shown by the following example:

oo
A= J{R+ 1Lk +2, K+ ={a1 <ap <+ <an <.
k=1

Here we have u(A) =0, u(A) = 1 and (10’) is satisfied.
Example 3.1 Let « € R, @ > 1. Put a, = [ka], (k = 1,2,...), where [v] denotes
the integer part of v. We show that the uniform density of the set A is é This
follows from Theorem 3.1, since

D 1

lm —— = —
PO QAftp — Af+1 [e%
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uniformly with respect to & > 0. This uniform convergence can be shown by a
simple calculation which gives the estimates (p > 2)
p < p < p .
p—1a+1 " aprp—art1 ~— (p—Da—1

4. Darboux property of the uniform density

For every A C N having the uniform density the number u(A4) belongs to
[0,1]. The natural question arises whether also conversely for every ¢ € [0, 1] there
is a set A C N such that u(A) = ¢t. The answer to this question is positive.

Theorem 4.1.
If ¢ € [0, 1] then there is a set A C N with u(A4) = t.

Proof. We can already suppose that 0 < ¢t < 1. Construct the set

P O O S

Put ar = [%] (k =1,2,...) and set in Example 3.1 a = 1 > 1. So we get

. 1
lim —_r - _ t
PO Qftp — Ak+1 [e%

uniformly with respect to & > 0. The assertion follows by Theorem 3.1.

Let v be a non-negative set function defined on a class S C 2V. The function
v is said to have the Darboux property provided that if v(A) > 0 for A € S and
0 <t <v(A), then there is a set B C A, B € S such that v(B) =t (cf. [6], [7], [9]).

Theorem 4.2. The uniform density has the Darboux property.
Proof. Let u(A) =46 > 0,

A={ag <ay<---<ap<---}
and 0 < t < §. Construct the set
B={bi<by<---<bpy<--}

in such a way that we set
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Putnk:[k;%] (k=1,2,...). Thenny <ng < - <mp < -+,

B={an, <an, <---<ap, <---}, BCA

We prove that u(B) = t.
By Theorem 3.1 it suffices to show that

. p
12 lim ——— =t
(12) P—00 byt p — b1
uniformly with respect to m > 0.
We have (p > 1)
p _ p

bm+p - bm+1 anm+p - a7lm+1
By a simple arrangement we get

m - tm 1
(13) p :TL +p n +1+ p

bm+p - bm+1 Ay p — Anppyr Mmtp — Mm41 +1

A simple estimation gives
) )
Using this in (13) we get

t
(14) lim P _
P00 Nipgp — Nm41 + 1 1)

uniformly with respect to m > 0.
Further by assumption

: p
lim
P00 Ustp — As41

=9

uniformly with respect to s > 0 (Theorem 3.1).
So we get

(15) lim e Mmtd +1_ 5

P70 Anyyyy = Ay

uniformly with respect to m > 0 since the sequence

o0
(nmﬂ) — Nyl + 1>
a7lm+p — Qnppyy p=2
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is a subsequence of the sequence

1]

3]
4]
5]
(6]
7]
8]
9]

[10]

o0
( - >
Os+p = As+1/ 1

By (13), (14), (15) we get (12) uniformly with respect to m > 0.
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ON THE CUBE MODEL OF
THREE-DIMENSIONAL EUCLIDEAN SPACE

I. Szalay (Szeged, Hungary)

Dedicated to the memory of Professor Péter Kiss

Abstract. In [4] the open interval (R=]-11[ with the sub-addition @ and sub-multipli-
cation ® was considered as a compressed model of the field of real numbers (R,+,-). Considering
the points of the open cube |R|3={X=(x1,x2,x3) : T1,32,T3€ I} we give the concepts of sub-line
and sub-plane and construct a bounded model of the three dimensional Euclidean geometry which

is isomorphic with the familiar model R>.

Preliminary

The first exact formulation of classical Euclidean geometry was given by
Hilbert. Nowadays, Hilbert’s axiom-system is well-known. (For example, see [2],
pp. 172, 102, 31, 326, 135-136, 187, 351, 77, 326, 25, 45 and 405.) It is a very
comfortable model, the three-dimensional Descartes coordinate-system R3 is a real
vector space with a canonical inner product. It is used in the secondary and higher
schools, in general. Another model, given by Fjodoroff (see [2] p. 117), is less-known.
Its speciality is that it is able to interpret the points of R? in a given basic plane by
a point (lying on the basic plane) together with a directed circle. Both mentioned
models, are boundless.

Our cube model, being an (open) cube in R?, is bounded. Its speciality is that
it is able to show the “end of line” or the “meeting of parallel lines” and so on.
On the other hand, the elements of this model are less spectacular in a traditional
sense. “Line” may be a screwed curve which does not lie in any traditional plane.
The form “ball” depends on not only its “radius” but the place of its “centre”, too.

The importence of the cube model is in the methodology of teacher training.
Seeing that the axioms are not trivial helps to understand the role of parallelism in
the history of mathematics: Namely, the axiom of parallelism was the only axiom
which seemed to be provable by the other axioms.

The cube model is based on the ordered field of compressed real numbers
situated on the open interval |-1, 1| denoted by R, Introducing the sub-addition &

and sub-multiplication ®, the ordered field (lRl, @, ®) is isomorphic with the ordered

field (R, +,-). The points of open cube |R|3 ={X = (x1,29,23): x1,22,23 € |R|}
give the points of the cube model.
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Introduction

Having the compression function v € R — thu €] — 1,1[ ([1], I. 7.54-7.58) we
say that the compressed of u is given by the equation

(0.1) u, =thu, ueR.

Hence, we have that the compresseds of real numbers are just on the open interval

11, =] —1,1[. Considering the compression function as an isomorphism between the

fields (R,+,-) and (R, ®,®) we define the sub-addition and sub-multiplication by
the identities

(0.2) wdvi=utv, wveR
and
(0.3) WO Ui=u-v, u,v € R,

respectively. If z = u and y = v, then (0,1), (0,2) and (0,3) yield the relations

—r

(04) x@y:1+$y7 .’I/‘,y€|ﬁ|

and

(0.5) x @y =th((arthz)(arthy)), =x,y¢€ B,
Moreover, we can use the identities

(0.6) uSv:=u—v, u,v€ER

[ B | P

(0.7) uOQui=uiv, wveER, v#0
or
=Y
(08) TOyY = 1—.’17y, xayelﬁl
and
arthx
(0.9) rQy=th(yip), Y€ Ry A0
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where the operations © and () are called sub-subtraction and sub-division, respec-
tively.
The inverse of compression is explosion defined by the equation

U
(0.10) x =arthz, xz€ R

L
and z is called the exploded of z. Clearly, by (0.1) and (0.10) we have the identities

U
(0.11) r= /() z € R
and
L
(0.12) u= (u), ueR.

1. Operations on |R|3

Having the familiar three dimensional Euclidean vector-space R® with the
traditional operations (addition, multiplication by scalar, inner product) as well as

the concepts of norm and metric, we give their isomorphic concepts for |R|3 which

is the set of points X = (1,22, x3) such that x1, 24,23 € . Clearly, |R|3 forms
an open cube in R3. Considering the vectors X = (z1,22,23) and Y = (y1,y2,y3)

from |R|3 we define sub-addition as

(1.1) XOY = (21 ©y1,72 D y2,73 Dy3),
sub-multiplication by scalar ¢ € |E| as

(1.2) cOX=(cOx1,c@x2,cOx3)

and sub-inner product as

(1.3) XOY =(x10y1) @ (22 © y2) © (r3 © y3).

Introducing the exploded of the point X = (x1,z2,x3) as

L I S |
(1.4) X:(l‘1,l‘2,l‘3), XeR
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and the compressed of the point U = (u, ug, u3) as

(15) |2| = (|U1|,|U2|,|U3|), Ue R3

we have the identities

= 3
(1.6) X :l(i)l, X e R,
and

L
(1.7) U= (U), UeR’

Using (0.11), (0.2), (1.5) and (1.4), the identity (1.1) yields

L [ 3
(1.8) XoY=X+Y, XYeER

Moreover, by (0.11), (0.3), (1.4) the identity (1.2) yields

UL 3
(1.9) cOX=c- X, c€eR and X¢€R.

|’
Considering the operations (1.1) and (1.2) we have the following

Theorem 1.10. |R|3 is a real vector space with the sub-addition (1.1) and scalar

sub-multiplication (1.2). In detail, we have the following identities:

(1.11) XeY=Ya&X, XYeR’
(1.12) (XoY)eZ=Xo (Y oZ), XY.Z€cR’
(1.13) X®o=X, where X € |R|3 arbitrary and o = (0,0,0),

X®(—X)=o0, where —-X
(1.14) 3
is the familiar additive inverse of x € IRI .

Moreover, the identities

(1.15) 10X=X, XeR’
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3
(1.16) cOXdY)=(coX)®(cOY), ce R, X,YeR,
(1.17) (1) X=00X)®(20X), c,c2€E B,z e |£|3’
(1.18) (Cl @CQ)@X201®(02®X), Cc1,C2 EIEIX E|£|3,

also hold.

Remark 1.19. By Theorem 1.10 we say that |R|3 is a sub-linear space with the
operations (1.1) and (1.2).
Using (0.11), (0.3), (0.2) and (1.4) the identity (1.3) yields

L L 3
(1.20) XoY= X Y, XYeR,
LJ

where “” means the familiar inner product (of vectors X and Y ') in R®.

For the sub-inner product we have

Theorem 1.21. |R|3 in a Euclidean vector space with the sub-inner product defined

by (1.3) such that the sub-inner product has the following properties

(1.22) XoY=YoX, X)YeR,
(1.23) (XeY)0Z=(X0Z)®(YoZ), XY, ZeR
(1.24) (cOX)oY =co(XOY), ce R, XYeR

and for any X € |R|3 the inequality

(1.25) X ©®X >0 holds such that X ® X =0 ifandonlyif X =0.

Remark 1.26. By Theorem 1.21 we say that |R|3 is a sub-euclidean space with the
sub-inner product (1.3).
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In [4] the concept of sub-function was defined for one variable (see [4], (0.8)
and (0.9)). Hence, we have the sub-square root function

(1.27) sub /1 = Iﬁl’ z€[0,1).

Having the property (1.25) and using the sub-square root function we can define
the sub-norm as follows:

(1.28) |X]| s =subVX O X, e R,
=
Using (1.27), (1.20) and (0.12) the definition (1.28) yields

o 3
(1.29) X0 o = I Xl 2 R,

where || - || g3 means the familiar norm of vectors.

Remark 1.30. Applying the familiar Cauchy’s inequality by (1.20), (0.1), (0.3)
and (1.29) we have the inequality

3
‘X OY|< HXHlRls © ||Y|||R|37 XY, e |£| :

Corollary 1.31. The sub-norm has the following properties

1.32 X| s >0, (X € R”) such that||X|| ,s = 0 if and only if X =0,
IRI - IRI

3
(1.33) ||C®XH|R|3 =l o HXHlRls, ce |£|’ X e |E|
and

3
(1.34) | X @YH|£|3 < HXHlﬁs &5 ||Y|||E|s7 XY € |£| .

Remark 1.35. By Corollary 1.31 we say that |R|3 is a sub-normed space with the
sub-norm (1.28).

Finally, we define the sub-distance of elements of |R|3 as follows

(1.36) dl Rls(

X, V)= ||X9YHR3, X,Y elng’
Y —
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where the sub-subtraction of vectors is defined by
(1.37) XoY=Xa(-Y).
Using (1.29), (1.37), (1.8), (1.7), (1.4) and (0.10) the definition (1.36) yields

[

3
(1.38) lels(X,Y) =dm(X,Y), X YeR’

where dps is the familiar distance of the points of R3.

Corollary 1.39. The sub-distance has the following properties

. d +(X,Y)=d
(1.40) lR”fo) )

(Y, X), X,YeR

(1.41) dRs(X, Y) >0 such that dRs(X,Y) =0 if and only if
Y Y

X=Y, X,YeR
and

(1.42) dps (X,Y) <

(X, Z)®d
(X2 edy

3
d|R| (2,Y), XY,ZeR’

Remark 1.43. By Corollary 1.39 we say that lRl3 is a sub-metrical space with the
sub-distance (1.36).

2. On the geometry of |R|3

Our starting point is the Euclidean geometry of R? with its points, lines and
planes based on the axioms formulated by Hilbert. Now we construct the cube-
model of the classical Euclidean geometry. The points of the model will be the
points of R3. Considering a line £ in R? its compressed will be the set of compressed
points of £ denoted by ¢, Considering a plane s in R3? its compressed will be the

set of compressed points of s denoted by s The set A = {, is called sub-line and

the set 0 = S, 1s called sub-plane. Clearly, A C |R|3 and o C |R|3. Moreover, the

exploded of a sub-line is a line and the exploded of a sub-plane is a plane, that is
L U
A=/fand o =s.
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By the axioms of the euclidean geometry of R we have the properties of the
geometry of |R|3.

Denoting by L the set of lines of R3, by P the set of planes of R3, (R3, L, P)
is a so-called incidence geometry (see [3]). Considering L = {(;: ¢ € L} and

P, = {s;: s € P}, (|R|3,|L|,|Pl) is also an incidence geometry. Now we give the
properties of “incidence”.

Property 2.1. If X and Y are distinct points of |R|3 then there exists a sub-line
A that contains both X and Y

Property 2.2. There is only one A such that X € Aand Y € A.

Property 2.3. Any sub-line has at least two points. There exist at least three
points not all in one sub-line.

Property 2.4. If X,Y and Z not are in the same sub-line then there exists a
sub-plane ¢ such that X,Y and Z are in 0. Any sub-plane has a point at least.
Property 2.5. If X, Y and Z are different non sub-collinear points, there is exactly
one sub-plane containing them.

Property 2.6. If two points lie in a sub-line, then the line containing them lies in
the plane.

Property 2.7. If two sub-planes have a joint point then they have another joint
point, too.

Property 2.8. There exists at least four points such that they are not on the same
sub-plane.

We will say that the point Z is between the points X and Y on the sub-line
L L L U
Aif Z is between X and Y on the line A. The concept of “between” has the

following properties:

Property 2.9. If Z is between X and Y then X,Y and Z are three different points
of a sub-line and Z is between Y and X.

Property 2.10. For any arbitrary point X and Y there exists at least one point
Z lying on the sub-line determined by X and Y such that Z is between X and Y.
Property 2.11. For any three points of a sub-line there is only one between the
other two.

Property 2.12. (Pasch-type property.) If X, Y and Z are not in the same sub-line
and A\ is a sub-line of the sub-plane determined by the points X,Y and Z such
that A has not points X,Y or Z but it has a joint point with the sub-segment XY
of the sub-line determined by X and Y then A has a joint point with one of the
sub-segmentes X Z or Y Z of the sub-lines determined by X and Z or Y and Z,
respectively.

We will say that two sets in |R|3 are sub-congruent if their explodeds are

congruent in the familiar sense. Let two half-lines be given with the same starting
point W and let be U and V their inner points. Let us consider the familiar convex



On the cube model of three-dimensional Euclidean space 23

angle £ UWV. Compressing this angle we obtain the sub-angle sub £ U, W V|
(or sub-angle sub £ XZY where X = U Y =V, and Z = W) with the peak-point
|W| and bordered by the sub-half-lines determined by the points |W|’ IU | and |W|’
V' The concept of “sub-congruence” and “sub-angle” have the following properties

Property 2.13. On a given sub-half-line there always exists at least one sub-
segment such that one of its end-points is the starting point of the sub-half-line
and this sub-segment is sub-congruent with an earlier given sub-segment.
Property 2.14. If both sub-segments p; and p are sub-congruent with the sub-
segments p3 then p; and ps are sub-congruent.

Property 2.15. If sub-segment p; is sub-congruent with sub-segment ¢; and ps is
sub-congruent with ¢ then p; U ps is sub-congruent with ¢; U go.

Property 2.16. On a given side of a sub-half-lines there exists only one sub-angle
which is sub congruent with a given sub-angle. Each sub angle is sub-congruent
with itself.

Property 2.17. Let us consider two sub-triangles. If two sides and sub-angles
enclosed by these sides are sub-congruent in the sub-triangles mentioned above
then they have another sub-congruent sub-angles.
L

We say that the sub-lines A1 and o are sub-parallel if their explodeds A1 and
L
Ao are parallel lines in the familiar sense. Now we have
Property 2.18. If a sub-line \; and a point X are given such that X is off \;
then there exists only one sub-line Ao through X that is sub-parallel to A;.

Finally, we mention two properties for continuity.
Property 2.19. (Archimedes-type property.) If a point X; is between the points
X and Y on a sub-line then there are points X5 Xs,..., X, such that the sub-
segments X; 1X;; (1 = 2,3,...,n) are sub-congruent with sub-segment X X; and
Y is between points X and X,,.
Property 2.20. (Cantor-type property.) If {X,¥,}22, is a sequence of sub-
segments lying on a sub-line A such that for any n =1,2,3,..., Xp11Yn+1 C XY,
then there exists at least one point Z of A\ such that Z belongs to each X, Y,,.

To measure the sub-segments and sub-angles we can use the principle of
isomorphic expressed by the identities (1.8), (1.9) and (1.20). If the sub-segment p
has the end-points X and Y then its sub-measure can be defined as follows:

L
(2.21) submeasp = meas p

L U
where meas p is understood in the traditional sense. Considering that p is a

L L
segment bordered by X and Y we have that

U L L
meas p = Drs( X, Y).
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Hence, by (2.21) and (1.38) we have

(2.22) submeasp = d|R|

S(XaY)a

which is the sub-distance of X and Y.
Similarly, to measure sub-angles we write

L L L
(2.23) submeassub £ XZY = meas £ X Z YI

(I
where meas £ X Z Y is understood in the traditional sense. Using the concept

of sub-function again, we obtain that

[

(2.24) subarccosz = arccos ¥, € [—1,1]

Moreover, we have the following

Theorem 2.25. If X, Y and Z are given points oflRl3 such that X # Z andY # Z
then

submeassub £ XZY

(2.26) =subarccos((X o 2)o (Yo 2Z)) O(

3 (X, Z)@lels(Y,Z))).

d
il

3. Examples for special subsets of |R|3

Example 3.1. First, we show that the equation

(3.2) X=Ba(roM), 7€R

where B, M are given points of |R|3 with the condition
(3:3) M e =1

represents a sub-line. Really, using (1.8), (1.7) and (1.9) the equation (3.2) yields
the equation

L [ L
(3.4) X=B+tM, t=r1€R
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which represents a line. Moreovoer, by (1.29) and (0.12) the condition (3.3) means
that

L
(3.5) | M| =1

holds. Writing that B = (by,b2,b3) and M = (mq, m2, mg3), the equation (3.2) is
equivalent to the equation-system

X1 :bl@(Tle)

Zo = by ® (T ©@ma), T € R,

x3:b3€B(T®m3)

which considering (0.4) and (0.5) can be written in the following form

by +th((arth7)(arthm,))
T by th((arth 7)(ar thm;))
_ bo+th((arth7)(arthmsy))
(36) 2T, th((arth 7)(ar thms))’ (-l<r<)
by +th((arth7)(arthms))
T3 T T by th((ar th7)(ar thmg))”

. 1 1 1
In the special case B = (0,0, 5) and M = (th %,th %,th
th( L arth )
T = —arthr
' V6
1
xg—th(—arth7>, -1<7<1

V6

o 1+ 2th (\/lé arthr)

2+ th (% arthT)

\/lé) then (3.6) is

and the sub-line is shown in the following figure:
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Example 3.9. The sub-line given by the equation-system (3.7) (see Fig. 3.8) and
the sub-line given by the equation-system

1
xz1 =th| —=arthr
' (Vé >

1
3.10 ro =th| —arth7], —-1<7<1
(310) ’ (\/6 >

2
z3 =th| —=arthr
’ (Vé )

are sub-parallel and their graphs are shown in the following figure:

Fig. 3.11

Example 3.12. The sub-line given by the equation system (3.7) (see Fig. 3.8) and
the sub-line given by the equation-system

1
1 =th| —=arthr
' (Vé )

1
9 =—th|—arthr), —-1<7<1
’ (VE )

1+2th (%arth7>
xr3 =

2 4+ th (\/lgarthT)

(3.13)

has the joint point B = (O, 0, %) Their graphs are shown in the following figure:




On the cube model of three-dimensional Euclidean space 27

Example 3.15. The sub-lines given by (3.10) (see Fig. 3.11) and (3.13) (see Fig.
3.14) have neither a joint point nor a joint sub-plane. They can be seen in the
following figure

Example 3.17. The equation

1
(3.18) zzx@y@i, z,y € R

represents a sub-plane. Really, by (0.11) and (0.2) the computation

[ I lﬁ' L lu U u'

z=z@y®; = (2)®(y),e((3)=2+y®((3)),
'\_: O \4' [ R T

=(z+y+ (3))= z+y+s)

U U u
shows that if (z,y, z) satisfies (3.18) then the points ( z, y, z ) form a plane. By

(0.4) the equation (3.18) is equivalent to the

Yy +2x+2y+1
3.19 = , —l<zy<l,
( ) : 20y +x +y + 2 wY

so we have the surface of a sub-plane
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The equation (3.19) shows that the sub-line (3.7) coincides with the sub-plane
given by (3.18) . The Fig. 3.20 shows this fact.

The sub-plane determined by the equation

_ Tty
(3.21) Zx@y(l—l—xy)’ r,y € R,

is sub-parallel with the sub-plane given by (3.18). Their surfaces are shown in the
following figure:

Fig. 3.22

Fig. 3.22 shows that the sub-line (3.10) is on the sub-plane (3.21).
Example 3.23. Considering the set

(824)  Sxo(p) = {X € Bt d ps(X, Xo) = p, Xo € R’ and pe R*}

by (1.38) and (0.12) we have

| [
(3.25) dps( X, Xo) = p,

L L u
that is the points X € R? form a sphere with centre X , and radius p . Therefore

Sx,(p) is called a sub-sphere with centre Xy and radius p. By (1.4), (3.25) and
(0.10) we get the equation of sub-sphere

(artha — arthzg)? + (arthy — arthyg)?+

(3.26) ) ,
+(arthz — arth z9)* = (arth p)

where X = (z,y, 2) and Xy = (20, yo, 20) are elements oflng.

Although the sub-sphere is determined anambiguously by its centre and radius,
its form depends on the place of the centre too. Moreover, it is not symmetrical in
a traditional sense for its centre. The following figures show the sub-spheres

1 3
S(lll’llrlll) ('(L)J’ S(llrlll’lll) 2y and S(iwlwll) ((z))
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having the equations
1
(arthz —1)* + (arthy — 1)® + (arthz — 1)? = 1

(arthz —1)* + (arthy — 1)* + (arthz — 1) =1

and 0
(arthz — 1)* + (arthy — 1)® + (arthz — 1)? = T

respectively
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The sub-spheres So(p) are symmetrical in a traditional sense for their centre
(3.30)

0. By (3.26) the sub-sphere Sp(p) has the following equation

(arthz)? + (arthy)? + (arth 2)? = (arth p)?.

Considering now the sub-spheres So (l(%)l), So(1) and So(l(%)) we obtain their
equations by (3.30)

(arthz)? + (arthy)? + (arthz)? = -

(arthz)? + (arthy)? + (arthz)? =1
and

(arthz)? + (arthy)? + (arthz)? = =

and they are shown in the following figures:

7)

\Z

Y
%

17
i

Al

\
\

a7y
Z:

17

Fig. 3.32
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Fig. 3.33

4. Proof of Theorems

4.1. Proof of Theorem 1.10. Considering that the verifications of identitites
(1.11)—(1.14) are very similar, we give the proof of identity (1.12), only. After (1.8)
and (1.7) we apply the familiar associativity of addition of vectors and using (1.7)
and (18) again, we obtain:

|
[ L L L L
XeY)eZ= XoY + Z=(X+V)+ 7,
e —
L L [ L L [ L L L
=(X+Y)+ Z = X+(Y + Z)|:|X+(|Y+ Z|)|
L [E—
= X+YazZ =Xo{Yoz).

Considering that the verifications of identities (1.15)—(1.18) are very similar,
we give the proof of identity (1.16), only. After (1.19), (1.8), and (1.7) we apply a
familiar distributive property of multiplication of vectors by scalar and using (1.9)
and (18) again, we get

|
U [ [ [ [ L
cOXaY)=cad XY = c(X+Y) =c(X+Y)
[y [y II_I\_I‘ |UI_1‘
:|CX+CY|:|(|CX|)+(|C Y)

[EE— | E—
= cOX + coY =(oX)a(coY).

4.2. Proof of Theorem 1.21. The verifications of identities (1.22)—(1.24) are
very similar to the verifications mentioned above, so we prove the property (1.25),
only. Using (1.20), (1.4) and (0.1)

[ [ [ L L
XoX= X X =th((z)?)+(z,)"+(2,)?) >0
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L
is obtained. Moreover, we have zero if and only if X = O which by (1.4) and
(0.10) means that X = O.

4.3. Proof of Theorem 1.31. The proof of property (1.32) is very similar to
the proof of property (1.25), so we omit it. The identity (1.33) does not need new
methods, so we accept it. We prove inequality (1.34). After (1.29), (1.8), (1.7) and
(0.1) we apply the Minkowski-inequality and using (0.2) and (1.29), we can write

| I L] LJ
I XY lasy= | X + ¥ llas, <

XV g =

L L L L
S X Nre + 1Y Nlrsy = | X llrsy @ 1Y [Irs; = [ X|| ps & Y] -
(| —1

4.4. Proof of Theorem 1.39. Identity (1.40) is trivial, the verification of property
(1.41) is easy, so we omit them. We verify the inequality (1.42), only. After (1.38)
we use the triangular inequality and using (0.2) and (1.38) again, we have

[ I | [
lelg(X,Y):ldRs(X, Y) < dp( X, Z)+dpa(Z,Y) =

L [
:ldRs( X, Z)l@ldRs( Z Y)I: lels(X,Z) @d|R|3(Z,Y).

4.5. Proof of Theorem 2.25. Our proof is based on the well-known inequality
concerning the familiar angles enclosed by vectors. Namely,

(U= W)V = W) = dps(U,W) - dga(V, W) cos L UWV

L
where U, V,W € R? such that U # W and V # W. Hence, denoting by U = X ,

LJ L
V=Y and W = Z, we have

T T
i (X -2)(Y - Z)
(4.6) meas £ X Z Y = arccos —— e
drps( X, Z)-drs(Y, Z)
N O O I L
Applying (1.7), (1.8) and (1.37) we have that X — Z = X6 Z and Y —

(I I
Z =Y & Z hold. Hence (1.7) and (1.20) yield

LJ

(4.7) (X — 2) (Y - Z)=

(X@Z)@(Y@Z)‘.
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On the other hand, by (0.12), (1.38), (0.12) again, (0.3) and (0.11) we have

:|( d ls(X,Z) )|®|(d|R|3(Y,Z))| = les(X,Z)leRls(Y,Z).

Hence, by (4.7), (0.12), (0.7) and (0.11) we can write

[ L L (] | |
(X-2z)(Y-2z)  (Xez)o¥eZz)
Ny | Ny | | |
dps( X, Z)-dps(Y, Z)  dps(X,Y)0d ps(V, 2)
|

:(( (Xoezoe (Yo 2) ))
! Id 3(X,Z)®d |
|

|R| S(KZ)

R,

I ] -
= (| (X@Z) © (Y@Z) )|®| ( lels(X’Z)leRls(sz) )|

= (X02)0(Y02) O p (X, 2)0d (Y, 2))
— —1

Returning to (4.6) we obtain that

holds. Hence, (2.23) and (2.24) yield

submeassub £ XZY

= arccos (XezZ2)oYoeZz)® (dlﬁls(X,Z) @lels(Y, 7)) |
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=subarccos((X 0 Z2)0o (Y& Z) O (d,:(X,2)0 dRs(Y7 Z))),

IRI (|

that is, we have (2.26).
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Abstract. Let K be a tamely ramified algebraic number field. The paper deals with
polynomial cycles for a polynomial f€Z[z] in ambiguous ideals of Zx. A connection between the

existence of “normal” and “power” basis and the existence of polynomial orbits is given.
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1. Introduction

Let R be a ring. A finite subset {zg,x1,...,2,—-1} of the ring R is called a
cycle, n-cycle or polynomial cycle for polynomial, f € R[z], if for i = 0,1,...,n—2
one has f(x;) = zit1, f(zn—1) = xo and z; # z; for i # j. The number n is called
the length of the cycle and the z;’s are called cyclic elements of order n or fixpoints
of f of order n.

We can introduce a similar definition for a polynomial cycle in the situation
that S, R are rings and R is an S-module.

A finite subset {zg,x1,...,2,-1} of an S-module R is called a cycle, n-cycle
or polynomial cycle for polynomial f € S[z|, if for ¢ = 0,1,...,n — 2 one has
f(xs) = xip1, f(xn—1) = zo and z; # x; for i # j.

A finite sequence {Yo,Y1,- -, YmsYm+1y---sYm+n—1} is called an orbit of
f € S[z] with the precycle {yo,y1,...,Ym—1} of length m and the cycle
{Ym Ym+1, - - Ymi+n—1} of length n if f(v;) = vit1 , f(Ymsn—1) = ym for distinct
elements 4o, Y1, -, Ym+n—1 of R.

Let K be a Galois algebraic number field and let K/Q be a finite extension
of rational numbers with a Galois group G. We will be interested in polynomial
cycles generated by conjugated elements for polynomials from Z[z] in the ring of
integers Zi of the field K and in ambiguous ideals of Zk.

First we recall some general properties of ambiguous ideals according to Ullom
[8]. Let K/F be a Galois extension of an algebraic number field F' with the Galois
group G and Zg (resp. Zr) be the ring of integers of K (resp. F').

This research was supported by GA CR Grant 201/01/0471.
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Definition 1. An ideal U of Zk is G-ambiguous or simply ambiguous if U is
invariant under action of the Galois group G.

Let & be a prime ideal of F' whose decomposition into prime ideals in K is

SZk = (p1.p2- - 9g)°

Let U(Y) = p1.92 - - - 04 It is known that

(i) T(Y) is ambiguous and the set of all ¥(F) with  prime in F is a free basis
for the group of ambiguous ideals of K.

(ii) An ambiguous ideal U of Zx may be written in the form Uy.T where T is an
ideal of Zr and
Up = T(S9)* .. ()

where 0 < a; < e; and e; > 1 is the ramification index of a prime ideal of Z
dividing ;. The ideal U determines Uy and T uniquely. The ambiguous ideal
Uy is called a primitive ambiguous ideal.

In our investigation we will focus a special attention to cyclic extensions K/Q
of prime degree [. In this case ambiguous ideals with normal basis were characterized
in papers [3], [4] and [8].

2. Results

Let K/Q@ be a finite normal extension of rational numbers with a Galois group

G.

Theorem 1. Let f € Z[z] and Y = {yo,y1,...} be a sequence of elements of Z.
Let i < j such that y; and y; are conjugated over Z. Then Y is an orbit with the
precycle of length m < 1.

Proof of Theorem 1. We denote by fi the k-iteration of polynomial f. Then
fi-i(yi) = y;-

The elements y; and y; are conjugated over Z and there is such an automorphism
¢ € G that ¢(y;) = y;. Coefficients of f are from Z and it immediately follows that

¢°(yi) = ¢ 1 (f(ya) = f(¢" (i)
By induction it follows that
O (Yi) = Yirs(j—i)-

The automorphism ¢ is of a finite order and so there is such an sg that ¢* (y;) = y;.
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Corollary 1. Let K/Q be a cyclic extension of a prime degreel. Let xq, 1, ..., %11
be a polynomial cycle of the length | for f € Z[x] in Zk. Then either all x; are
conjugated or x; are pairwise not conjugated.

Corollary 2. Let K/Q be a cyclic extension of a prime degreel. Let xg, z1, ..., Tp—1
be a polynomial cycle of the length n for f € Z[z| in Zi. Then either | divides n
or x; are pairwise not conjugated.

Now we will consider polynomial cycles of conjugated cyclic elements for
polynomials f € Z[x] in ambiguous ideals of Zx, where K/Q is a tamely ramified
extension with Galois group G.

The following theorem gives a connection between the existence of a power
basis for ambiguous ideals and the existence of a polynomial cycle consisting of
elements of normal basis.

Theorem 2. Let K/Q be a tamely ramified cyclic algebraic number field of
prime degree | over (). Let & be a ambiguous ideal of Zx with a normal basis
{ap,a1,...,aq-1} over Z. There exists a polynomial f € Z|[x] of degree k < | with
the polynomial cycle {«g,aq,...,aq_1} if and only if there are 0 < i # j < that

=l 4 ao,

o = ata§ + at—10;

where a; € z.

Proof of Theorem 2. Let {ap,a1,...,a;-1} be a polynomial cycle for f € Z[x]
of degree k <[
flz) = arz® + ap_12" T+ - + ao.

Then for example

k—1

a1 = f(ag) = ako/g +ag—10q ~ + -+ ao.

Let there are 0 <4 # j < [ such that

Q; = ata§ + at_1a§-71 + -+ ap.
Then by Theorem 1 there is a polynomial cycle for g(z) = a;z’ +a;_12 71+ - +aq
which started with conjugated elements o, ;. It is obvious that all elements of this
cycle are conjugated and by Corollary 2 it follows that the polynomial cycle consists
of elements g, a1, ..., a;_1. Because all the elements are conjugated and they have
the same minimal polynomial over Z of degree [, there exists a polynomial f € Z[x]
of degree k < [ with the polynomial cycle consisting of elements «ag, a1, ..., ;1.

Remark. In the above Theorem 2 let f € Z[z]| be a polynomial with the normal
basis

{Ozo,Oél, . ,Ozl_l}
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as a polynomial cycle. Let
falz)=a'+ 12"+ F o
be a minimal polynomial for «;. Then for any i € {0,1,...,] — 1} the set

{co,aia?, ... ™y

is a “power” basis of . For example let Q(¢7) be the 7-th cyclotomic field. The
ideal p7 lying over 7 in maximal real subfield K of ({7) has a normal basis

a=2-C -G a1 =2-G - a=2--¢.

The polynomial f(x) = 22 + 4z has the polynomial cycle g, a1, az. The minimal
polynomial of «; is

falz) =a® —72% =22 — 7= (z — ap)(x — a1)(z — az).
For example a “power” basis for o7 over Z is {7,2 — (7 — (%, (2 — (7 — ¢8)2}.
Some of previous properties hold more generally.

Theorem 3. Let K/Q be a tamely ramified cyclic algebraic number field of prime
degree | with the conductor m = py.ps...ps. Let S = plt.ph? ... pls with 0 <
t; <l forj =1,2,...,5 be an ideal of Zk lying over conductor of K and let
{zo,21,...,2n—1} be a polynomial cycle in & for

f(x) =apz™ +ap_ 12" '+ -+ ayx +ag, a; €7,

such that S is a minimal product of ideals p; which contains x1. Then ¥ is a
minimal product of ideals ; which contains x; fori =0,1,...,n—1 and m divides
agp.

Proof of Theorem 3. Let f € Z[z] and {z¢,z1,...,Z,—1} be a polynomial cycle
for f in an ideal & C Zk. Then for all ¢ € {0,1,...,n — 1} we have f(x;) = ;41
where indices are taken mod n. Both z;, x;41 € & and so from

Tiv1 = [(25) = anx + an_12) "+t arz; +ag € S,
it follows that
n—1

ag = Tit1 — (anx] +an_1z] + - +arx;) € S

Let v; be a valuation coresponding to the ideal p; for j = 1,2,...,s. We have
vj(z1) =t; and v;(x;) > ¢;. Hence

vj(ag) = min{vj(z2), vj(anzy), vj(an-1277"), ... vj(arz1)}
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and so m divides ag. From this it follows that
Uj(ao) >1> tj.
Let Uj(.’L‘i) > tj, then

vi(Tig1) > min{vj(ao),vj(anx?),vj(an,lx?_l), ovilaixs)} >t
But it is impossible, since f(z,—1) = x1. Theorem 3 is proved.

References

[1] DiviSovA, Z., On cycles of polynomials with integral rational coefficients,
submitted.

[2] HALTER-KOCH, F. and NARKIEWICZ, W., Scarcity of finite polynomial orbits,
Pub. Math., 56, No.3-4 (2000).

[3] JAKUBEC, S. and KOSTRA, J., A note on normal bases of ideals, Math.
Slovaca, 42, No.5 (1992), 677-684.

[4] JAKUBEC, S. and KosTRrA, J., On the existence of a normal basis for an
ambiguous ideal, Atti Semin. Mat. Fis. Univ. Modena, 46, No.1 (1998), 125
129.

[5] KOosTRA, J., A note on Lenstra constant, polynomial cycles and power basis
in prime power cyclotomic fields, submitted.

[6] NARKIEWICZ, W., Polynomial cycles in algebraic number field, Colloquium
Mathematicum, 58 (1989), 151-155.

[7] NARKIEWICZ, W., Polynomial Mappings, Lecture Notes in Mathematics 1600,
Springer-Verlag, 1995.

[8] ULLowMm, S., Normal basis in Galois extensions of number fields, Nagoya Math.
J., 34, (1969), 153-167.

Juraj Kostra

Department of Mathematics of the Faculty of Sciences
University of Ostrava

30.dubna 22

701 03 Ostrava, Czech Republic






Acta Acad. Paed. Agriensis, Sectio Mathematicae 29 (2002) 41-46

NOTE ON RAMANUJAN SUMS
Aleksander Grytczuk (Zielona Goéra, Poland)

Dedicated to the memory of Professor Péter Kiss

r

Abstract. Let S= ) > bpexp(2miet)| , where r>1 is a real number, (b,) is a
1<a<gq| 1<n<gq
(n,q)=1

sequence of complex numbers. Then we obtain a lower and upper bound for S and moreover, we

give an application of the Ramanujan sum to produce some identities given in the formulae (**)
and (C).

AMS Classification Number: 11L03

Keywords and phrases: Ramanujan sums, arithmetical functions

1. Introduction

Let f:IN — C be an arithmetic function and let f* = pu * f be the Dirichlet
convolution of the Mébius function p and the function f, i.e. f *(n) Z pw(d)f (%),

’I’L

Moreover, let cg(n) = > exp <2m’hq—”) be the Ramanujan sum. Then the series
1<h<gq
(h,q)=1

of the form: )" a4cq(n), where ag = Y, f:sz—zlq), are called as Ramanujan series.

Important result concerning Ramanujan’s expansions of certain arithmetic function
has been obtained by Delange [3]. Namely, he proved that, if $ [f*(n)] < o0
n
then )" |aqcq(n)] < oo for every positive integer n and ) aqcq(n) = f(n). In the
q

q
proof of this result Delange used of the following inequality:

(D) > lea(n)| < 29%)n,

dlk
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where w(n) is the number of distinct prime divisors of n. Delange conjectured (see
[3]) Lemma, p. 263) that the inequality (D) is the best possible. However, we proved
in [4] that for all positive integers k and n the following identity is true

(+) S fea(n)| = 2°(5) (k).
dlk
where (k,n) is the greatest common divisor of k and n.

Redmond [10] generalized (%) for larger class of arithmetic functions and
Johnson [7] evaluated the left hand side of (x) for second variable of the Ramanujan
sums. Further investigations connected with (x) have been given by Johnson [§],
Chidambaraswamy and Krishnaiah [2], Redmond [11] and Haukkanen [6]. Some
patrial converse to Delange result and an evaluation of the Ramanujan sums defined
on the arithmetical semigroups has been given in our paper [5].

In the present note we give further applications of (x). Namely, we prove the
following:

Theorem 1. Let S (k,n) =>_ Qw((dii’”) (%) (d,n), then we have
dfk

(x%) S (k,n) = ﬂ, if p*J

e ()

S (k,n) = o otherwise,

for a prime p,

k
(k,n)

where ¢ is the Euler function.
Now, we denote by S the following sum:

T

(5% %) S=S,bur)= S | Y bnexp(%m'%) :

1<a<q | 1sn<gq
(n,q)=1

where > 1 is a real number and (b,,) is a sequence of complex numbers.

In the paper [1] Bachman proved a very interesting inequality for the sum S
defined by (% % %), namely

(B) Sz(w@ﬂ”(

where Z'bn denotes the summation over all natural numbers n such that 1 < n <gq
n

and (n,q) = 1. Using (B) and Hélder inequality we prove the following estimation
for the sum S.

) 3 e R,

1<k<q
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Theorem 2. Let r > 1 be a real number. Then for any sequence (b,,) of complex
numbers we have.

r

(1) 291 3" byl | ¢TSS <qle() T Y bl

1<n<gq 1<n<gq
(n,q)=1 (n,q)=1

Remark. We note that in general the estimation (1) is the best possible. Indeed,
putting in (1) b, = ¢ for all natural number n, ¢ = 2% with « = 1 and r = 1, we
get 2 <5 < 2.

Proof of Theorem 1. In the proof of Theorem 1 we use the following well-known
Holder identity (see, [9]):

e (O
(1) exn) = - &Pﬁ)u (i)

where cx(n) is the Ramanujan sum, ¢ and p is the Euler and Md&bius function,
respectively. Let us denote by

) F(k) = 2°(@5) (k,n).

Then, if f and F are given multiplicative arithmetical functions then by M&bius
inversion formula we have

(3) > f(d) = F(k) if and only if f (k) => p (S) F(d).

dlk dlk

Using (2) we can represent the identity (x) in the form:

(4) F(k)=)_lea(n)l.

dlk

Hence, by (4), (3) and (%) we obtain

) o )] = S 27 (§) (o).

dlk

On the other hand by (HI) we have

(6) =2 Epﬁ) ‘“ ((kzkm)‘
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Comparing (5) to (6) we get

0 e ()

(k.n)

Now, we remark that by the definition of the Mobius function it follows that, with

a prime p if p? | ﬁ then ’M (ﬁ)’ =1 and ‘,u (ﬁ)‘ =0if p%ﬁ. Hence,
the proof of Theorem 1 is complete.
From the Theorem 1 immediately follows the following.

Corollary 1. Let u denote the Mbius function and let w (d) is the number distinct
prime divisors of d. Then we have

(C) S(k) =Y 22y (g) =1, if p’lk and S (k) = 0,if p? | k.
dlk

Proof of Theorem 2. In the proof of Theorem 2 we use of the following

Lemma 1. Let ap > 0 and r > 1 be real numbers. Then we have

T

(8) Y Az Y w

1<k<q 1<k<q

Proof of Lemma 1. Let » > 1 and ax > 0,b; > 0 be real numbers and %—&—% =1.
Then by the well-known Hélder’s inequality we have

r

(H) > aj Svi| = ) arbk

1<k<q 1<k<q 1<k<q

1 1
s

Putting in the inequality (H) by = 1 in virtue of 2 = 1—1 we obtain (8). For r = 1,
(8) follows immediately.

Now, we denote by ax = |cq ()|, then from (8) we get

T

(9) ¢ e BT D leg ()

1<k<q 1<k<q



Note on Ramanujan sums

45

On the other hand we can calculate that

(10) Y leg (k) =2Wp(q).

1<k<q

Hence, by (10) and Bachman'’s inequality (B), we obtain

r

(11) S > | 2@ jg: bol | ¢4 7.

1<n<gq
(n,q)=1

It remains to prove the right hand side of (1). In this purpose denote by

S,;: Z by, exp <27rikq—n) .

1<n<gq
(n,q)=1

Then we have

(12) CHESD D
1<n<gq
and consequently we obtain ()=t

(13) () <| 3 ol

1<n<gq
(n,q)=1

In the same way as in Lemma 1 we can deduce the

T

following inequality

(14) bl | <e@) ™ D bl

1<n<gq 1<n<gq
(n,q)=1 (n,q)=1

From (13), (14) and (% * x) we obtain

15 s= Y (5) = X @)™ Y bl =

1<k<g 1<k<q 1<ns

that is the proof of Theorem 2 is complete.

q(y (Q))r_l Z |bn]",

1<n<gq
(n,q)=1
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SECOND ORDER LINEAR RECURRENCES
AND PELL’S EQUATIONS OF HIGHER DEGREE

Ferenc Matyas (Eger, Hungary)
Dedicated to the memory of Professor Péter Kiss

Abstract. In this note solutions are given to an infinite family of Pell’s equations of degree

n>2 based on second order linear recursive sequences of integers.

AMS Classification Number: 11B39

1. Introduction

Let A and B be non-zero integers. The second order linear recursive sequences
R={R,}52,and V = {V,,}22, are defined by the recursions

(1) R,=AR, 1+ BR,_3 and V, = AV,_1 + BV,_o,

forn>2 while Ry=0,Ri =1,V =2and V;, = A. If A= B =1 then R, = F,
and V,, = L,,, where F,, and L, denote the n'® Fibonacci and Lucas numbers,
respectively.

The polynomial g(z) = #? — Az — B is said to be the characteristic polynomial
of the sequences R and V, the complex numbers « and 3 are the roots of g(z) = 0.
In this note we suppose that A2 +4B # 0, i.e. @ # (. Then, by the well-known
Binet formulae, for n > 0

a” — 6”

(2) R, = P and V,, =a" + ("

The classical Pell’s equation 22 — dy? = 41 (d € Z) can be rewritten as

det<$ dy)—ﬁ:l.
Yy T

Research supported by the Hungarian OTKA Foundation, No. T 032898.
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To generalize this Lin Dazheng [1] investigated the quasi-cyclic matrix

1 dr, drp,—1 ... dzo
To T dx, ... dxs3

(3) Cn = Cn(d;xla$23"~axn) = x3 x2 Z1 d$4 )
Tp Tp—-1 Tp-2 ... IT1

i.e. every entry of the upper triangular part (not including the main diagonal) of
the cyclic matrix of entries x1, x2,...,z, is multiplied by d. The equation

(4) det (C,,) = +1

is called Pell’s equation of degree n > 2. For example, if n = 3 then (4) has the
form
23 4 drd + d*xd — 3dryzows = £1.

Lin Dazheng [1] proved that det (C,, (Lyn; Fon—1, Fon—2,...,Fp)) = 1, i.e. if
d = L, then (z1,22,...,2n) = (Fan—1,Fan—2,...,Fy) is a solution of (4). The
aim of this paper is to extend and generalize this result for more general sequences
defined by (1) with A% 4+ 4B # 0. In the proofs of our theorems we’ll apply the
methods and algorithms developed and presented in [1| by Lin Dazheng.

2. Results
Using (1) with A2 +4B # 0 and (3), we can state our results.
Theorem 1. For n > 2
det (Cn (‘/nv R2n—17 R2n—2a ey Rn)) = Bn(n—l)7

ie. (x1,29,...,2y) = (Ron—1, Ron—2a,..., Ry) is a solution of the generalized Pell’s
equation of degree n

det (Cn (Vna T1,X2,.. ,xn)) = B”(”*l).

Corollary 1. Forn > 2

n—1 n X
H ZRQn,j (T\L/Vn)?_l 5k(j—1) _ Bn(n—l),
k=0 \j=1

where {/V,, denotes a fixed n'™ complex root of V,, and ¢ = e27i/™.
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It is known from [3] that the inverse of a quasi-cyclic matrix is quasi-cyclic. In
our case we can prove the following result, too.

Theorem 2. For n > 3 the matrix C,, (V,,; Ran—1, Ron—2, ..., Ry,) is invertible and
its inverse matrix C; ! is as follows:

C,"' (Vo; Ron—1, Ron—2,..., Ry) = (=1)""'B~"(BI, + AE, — E}),

where 1,, and E,, denotes the identity matrix of order n and the n by n matrix

0 0 0 V,
10 0 0
(5) E,=|0 1 0 0 |,
0 0 1 0
respectively.

Remark. Naturally, if |B| # 1 then the entries of the matrix
Cgl (‘/na R2n—17 R2n—2a R Rn)

are not integers.

Corollary 2.
, 0,...,0), ifn>3 oddand B =1,
,—A,1,0,...,0), ifn >3 odd and B = —1,
1

,0,...,0), ifn>4evenand B =1,

(
(x17x27~-~7xn): E_
(1,-A4,1,0,...,0), ifn>4evenand B= -1

is an other solution of the generalized Pell’s equation

(6) det (Cp, (Vs 1,22, ..., 70)) = 1.

3. Proofs

To prove our theorems we need the following

Lemma. Let the sequences R and V' be defined by (1) and we suppose that o # (8
in (2). Then

(7/1) RotiRn1 = Ry = (-1)"B""" (n>1),
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(7/2) R,V = Ray (n > 0)7
(7/3) VaRni1 = Rong1 + (=B)" (n20),
(7/4) E'=V,1, and E'""' =V, E, (n>3),

where E,, is defined by (5).

Proof. The first three properties of the Lemma are known or, using (2), they can
be proven easily. For the proof of (7/4) consider the multiplication of matrices. For
example:

3

E2=E, E, =

oo o
— o oo
co oo
cooXN
coNo

3

ocRrocoo o
—ococoo o

cCoocOo O - .-
o ococo XN o -
oo oNo O -

oo No o

o o

0o V., ... 0
e N

o 0 ... V, 0
0o ... Vo

and so E'*! = E" - E,, = (V,I,) E, = V,E,.

Proof of Theorem 1. For n = 2 we get that

A?+ B A3+2AB|

det (CQ(VYQ;R37R2)) = A A2 + B = BZ.
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If n > 2, let us consider the n by n matrices

1 -A -B 0 ... 0 0
o 1. -A -B ... 0 0
0 O 1 -A ... 0 0

T,= | or
0 0 0 o ... A -B
0 0 0 o ... 1 -A
0 0 0 0O ... 0 1

and
R2n—1 ‘/;LRTL e VnR2n—2

Ron—2 Ron—1 ... VhpRon-3
C,= CTL(‘/?H Ron—1,Rop—2, ..., Rn) = . : . :

RTL Rn+1 ce RQn_l

Then, by (1), (2) and (7/1)—(7/3), one can verify that

R2n—1 BRQTL—Q (_B)n 0 0

Ron—2 BRg,_3 0 (=B)" 0

CnTn — : : . . . :
Roto BR.a1 O 0 ... (-B)"

R.i1 BR, 0 0 0

R, BR, 1 0 0 0

Developing the det(C,, T,,) we get that

R BR
_ (_1)2n+2 n+1 mn _ n
det(C,,Ty) = (-1) det ( R, BRn_l) det ((—B)"I,—2)

= B(Rp4+1Rn-1 — Ri)(fB)n(n—Z) — B(—l)an_l(—B)n("_z)
_ (71)n(n71)Bn(n71) _ Bn(nfl).

But, since det(T,) = 1, det(C,T,) = det(C,) - det(T,) = det(C,,), therefore
det(C,) = B™n=1) je. Theorem 1 is true.

Proof of Corollary 1. In [2] it is proven that if C,, is as in (3) then
n—1 n j—1 4

(8) det (Cp(d, a1, 22, ..., 20)) = [ | D2 (\/g) h=1)
k=0 \j=1

where & = ¢?™/", Substituting in (8)

d = Vn and (1’1,1’2, e ,fﬂn) = (Rgnfl,Rgn,Q, . .,Rn),
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by Theorem 1, the statement of Corollary 1 immediately yields.

Proof of Theorem 2. Theorem 1 implies that C; ! (V,,; Rapn—1, Ron—2,..., Ry)
exists. It is easily verifyable that

C,, (Vu; Ropn—1, Ron—2, ..., Ry) = Rop—11,, + Rop2E, + -+ + R,EIH
therefore we have to show that
(9) (Ran—1I, + Ropn—2E, + -+ R,EL) (=1)""'B™"(BL, + AE, —E2) = L,.
By (1), the left hand side of (9) can be written as
(10) (-1)""'B™"(Rg,_1BIL, + Rep_2BE, + Ro, 1AE, + R, AE"

—Ry B! — R,E!T 4+ 0, +---4+0,),

where O,, is the zero-matrix of order n.
Thus, applying (1), (7/1)-(7/4) and (2), the form (10) is equal to

(=1)""'B™" (Ry,_1BI, + (BRap_2+ ARs, 1) E

+ R, AV, L, — Ry 1 VoI, — R,VLE,)

1)"'B™" (R2n-1BL, + (Ron — RuVi) B + Vo (AR, — Ryi1)1,)
)" 'B~"(Rg;—1BI, + O, — V,,BR,_11,,)

)" 1B " (Rop—1 — VuRy—1) 1,

ke 1p- n+1( B)"~ I, — (—1)2"_23()1” =1,

R
(=
(=
(=
(=

which completes the proof of Theorem 2.

Proof of Corollary 2. By Theorem 2
det (Cy, (Vi3 Ron—1, Ron—2, ..., Ry)) - det (C ' (Vs Ron—1, Ron—2, ..., Ry)) =1
thus, if |B| = 1 then, by Theorem 1,
det (C,;! (Vyu; Ron—1, Ran—2,..., Ry)) = 1.
E.g. let n > 3 be an odd integer and B = 1. Then, by Theorem 2,

CiLl (Vna R2n713 R2n72> B Rn) = In + AEn - E2

1 0 0 ... 0 =V, AV,
A 1 0 ... 0 0o -V,
A1l

— | -1 0 0 0

o oo ... -1 A 1
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ie. (x1,22,...,2,) =(1,4,-1,0,...,0) is a solution of (6).
The proof is similar when n > 3 odd and B = —1, or n > 4 even and |B| = 1.
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On a special interpolation problem of functional B-spline curves
Miklés Hoffmann (Eger, Hungary)
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Abstract. A multistep interpolation method is presented in this paper by which one can
compute a planar functional B-spline curve from its gradient function with special endconditions.
The method is applied in turbine blade section curve design where the curve consists of two

interpolating B-spline arcs connecting two predefined circular arcs.

AMS Classification Number: 68U05

1.Introduction and problem statement

Interpolation or approximation of a set of data by B-spline curves is a well-
studied area of computer aided design and manufacture. One can find numerous
methods solving the problem for different types of data, see e.g. [3] and references
therein. All of these classical methods, however, require direct geometrical data
(points and/or tangent lines) of the curve.

In the problem presented here, the curve has to be created from the angles of its
tangent lines, while the exact position of the curve is determined by endpoints and
tangential information in them. A special, multistep method will be described in the
following section to solve this problem. Application of this method for turbine blade
section curve design can be found in Section 3. Finally conclusion and directions
of future research close the paper.

To clarify the notations here we present the definition of the B-spline curve.
Definition. The curve s(u) defined by

n

s(u) = ZNZk(u)dl, U E [Uk—1, Unt1]
1=0

is called B-spline curve of order k (degree k— 1), where NJ*(u) is the ['" normalized
B-spline basis function, for the evaluation of which the knots ug, u1, ..., uptx are

This research was sponsored by the Hungarian Scientific Research Foundation (OTKA
No. F032679), the Hungarian Ministry of Education (FKFP No0.0027/2001) and the European
Research Training Network MINGLE (HPRN-1999-00117).
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necessary. The points d; are called control points, while the polygon formed by
these points is called control polygon.

The turbine blade section curve (or simply profile curve) consists of two
circular arcs and two B-spline arcs connecting them. In profile curve design the
connecting B-spline curves are smooth, almost linear pieces along the = direction,
hence throughout this paper one can consider them as functions of z, which is
certainly not the general case.

2. Multistep interpolation

Let a continuously differentiable real function o = f(x),z € [a,b] be given.
We would like to create an arc (function) over [a,b] with the following property:
at every xg € [a,b] the angle of the z axis and the tangent line of the arc at this
point is ag = f (o). Thus the function & = f(z) can be considered as the gradient
function of the arc we are looking for. Moreover, the arcs have to be defined as a
B-spline curves, because this type of curves is the standard description method in
CAGD. Thus let this arc be denoted by s(u),u € [a, b].

At first a sample set of pairs (x;,a;),i = 1,...,n is chosen, where n depends
on the desired error bound. The z;-s can be uniformly distributed over [a,b]. We
will create a cubic B-spline curve s(u) in a way that at every point of the curve
cooresponding to the coordinate values x; the angle between the tangent line of
the curve and the x axis is «;. Denote these corresponding points of the curve by
qi(wi,y:). Thus

(1) s(ui) = qi(ws,9:), i=1,...,n

where the parameters u; and the coordinates y; are the unknowns. Let e;(cos o,
sin a;) denote the unit vector at the direction of the i** tangent line. This yields
the equations

(2) S(ui) =Neg, i=1,..,n

where the values \; are unknowns.

Denote the coordinates of the future control points d; by (x;-i, y}i),j =1,..,n
and the coordinate functions of the B-spline curve by s(u) = (2%(u),y®(u)). Note,
that the number of control points is the same as the number of samples. Thus from
(1) and (2) we obtain the following system of equations:

8

*(us) =23,
2% (u;) =\ cos i1=1,...,n.

7% (ui) =\ sin ay,
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By the definition of the B-spline curve this system can be written as

N‘-L(ui)x;-j =x;,

(3) ZNf(uZ)x;j =\; cos o, i=1,..,n.
j=0

n
Z N;l(ui)yf =\; sin a4,
3=0

Here each row represents n equations and all subsystems are linear. If we fix the
parameter values u; then we can compute the B-spline basis functions N;-l(ui) and
their derivatives N f(u,) There are several methods for the choice of u; (uniform,
cumulative chord length, centripetal model, c.f. [1]), but our future curve is quite
simple, smooth, and the samples z; are uniformly distributed, thus we can apply
the uniform model as

i—1

n—1

U; =

Now the first subsystem of (3) —containing the first n equations— can be solved
for x?, then the second subsystem for A;, finally the third n equations for y;-j. The
first and the third systems of equations have a banded matrix where the bandwidth
is 4, while the solution of the second one is even more straightforward, containing
one unknown per equation. After this process we will obtain the control points d;
(2, yd), with the help of which one can compute the desired B-spline curve. In
case of non-uniform curve the knot vector can be the same as the sequence of the
parameter values.

2. An application: turbine blade section curve design

The design process of turbine blades generally contains several steps. At first
designers create planar curves which will serve as section curves of the future
surface. A typical section curve can be seen in Fig.1.

Figure 1
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Focusing on this problem a designer may prefer the following scenario: he can
define two circular arcs by their centres, radii and endpoints. The system connects
them by two B-spline arcs which can be modified by direct manipulation of their
predefined gradient functions. The gradient functions, of course, always satisfy the
endconditions defined by the circular arcs.

0.002

5 10 15 20

Figure 2

These two B-spline arcs can be calculated by the interpolation methods
described in the previous section. To estimate the correctness of this technique
we considered an arc of an existing section curve and picked 350 points of them as
samples.
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Figure 3
Creating the new B-spline arc two types of error measured at these sample
points: the distance of the two curve and the difference between the tangential
angles of the two curve. The distance is measured by the following way: at each
sample point p of the original curve a perpendicular straight line is dropped. This
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line intersects the computed B-spline curve at p and the error at this point is defined
as the length of pp. The graph of this error function (connecting the discrete points
for better visualization) can be seen in Fig.2.

The other type of error is measured by the difference between the angles of
the tangent lines of the original and the computed curve at the sample points. This
graph can be seen in Fig.3.

4. Conclusion

A special interpolation method has been presented in this paper with the help
of which one can create and modify a planar B-spline curve based on its gradient
function. Using this method a turbine blade section curve design technique has
been developed: two circular arcs are defined which are connected by B-spline arcs
computed by the new method.
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Abstract. In the paper it is proved that special class of circulant matrices transforming
normal bases of orders in cubic fields to normal bases of their suborders consists of matrices of the

type circs(a1,az2,a3) where a;+az+a3z==+1 and one of the equalities a;=a2, a1=a3, az=a3 holds.

AMS Classification Number: 11R16, 11C20

1. Introduction

Let K be a cyclic algebraic number field of degree n over the rational numbers
Q. Such a field has a normal basis over the rationals Q i.e. a basis consisting of all
conjugations of one element. Transformation matrices between two normal bases
of K over QQ are exactly regular rational circulant matrices of degree m. In the
paper [4], the special class of circulant matrices with integral rational elements is
characterized by the following proposition.

Proposition 1. Let K be a cyclic algebraic number field of degree n over rational
numbers. Let
A = circy (a1, a9, .. .,a,)

be a circulant matrix and a1, as,...,a, € Z. By A;, i = 1,2,...n we denote the
algebraic complement of element a; in the matrix A. Let

a1 +as+---+a, =*£1
and

a; =a; (mod h)
fori,j € {1,2,...,n}, where

b det A
ng(Al,AQ, . 7An) ’

This research was supported by GA of the Czech Academy of Sciences Grant A1187101/01.
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Then the matrix A transforms a normal basis of an order B of the field K to a
normal basis of an order C' of the field K, where C' C B.

2. Results

Theorem 1. Let A be a circulant matrix A = circs(as, az,as3), a; € Z, where
a1 + as + az = £1.

Then the following conditions are equivalent
(1) a; = a; (mod h) fori,j € {1,2,3}, where

det A

he— 02
ng(Ala AQa Ad)

where A; is algebraic complement of element a; in the matrix A for every
ie{1,2,3}.
(2) One of the next equalities holds

a]p —az Or ag =a3 Or a3 —as.

Proof. (1) = (2) Let A = circg(ai,as,a3) be a circulant matrix fulfilling
assumptions of our theorem. If a1 + as + a3 = 1, we can write

A= (1 — az 70,3,@2,@3).
Determinant of the matrix A is

det A =1+ 3a§ + 3a§ — 3ag — 3as + 3asas

B ;
= (1 - 3&2)(1 - 3&3) + 3(&2 - (13)

and the subdeterminants are

2 2

A1 =14 a5+ a3 — 2a2 — 2a3 + azas,
2 2

Ag = aj + a3 + aza3z — a3,

2 2
Az = aj + a5 + azaz —as.
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Their greatest common divisor is

ged(Ay, Ag, As) = ged(Ay — As, A, A3 — As)

= ged(1 — 2az — az, a3 + a3 + azaz — as, a3 — as)

= ged(1 — 2az — az + (a3 — az), a2 + a2 + asasz — az + (az + 2a3)(az — az), a3 — as)
= ged(1 — 3ag, —as + 3a3, a3 — as)

= gcd(l — 3ag,—as(1l — 3as), a3 — ag).

In regards with (1) we obtain that ged(A;, A, As)? is a divisor of det A. Now we
need to prove that det A is a divisor of ged(Ay, Ay, As)>.
Because of a; = a; (mod h) for ¢, € {1,2,3}, we obtain the congruences

az —az =0 (mod h),
(2) 1—-3a2=0 (mod h),

1—-3a3=0 (mod h).
Then h is a divisor of ged(Ay, Az, A3),

det A
ng(Al, AQ, Ad) ’

ged(Ar, Ay, As)? = kdet A

ng(Al,AQ,Ag,) =kh=%k

and det A is a divisor of ged(Ay, Az, As)?. Therefore
det A = t+gcd(Aq, Ao, A3)2

and
h = ng(1417 AQ, A3) .

In regards of (2) we denote
hX:].f?)ag, hY:173a3, hZ:agfag,

then
det A = h2XY + 3h%Z2.

We obtain the equation XY 4 322 = 41. Assumption a; + as + a3z = 1 yields the
equation hX 4+ 3hZ = hY.

(a) Let det A = —h2. From the system of equations

XY +32%=-1,
X+3Z=Y,
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we obtain the quadratic equation in Z
322 -32Y +(Y?+1)=0

which has a negative discriminant, so there is no integral solution.
(b) Let det A = h2. We obtain a system of equations

XY +32%=1,
X+3Z=Y.

From the integral solutions of this system it follows that

(a) X=1,Y=1,Z=00r X =-1,Y = -1, Z =0 then ay = as,
(b) X=1,Y=-2Z=-1lor X =-1,Y =2, Z=1 then a1 = ay,
(¢) X=2,Y=-1,Z=-1lor X=-2,Y =1, Z=1 then a1 = as.
The case a; + az + a3 = —1 can be proved similarly.

(2) = (1) Without loss of generality it is sufficient to suppose that az = as,
so we can denote the matrix A = circs(a,b,b). The algebraic complements are
A1 = (a—b)(a+b), Ay = A3 = b(b—a) so the ged (A1, Aa, A3) = (b—a) ged(b, a+D).
From the fact that a + 2b = £1 it follows ged(a,b) = 1 and so ged(b,a +b) = 1.
Hence h = (b—a)?/(b—a) = b—a and because b = a (mod b— a), the condition (1)
holds.

Corollary 1. Let K be a cyclic algebraic number field of degree 3 over Q. Let the
matrix A = circg(a, b, b) satisfy assumptions of Theorem 1 and transform a normal
basis of the order B to a normal basis (y1,72,73) of the order C, where C C B.
Then any polynomial cycle of f € Z[X] contains at most one of the elements

Y1,72,73-

Proof. From [3, Theorem 1] it follows that if a number ; (¢ = {1,2,3}) does not
generate the power basis of order C, then two of elements 71, 72,73 cannot be in
the same polynomial cycle for a polynomial with rational integral coefficients. So
it is sufficient to prove that «; (for example 1) does not generate a power basis

of C.

Let (61, B2, B3) be a normal basis of an order B. Let matrix A = circs(a, b, b)
satisfy the assumption of Theorem 1. Then the matrix A transforms the basis

(81, B2, B3) to the basis (y1,72,73), where
(71,72,73) = (B1, Ba, B3) AT .

Because the basis (81, 82, 83) is a normal basis of an order, thus

Bi+ B2+ P ==£1
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holds, and
Y =apr+b(Ba+B3) =abi +b(£l — 1) =(a—Db)B1 £b.

Elements 72 and 73 can be composed similarly, and we obtain the basis (y1,7y2,73)
in the form

71 :(a‘_b)ﬁlibv
72:(a_b)62ib7
’)/3:(a7b)53:|:b.

We consider the basis (1,71,7%), where
72 = (a - b)2B2 & 2b(a — )y + b

the basis (81, B2, 83) is an integral basis, therefore there exist by, bs,bs € Z such
that

v = (a—b)2(b1B1 + bafa + b3fB3) £ 2b(a — b) By + b*
= ((a — )by £ 2b)(a — b)B1 + (a — b)*b2fa + (a — b)*b3fB5 + b°.

Let
s1=(a—0b)by £2b,
s2 = (a—0b)by,
s3 = (a—0b)bs.
Then

712 = s1(a — b)f1 + s2(a — b)B2 + s3(a — b) B3 + b2
=s1((a—b)B1 £b) + s2((a—b)B2 £b) + s3((a — b)Bs £b) + b> F (s1 + s2 + s3)b
= 5171 + s272 + 8373 + 02 F (51 + 52 + 83)b

Because 71 + v2 + 73 = 1, we can write
V> F (s1+ s2 4 83)b=r(71 + 72 +73) ,

SO
= (s1+r)m+(s2+71)72+ (s3+7)7s.

Suppose that (v1,72,73) and (1,71,7%) are bases of the order C over Z.
Then the matrix C t