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Abstract

The aim of this paper is to determine the elements which are in two pairs
of sequences linked to the regular mosaics {4, 5} and {p, q} on the hyperbolic
plane. The problem leads to the solution of diophantine equations of certain
types.
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1. Introduction

Consider a regular mosaic on the hyperbolic plane. Such a mosaic is characterized
by the Schläfli’s symbol {p, q}. It is known that we can define belts of cells around
a given vertex of the mosaic (see [4]). Let’s say that belt B0 is the aforesaid fixed
vertex itself denoted by B0. The first belt B1 consists of the cells which connect
to B0. Assume now that the belts Bi−1 and Bi are known (i ≥ 1). Let belt Bi+1

be created by the cells that have common point (not necessarily common vertex)
with Bi, but not with Bi−1. Figure 1 shows the first three belts in the mosaic
corresponding to {4, 5}. One important question is to study the phenomenon of
the growing of belts ([1], [2], [3]), even in higher dimensions, too.
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Figure 1: Trees of the mosaic {p, q} = {4, 5}

Take vertex B0 as a main root of a will-be-graph (this is level 0). In general, let
the outer boundary of belt Bi be called level i. Connect the vertices of level 1 to B0

along the edges between the two levels of the lattice. By this way we have started
to build trees. Then use always the maximum number of edges between level (i−1)
and level i. All vertices on level i are connected to only one vertex of the previous
level, such that no unconnected leaves on level (i − 1) are remained. We never
connect edges on the same level. The rest vertices on layer i will be roots of new
trees. In this way, we obtain infinitely many trees, each of them contains infinitely
many vertices. Let Ā denote the set of roots and B̄ the set of other vertices. In
Figure 1 and 2 the thick edges show the trees from level 0 to level 4. (We remark,
that the dual problem is when we establish trees by connecting the centres of the
cells of the mosaic.)

The case q = 3 provides no any tree since only one edge is not enough to connect
the consecutive levels. If p = 3 the algorithm, apart from B0, does not give roots.
Therefore we may assume p ≥ 4, q ≥ 4, and since (p−2)(q−2) = 4 is the Euclidean
lattice we also suppose (p− 2)(q − 2) > 4.

Let ai and bi denote the number of the vertices of Ā and B̄ on level i, respec-
tively. In this paper, we compare the terms ai (and later bi) of sequences belonging
to different Schläfli’s symbols {p, q}.

In the following, we recall some properties of the sequences ai and bi correspon-
ding to hyperbolic planar lattice {p, q} (see [4]). Simple geometric consideration
shows a1 = q, b1 = (p− 3)q, further the recursive system

an = (q − 3)an−1 + (q − 2)bn−1, (1.1)

bn =
(
(q − 3)(p− 3)− 1

)
an−1 +

(
(q − 2)(p− 3)− 1

)
bn−1 (1.2)

holds (n ≥ 2, p ≥ 4, q ≥ 4).
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Figure 2: Trees of the mosaic {5, 4}, dual of mosaic {4, 5}

It is easy to separate the sequences {an} and {bn}, and it turns out that

an = κan−1 − an−2 and bn = κbn−1 − bn−2, (1.3)

where κ = (p − 2)(q − 2) − 2 (κ ≥ 4). Thus both sequences satisfy the same
recurrence relation of order two, and they differ in their initials values. Indeed,
to use (1.3) we need also the terms a2 and b2. Obviously, by (1.1) and (1.2),
a2 = (κ + 1)q, b2 = (κ(p − 3) − 1)q, and (a1, a2) 6= (b1, b2). Later we also use the
term a3 = (κ2 + κ − 1)q. Although a0 and b0 have no geometrical meaning, (1.3)
provides the values a0 = −q, b0 = q, and this sometimes makes the calculations
easier.

To achieve the investigations, we introduce the sufficient notations and recall
some facts from the theory of linear recurrences. In general, let r and s denote
arbitrary complex numbers. The sequence {G}∞n=0 given by the initial values G0 ∈
C and G1 ∈ C, and by the recursive relation

Gn = rGn−1 + sGn−2 (n ≥ 2), (1.4)

is called binary recurrence. For brevity, we often write G(r, s,G0, G1) to indicate
the parameters of the sequence {G}.

For any binary recurrence G(r, s,G0, G1), the associate sequence of {G} is the
sequence H(r, s,H0, H1) with

H0 = 2G1 − rG0 and H1 = rG1 + 2sG0. (1.5)

Put CG = G2
1−rG0G1−sG2

0. It is known that the terms of a binary recurrence
{G} and its associate sequence {H} satisfy the equality

H2
n −DG2

n = 4CG(−s)n, (1.6)

where D = r2 + 4s.
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2. Preparation and results

By (1.3) it follows that the coefficients of the investigated linear recurrences are
r = κ and s = −1. Thus D = κ2 − 4, moreover

Ca = a21 − ra0a1 − sa20 = (κ+ 2)q2

and
Cb = b21 − rb0b1 − sb20 = ((p− 3)2 − κ(p− 3) + 1)q2.

Now we fix a mosaic given by {p̃, q̃} = {4, 5}. Then κ̃ = 4, ãn = 4ãn−1 − ãn−2,
ã1 = 5, ã2 = 25, and b̃n = 4b̃n−1 − b̃n−2, b̃1 = 5, b̃2 = 15, moreover D̃ = 12. The
first ten terms of the sequences are given by the following table.

i 1 2 3 4 5 6 7 8 9 10

ãi 5 25 95 355 1325 4945 18455 68875 257045 959305

b̃i 5 15 55 205 765 2855 10655 39765 148405 553855

Table 1: Numbers of leaves and roots on level i connected with
mosaic {4, 5}

The associate sequences of {ãn} and {b̃n} satisfy

Ãn = 4Ãn−1 − Ãn−2 with Ã1 = 30, Ã2 = 90, (2.1)
B̃n = 4B̃n−1 − B̃n−2 with B̃1 = 10, B̃2 = 50, (2.2)

respectively. Since Cã = 150, Cb̃ = −50, by (1.6) we obtain the identities

Ã2
n − 12ã2n = 600 and B̃2

n − 12b̃2n = −200. (2.3)

In this paper, we target to solve

I. the diophantine equation ak = ã` in k and ` for certain mosaics {p, q} (Sec-
tion 3); further

II. the equations aε = ã` in ` if ε ∈ {1, 2, 3} and one of p and q is fixed (Section 4
and 5).

For the sequence {bn} analogous problems are examined.
The first question leads to simultaneous Pellian equations. The second problem

requires different approaches depending on ε and the sequence {an} (or {bn}).
The observations are contained in the following theorems and Result 2.2. We

always assume that
{p, q} 6= {4, 4}, {4, 5}.
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Theorem 2.1. (1) Let 4 ≤ p ≤ 25 and 4 ≤ q ≤ 18. Then the equation ak = ã`
has only the trivial solution a1 = ã1 = 5 for q = 5 and any p.
(2) If 4 ≤ p, q ≤ 10, or 11 ≤ p ≤ 25 and 4 ≤ q ≤ 8, then the equation bk = b̃`
possesses only the solutions
• {p, q} = {6, 5}, b1 = b̃2 = 15,
• {p, q} = {10, 5}, b2 = b̃5 = 765,
• {p, q} = {14, 5}, b1 = b̃3 = 55.

Result 2.2. (1) If 4 ≤ p ≤ 1 600, then a2 = ã` is satisfied by
• {p, q} = {26, 5}, a2 = ã4 = 335,
• {p, q} = {90, 29}, a2 = ã8 = 68 875,
• {p, q} = {332, 5}, a2 = ã6 = 4 945,

(2) In case of 4 ≤ q ≤ 10 000, a3 = ã` has no non-trivial small solution (i.e. p ≤
10 000).
(3) Assume 4 ≤ p ≤ 10 000 or 4 ≤ q ≤ 2 800. Then {p, q} = {10, 5}, b2 = b̃5 = 765
satisfy the equation b2 = b̃`.

Theorem 2.3. (1) All the solutions to a2 = ã`, with 5 ≤ q ≤ 25 are given by
• q = 5, ` = 2 + 2t (t ∈ N+),
• q = 19, ` = 58 + 90t and ` = 78 + 90t (t ∈ N),
• q = 23, ` = 28 + 88t (t ∈ N),
• q = 25, ` = 32 + 33t (t ∈ N).

(2) All the solutions to b1 = b̃`, with 5 ≤ q ≤ 25 are given by
• q = 9, ` = 5 + 18t and ` = 14 + 18t (t ∈ N),
• q = 11, ` = 3 + 10t and ` = 8 + 10t (t ∈ N),
• q = 15, ` = 2 + 6t and ` = 5 + 6t (t ∈ N),
• q = 17, ` = 5 + 18t and ` = 14 + 18t (t ∈ N).

3. Type I: ak = ã` and bk = b̃` with certain p and q
(Proof of Theorem 2.1)

It is known that the binary recurrence sequences are periodic modulo any positive
integer. A simple consideration shows that the terms ãn are never divisible by 2,
3, 7, 11, 13, 17 (primes up to 25), while b̃n are never a multiple of 2, 7, 13, 19,
23 (primes also up to 25). On the other hand, q | an and q | bn hold for any n.
Consequently, there is no solution to the equation ak = ã` unless q = 5, 19, 23, 25.
Indeed, by q | an, one needs only to check one period of {ãn} modulo q. Similarly,
bk = b̃` may possess solution only when q = 5, 9, 11, 15, 17, 25. Unfortunately, we
could achive the computations only for q = 5 regarded to ak = ã`, and for q = 5
and q = 9 regarded to bk = b̃` since the time demand of evaluation of the algorithm
decribed below seemed to be too much for larger q values.

Suppose that p and q are given, and consider ak = ã`. Assume that x = ak
satisfies this equation. Then, by (1.6)

y2 − (κ2 − 4)x2 = 4(κ+ 2)q2 (3.1)
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holds for some positive integer y. On the other hand, in the virtue of (2.3) (the
source of (2.3) is (1.6)), x = ã` is also a zero of the equation

z2 − 12x2 = 600 (3.2)

for some positive suitable integer z. Clearly, (3.1) and (3.2) form a system of
simultaneous Pellian equations. The PellianSystem() procedure, developed in [6]
and implemented in MAGMA [5] is able to solve such a system if the coefficients
are not too large.

If we take bk = b̃`, then (3.1) and (3.2) must be replaced by

y2 − (κ2 − 4)x2 = 4((p− 3)2 − κ(p− 3) + 1)q2 (3.3)

and
z2 − 12x2 = −200, (3.4)

respectively.
We have checked the solutions of the appropriate system of Pellian equations

by MAGMA, and the result of the computations is reported in Theorem 2.1.
To illustrate the time demand of the computations, we note that the MAGMA

server needed approximately 21 days to show that bk = b̃` has no solution in the
case {p, q} = {8, 9} (this was the worst case we considered).

4. Type II: aε = ã`, bε = b̃`, part 1. (Background be-
hind Result 2.2)

This section is devoted to deal with the equations above in the specific cases

1. a2 = ã`, when parameter p of {an} is fixed in the range 4 ≤ p ≤ 1 600,

2. a3 = ã`, when parameter q of {an} satisfies 4 ≤ q ≤ 10 000,

3. b2 = b̃`, when p ∈ [4; 10 000],

4. b2 = b̃`, when q ∈ [4; 2 800].

The common background behind the four problems is that all of them are linked
to hyperelliptic diophantine equations of degree four. Observe, that a2 and b2 is a
quadratic polynomial in q, similarly a3 and b2 has degree two in p.

Consider first
a2 = ã`

with fixed p. Then, by the first identity of (2.3), a2 satisfies

y2 − 12a22 = 600,
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where a2 = f(q) = (κ+ 1)q is a quadratic polynomial of q. Consequently we need
to solve the quartic hyperelliptic equation

y2 = 12f2(q) + 600. (4.1)

We use the IntegralQuarticPoints() procedure of MAGMA package to handle
(4.1). Note that if the constant term of the polynomial on the right hand side
of (4.1) is not a full square, then the procedure requires a solution (as input)
to the equation to determine all solutions. In this case we scanned the interval
J = [−10 000; 10 000] for q to find a solution. It might occur that there is a
solution outside J and not inside J , but we found no example to this.

If once we have determined a q, then we search back the corresponding sub-
script `.

The analogy to the other 3 cases of this section is obvious: in the right hand
side of (4.1) the polyomial f is being replaced by f(p) = (κ2 + κ − 1)q, f(q) =
(κ(p− 3)− 1)q and f(p) = (κ(p− 3)− 1)q, respectively.

Solutions we found are listed in Result 2.2 (the list might be not full in accor-
dance with the basic interval J which was used for finding a solution).

5. Type III: aε = ã`, bε = b̃`, part 2. (Proof of The-
orem 2.3)

Here we study the title equation in a few cases with small ε, which differ from
the previous section. Recall that both of the sequences {ãn} and {b̃n} are purely
periodic for any positive integer modulus.

Since a1 = q the equation a1 = ã` has, trivially, infinitely many solutions.
The next problem is a2 = ã` with fixed q. (The case with fixed p has already

been studied in Section 4.) Recall that a2 = (κ+ 1)q, more precisely

a2 = q(q − 2)(p− 2)− q

is linear in p. Therefore we need to determine the common terms of an arithmetic
progression and the sequence {ãn}. The situation does not change if we consider
b1 = b̃` with either fixed p or fixed q. Indeed, b1 = (p − 3)q is linear both in p
and q.

Obviously, a2 ≡ −q (mod q(q − 2)). Consequently, the equation a2 = ã` is
soluble if and only if we find at least one element in the sequence {ãn}, which is
congruent −q modulo q(q−2). Because of the periodicity, one must check only one
period of {ãn} modulo q(q − 2).

Assume first that q = 5. Then for the modulus q(q−2) = 15 we have ã2+2t ≡ −5
(the cycle’s length is 2, and t ∈ N). Hence a2 = ã2+2t, further

p =
ã2+2t + q

q(q − 2)
+ 2.
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t 0 1 2 3 4 5

a2 = ã2+2t 25 355 4945 68875 959305 13361395

p 4 26 332 4594 63956 890762

Table 2: First few solutions to a2 = ã` when q = 5

The first six t values yield the following solutions. (If t = 0 then the two sequences
{an} and {ãn} coincide.)

If q > 5 the first non-trivial solution is occurred when q = 19. Here the length
of the cycle is 90, and q(q − 2) | ã58 + 19, q(q − 2) | ã78 + 19. That is a2 = ã58+90t

and a2 = ã78+90t (t ∈ N) provide all solutions for suitable values p. For instance,
t = 0 gives

p = 8 437 940 669 128 098 583 408 551 589 590

and
p = 2 318 394 927 973 629 460 854 893 981 169 574 319 067 870,

respectively.
The treatment is similar for b1 = b̃`. If q = 5, then solution always exists since

b1 = (p − 3)q, 5 | b̃`, therefore p = b̃`/5 + 3. (b̃2 and b̃3 give back solutions have
already been appeared in Theorem 2.1.) Now b1 ≡ 0 (mod q), and fixing q ≥ 6 the
first solution appears for q = 9, when the cycle length is 18 (modulo q), and we
have b1 = b̃5+18t and b1 = b̃14+18t (t ∈ N). These results can be directly converted
the results corresponding to p, therefore we omit the appropriate analysis.

The results we obtained are summarized in Theorem 2.3.
Finally, we examine the equation a3 = ã` with fixed q, further b3 = b̃` when

exactly one of p and q is given. In each case we have a polynomial of degree three,
let say φ(x), and we look for the common values of the polynomial and a binary
recurrence. By (1.6), the problem leads to the hyperelliptic equation

y2 = 12φ2(x) + c

of degree 6, where the constant c is either 600 or −200. Since the leading coefficient
on the right hand side is not a square, there is no genearal algorithm to solve. For
example, p = 5 provides now

y2 = 12q2(9q2 − 45q + 55)2 + 600.

After dividing by 4, we have

y21 = 243q6 − 2430q5 + 9045q4 − 14850q3 + 9075q2 + 150,

and the techique of the solution is not known.
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