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Abstract

In this paper, we obtain solutions to infinite family of Pell equations of
higher degree based on the more generalized Fibonacci and Lucas sequences
as well as their all subsequences of the form {ukn} and {vkn} for odd k > 0.
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1. Introduction

The generalized Fibonacci and Lucas sequences are defined by

un+1 = Aun +Bun−1 (1.1)

and
vn+1 = Avn +Bvn−1, (1.2)
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where u0 = 0, u1 = 1 and v0 = 2, v1 = A, respectively.
For k ≥ 0 and n > 1, the sequences {ukn} and {vkn} satisfy the recursions (see

[1]):

ukn = vkuk(n−1) − (−B)kuk(n−2) and vkn = vkvk(n−1) − (−B)kvk(n−2). (1.3)

The Binet formulae are

un =
αn − βn
α− β and vn = αn + βn,

where α, β = A±
√
A2 + 4B.

By the Binet formulae note that for a fixed k > 0,

u−kn = (−1)kn+1ukn and u2kn = vknukn. (1.4)

A n× n quasi-cyclic matrix R (D;x1, x2, ...xn) (or shortly R) has the form (see
[2, 4, 5]):

R =




x1 Dxn Dxn−1 ... Dx3 Dx2
x2 x1 Dxn ... Dx4 Dx3
... ... ... ... ... ...
... ... ... ... ... ...

xn−1 xn−2 xn−3 ... x1 Dxn
xn xn−1 xn−2 ... x2 x1



.

The classical Pell equation x2 − dy2 = ±1 (d ∈ Z) can be rewritten as

det

(
x dy
y x

)
= ±1.

By means of quasi-cyclic determinants, the equation

det




x1 Dxn Dxn−1 ... Dx3 Dx2
x2 x1 Dxn ... Dx4 Dx3
... ... ... ... ... ...
... ... ... ... ... ...

xn−1 xn−2 xn−3 ... x1 Dxn
xn xn−1 xn−2 ... x2 x1




= ±1

is called Pell’s equation of degree n.
In [2], the author gave a method to generalize the classical Pell equation whose

degree is n = 2 to a Pell equation of degree n ≥ 2 by some n × n quasi-cyclic
determinants. In particular, the author proved that for n ≥ 2,

det (R (Ln;F2n−1, F2n−2, ..., Fn)) = 1, (1.5)

where Ln and Fn denote the nth Lucas and Fibonacci number, respectively. Further
it was showed that

det (R (Ln;F2n−1+k, F2n−2+k, ..., Fn+k)) = (−1)n−1
LnF

n
k + Fnk−1,
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where k is an integer.
In [3], the author generalized the results given in [2] by giving a relationship

between certain Pell equations of degree n and general Fibonacci and Lucas se-
quences. For example, for k = 1 in (1.3) and (1.4) and n > 1, we have

det (R (vn;u2n−1, u2n−2, ..., un)) = Bn(n−1), (1.6)

where B is defined as before.
From [4, 5], the following two propositions are known:

Proposition 1. For n > 0,

det (R) =

n−1∏

k=0

(
n∑

i=1

xid
i−1εk(i−1)

)
, (1.7)

where d = n
√
D, ε = e2πi/n and each factor

∑n
i=1 xid

i−1εk(i−1) of the RHS of (1.7)
is an eigenvalue of the matrix R.

Proposition 2. Let n and D be fixed. Then the sum, differences, and product of
two quasi-cyclic matrices is also quasi-cyclic. The inverse of a quasi-cyclic matrix
is quasi-cyclic.

In this paper, we generalize the results of [2, 3] and so obtain solutions to infinite
family of Pell equations of higher degree based on more generalized Fibonacci and
Lucas sequences as well as their all subsequences of the form {ukn} and {vkn} ,
for odd k > 0.

2. Quasi-cyclic matrices via the generalized
Fibonacci and Lucas numbers

We obtain some results about infinite family of Pell equations of higher degree by
using certain quasi-cyclic determinants with the generalized Fibonacci and Lucas
numbers. We give some auxiliary results for further use and denote (−B)

k by b for
easy writing.

Lemma 2.1. For positive integers k and n,

vkuk(2n−1) − vknukn = buk(2n−2),

b
(
uk(2n−1) − vknuk(n−1)

)
= bnuk,

u2kn − uk(n+1)uk(n−1) = b(n−1)u2k.

Proof. The claimed identities follows from the Binet formulae.

Theorem 2.2. For n ≥ 2,

det
(
R
(
vkn;uk(2n−1), uk(2n−2), ..., ukn

))
= bn(n−1)unk . (2.1)
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Proof. For n = 2,

det (R (v2k;u3k, u2k)) =

∣∣∣∣
u3k v2ku2k
u2k u3k

∣∣∣∣ = u23k − v2ku22k = b2u2k.

For n > 2, consider the upper triangular matrix

T =




1 −vk b 0

1 −vk
. . .

. . . . . . b
1 −vk

1



. (2.2)

From a matrix multiplication and by Lemma 2.1, we get

RT =




uk(2n−1) −buk(2n−2) bnuk 0 . . . 0

uk(2n−2) −buk(2n−3) 0 bnuk
. . .

...
...

...
... 0

. . . 0
...

...
...

...
. . . bnuk

uk(n+1) −bukn 0 0 . . . 0
ukn −buk(n−1) 0 0 . . . 0




. (2.3)

Then we write

detR = (detR) (detT ) = det (RT )

=
(
bu2kn − buk(n+1)uk(n−1)

)
det




bnuk 0 · · · 0

0 bnuk
. . .

...
...

. . . . . . 0
0 · · · 0 bnuk




=
(
bu2kn − buk(n+1)uk(n−1)

)
(bnuk)

n−2

= bn(n−1)unk ,

as claimed.

Corollary 2.3. For n ≥ 2,

n−1∏

k=0




n∑

j=1

uk(2n−j) ( n
√
vkn)

j−1
εk(j−1)


 = bn(n−1)unk ,

where n
√
vkn is the nth complex root of vkn and ε = e2πi/n.

We shall need the following identities:
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1. −buk(2n−3) + vkuk(2n−2)− uk(2n−1) = 0, ...,−bukn+ vkuk(n+1)− uk(n+2) = 0,

2. uk(2n−1) − vknuk(n−1) = bn−1uk,

3. En+1
n = vknEn and Enn = vknIn, where

En =




0 0 · · · 0 vkn
1 0 · · · 0 0
0 1 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 1 0



.

Theorem 2.4. For n ≥ 3, the matrix R
(
vkn;uk(2n−1), uk(2n−2), ..., ukn

)
is invert-

ible and its inverse matrix R−1 is given by

R−1
(
vkn;uk(2n−1), uk(2n−2), ..., ukn

)
= − 1

ukbn
(
−bIn + vkEn − E2

n

)
, (2.4)

where In is the n× n identity matrix and the matrix En is defined as before.

Proof. Since det
(
R
(
vkn;uk(2n−1), uk(2n−2), ..., ukn

))
6= 0 by Theorem 2.2, its in-

verse exists. It is easy to see that

R
(
vkn;uk(2n−1), uk(2n−2), ..., ukn

)
=
(
uk(2n−1)In + uk(2n−2)En + ...+ uknE

n−1
n

)
.

Hence,

R
(
vkn;uk(2n−1), uk(2n−2), ..., ukn

)
R−1

(
vkn;uk(2n−1), uk(2n−2), ..., ukn

)

=
(
uk(2n−1)In + uk(2n−2)En + ...+ uknE

n−1
n

)( −1
ukbn

)(
− (−B)

k
In + vkEn − E2

n

)

= (−buk(2n−1)In + (u2kn − uknvkn)En +
(
vkukn − uk(n+1)

)
vknIn)

( −1
ukbn

)

= −b
(
uk(2n−1) − vknuk(n−1)

)
In

( −1
ukbn

)

= −b
(
b(n−1)uk

)
In

( −1
ukbn

)
= In,

as claimed.

3. The determinants of quasi-cyclic matrices

For all integer t, define the n× n quasi-cyclic matrix Rk,n,t as

Rk,n,t = R
(
vkn;uk(2n−1+t), uk(2n−2+t), ..., uk(n+t)

)
.

By Theorem 2.2, we have

det (Rk,n,0) = bn(n−1)unk .
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For detRk,n,1, detRk,n,2,..., detRk,n,−1, detRk,n,−2,..., we can obtain correspond-
ing results.

Define the n× n matrices gk,n,t and hk,n,t as shown:

gk,n,t =




uk(2n+t−1) −buk(2n+t−2) −bn+1uk(t−1) 0

uk(2n+t−2) −buk(2n+t−3) bnukt
. . .

...
... 0

. . . −bn+1uk(t−1)

uk(n+t+1) −buk(n+t)
...

. . . bnukt
uk(n+t) −buk(n+t−1) 0 . . . 0




and

hk,n,t=




uk(2n+t−1) bnukt −bn+1uk(t−1) 0
uk(2n+t−2) 0 bnukt −bn+1uk(t−1)

...
... 0 bnukt

. . .
...

...
... 0

. . . −bn+1uk(t−1)

uk(n+t+1) 0 0 . . .
. . . bnukt

uk(n+t) 0 0 . . . . . . 0




.

We give some auxiliary Lemmas before the proof of main Theorem.

Lemma 3.1. (The recurrence of det gk,n,t)

det gk,n,t = (−1)n b(n2−n+t)ukuk(n−1)u
n−2
kt − b(2n−1)uk(t−1) det gk,n−1,t. (3.1)

Proof. Clearly

det gk,n,t

= −bn(n−2)+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

uk(2n+t−1) uk(2n+t−2) −buk(t−1) 0 ... 0

uk(2n+t−2) uk(2n+t−3) ukt −buk(t−1)

. . .
...

...
... 0 ukt

. . . 0
...

...
... 0

. . . −buk(t−1)

uk(n+t+1) uk(n+t)
...

...
. . . ukt

uk(n+t) uk(n+t−1) 0 ... ... 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

By subtracting the second column of gk,n,t from the first column by multiplying
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vk gives us

det gk,n,t

= −bn(n−2)+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

buk(2n+t−3) uk(2n+t−2) −buk(t−1) 0 ... 0

buk(2n+t−4) uk(2n+t−3) ukt −buk(t−1)

. . .
...

...
... 0 ukt

. . . 0
...

...
... 0

. . . −buk(t−1)

uk(n+t−1) uk(n+t)
...

...
. . . ukt

buk(n+t−2) uk(n+t−1) 0 ... ... 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

So on after n+ t− 1 subtractions between the two columns, we get finally

det gk,n,t

= −bn(n−2)+n+t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ukn uk(n−1) −buk(t−1) 0 ... 0

uk(n−1) uk(n−2) ukt −buk(t−1)

. . .
...

...
... 0 ukt

. . . 0
...

...
... 0

. . . −buk(t−1)

u2k u1
...

...
. . . ukt

uk u0 0 ... ... 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Expanding the determinant above with respect to the first row and by u0 = 0,
we get

det gk,n,t = b(n
2−n+t)uk(n−1)

∣∣∣∣∣∣∣∣∣∣∣

uk(n−1) ukt ...
...

... 0 ... −buk(t−1)

...
... ... ukt

uk 0 ... 0

∣∣∣∣∣∣∣∣∣∣∣

+ bn
2−n+t+1uk(t−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

uk(n−1) uk(n−2) −buk(t−1) 0 0

uk(n−2) uk(n−3) ukt ...
...

...
... 0 ... −buk(t−1)

...
...

... ... ukt
uk u0 0 ... 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)n bn2−n+tuk(n−1)uku
n−2
kt + bn

2−n+t+1uk(t−1)

( −1
bn2−3n+t+2

)
det gk,n−1,t

= (−1)n bn2−n+tuk(n−1)uku
n−2
kt − b2n−1uk(t−1) det gk,n−1,t.

Thus we have the conclusion.
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Lemma 3.2. For odd k > 0,

det gk,n,t =
(−1)kn
uk

[
bn

2−n+1uk(n−1)u
n
kt + bn

2

unk(t−1)uk − bn
2−n+1uk(t−1)uknu

n−1
kt

]

(3.2)

Proof. (Induction on n) When n = 2, we have

det gk,2,t =

∣∣∣∣
u(3+t) −bu(2+t)
u(2+t) −bu(1+t)

∣∣∣∣ = −b
(
u(3+t)u(1+t) − u2(2+t)

)
= bt+2u2k.

Substituting n = 2 in the RHS of (3.2), we get

(−1)2k
uk

[
b3uku

2
kt + b4u2k(t−1)uk − b3uk(t−1)u2kukt

]

= b3
(
u2kt + bu2k(t−1) − uk(t−1)vkukt

)

= b3
(
u2kt − uk(t+1)uk(t−1)

)
= bt+2u2k,

as claimed. We assume that the claim is true for n − 1. Now we prove that the
claim is true for n. By the induction hypothesis and (3.1), we write for odd integer
k,

det gk,n,t

= (−1)n bn2−n+tuk(n−1)uku
n−2
kt − b2n−1uk(t−1)

(−1)k(n−1)

uk

×
[
bn

2−3n+3uk(n−2)u
n−1
kt + b(n−1)2un−1

k(t−1)uk − bn
2−3n+3uk(t−1)uk(n−1)u

n−2
kt

]

= (−1)k(n−1)+1
bn

2

unk(t−1) + (−1)k(n−1)
bn

2−n+1uk(t−1)u
n−1
kt ukn

uk
+

+ un−2
kt uk(n−1)

[
(−1)kn bn2−n+tuk − (−1)k(n−1)

bn
2−n+1uk(t+1)uk(t−1)

uk

]

= (−1)k(n−1)+1
bn

2

unk(t−1) + (−1)k(n−1)
bn

2−n+1uk(t−1)u
n−1
kt ukn

uk
+

+ (−1)kn bn2−n+1u
n−2
kt uk(n−1)

uk

[
bt−1u2k + uk(t+1)uk(t−1)

]

=
(−1)kn
uk

[
bn

2−n+1uk(n−1)u
n
kt + bn

2

unk(t−1)uk − bn
2−n+1uk(t−1)uknu

n−1
kt

]
.

Thus the proof is complete.

Lemma 3.3. For n > 1,

dethk,n,t = (−1)n+1
bn(n−1)uk(n+t)u

n−1
kt .
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Proof. Expanding dethk,n,t with respect to the last row gives us

dethk,n,t

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

uk(2n+t−1) bnukt −bn+1uk(t−1) 0 ... 0

uk(2n+t−2) 0 bnukt −bn+1uk(t−1)

. . .
...

...
... 0 bnukt

. . . 0
...

...
... 0

. . . −bn+1uk(t−1)

uk(n+t+1) 0
...

...
. . . bnukt

uk(n+t) 0 0 ... ... 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= uk(n+t) (−1)n+1
(bnukt)

n−1

= (−1)n+1
bn(n−1)uk(n+t)u

n−1
kt ,

as claimed.

Lemma 3.4. For n > 1 and k, t > 0,

vkn =
(
vkukn − 2buk(n−1)

)
/uk,

uk(n+t) =
(
uk(n+1)ukt − buknuk(t−1)

)
/uk.

Proof. The claims are obtained from the Binet formulae of {un} and {vn} .

Theorem 3.5. For n ≥ 2 and all integer t,

detRk,n,t = bn(n−1)
(
(−1)kn−1

vknu
n
kt + (−1)kn bnunk(t−1)

)
, (3.3)

where k is an odd integer.

Proof. From the definitions of gk,n,t and hk,n,t, we see that

detRk,n,t = det gk,n,t + dethk,n,t.

So the proof follows from Lemmas 3.2, 3.3 and 3.4.

When t = n in (3.2) and (3.3), we have the following result.

Corollary 3.6. For n > 1,

det gk,n,n = (−1)kn bn2

unk(n−1),

detRk,n,n = (−1)kn bn(n−1)
(
−vknunkn + bnunk(n−1)

)
.
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